国产AV88|国产乱妇无码在线观看|国产影院精品在线观看十分钟福利|免费看橹橹网站

03 “綠色”水泥的概念

發(fā)布時(shí)間:2024-9-20 | 雜志分類:其他
免費(fèi)制作
更多內(nèi)容

03 “綠色”水泥的概念

CEMENT ADDITIVESGreen materials can be considered as materials that use less natural resources and energy and generate less CO21. Despite using optimised and sophisticated processes, green cements still emit large amounts of CO2. To improve the ecological balance of cement, every possible initiative to make cement ‘greener’ needs to be considered.Reducing CO2 emissions during clinker productionCement accounts for approximately five per cent of the world's carbon dioxide emissions. The estima... [收起]
[展開]
03 “綠色”水泥的概念
粉絲: {{bookData.followerCount}}
西卡中國刊物
文本內(nèi)容
第1頁

CEMENT ADDITIVES

Green materials can be considered

as materials that use less

natural resources and energy

and generate less CO2

1. Despite using

optimised and sophisticated processes,

green cements still emit large amounts of

CO2. To improve the ecological balance

of cement, every possible initiative to

make cement ‘greener’ needs to be

considered.

Reducing CO2 emissions

during clinker production

Cement accounts for approximately five

per cent of the world's carbon dioxide

emissions. The estimated average carbon

footprint is 0.83t CO2/t of traditional

Portland cement clinker (ranging from

0.7 to 1.4t). About 60 per cent of this

is released in unavoidable chemical

reactions as the limestone decomposes

(calcination process)2. The remaining

40 per cent is generated from the vast

amounts of energy needed to heat the

clinker to about 1450°C.

The main focus for the cement plants

is the optimisation of clinker production.

As a result, the share of alternative fuels

is strongly increasing and the generated

heat is used more efficiently. Today,

most cement plants operate dry-process

kiln systems with multi-stage cyclone

preheaters and precalciners, consuming

approximately 3000MJ thermal energy

per tonne of clinker. However, a

significant amount of cement plants still

operate long wet-process kiln systems

with a thermal energy consumption of

up to 6000MJ/t of clinker. CO2 is saved

when the wet ground raw material

slurry contains less water. Sika offers

special wet-system grinding aids allowing

moisture content reduction of the kiln

feed while maintaining the viscosity of

the slurry.

Reduced CO2 emissions

derived from electric energy

Cement production consumes a high

amount of electric energy, typically in

the range of 90-130kWh/t of cement,

Cement is a major part of today’s construction industry which demands

solutions that consider both economical and ecological aspects. Cement

manufacturers are continuously striving to achieve more efficient and

environmentally-friendly production methods. Sika offers cost-effective

concepts for a more ecologically-friendly production of so-called

‘green’ cement.

by Jorg M Schrabback,

Sika Sevices AG,

Switzerland/Germany

IConcepts for ‘green’ cement

Cement is a major part of construction solutions that

consider both economical and ecological aspects

APRIL 2010 ICR

“綠色”水泥的概念

作者:JORG M. SCHRABBACK,西卡瑞士公司

第2頁

2 “綠色”水泥的概念 創(chuàng)造性水泥研磨解決方案

您的挑戰(zhàn):兼顧能源消耗以及成本最優(yōu)

化的優(yōu)質(zhì)水泥生產(chǎn)

我們的方案:創(chuàng)新的高效能西卡水泥添

加劑

更多關(guān)于西卡助磨劑,西卡聚羧酸技術(shù)以及其它信息,

請?jiān)L問 www.sika.com/hardfacts

第3頁

“綠色”水泥的概念 3

CEMENT ADDITIVES

Green materials can be considered

as materials that use less

natural resources and energy

and generate less CO2

1. Despite using

optimised and sophisticated processes,

green cements still emit large amounts of

CO2. To improve the ecological balance

of cement, every possible initiative to

make cement ‘greener’ needs to be

considered.

Reducing CO2 emissions

during clinker production

Cement accounts for approximately five

per cent of the world's carbon dioxide

emissions. The estimated average carbon

footprint is 0.83t CO2/t of traditional

Portland cement clinker (ranging from

0.7 to 1.4t). About 60 per cent of this

is released in unavoidable chemical

reactions as the limestone decomposes

(calcination process)2. The remaining

40 per cent is generated from the vast

amounts of energy needed to heat the

clinker to about 1450°C.

The main focus for the cement plants

is the optimisation of clinker production.

As a result, the share of alternative fuels

is strongly increasing and the generated

heat is used more efficiently. Today,

most cement plants operate dry-process

kiln systems with multi-stage cyclone

preheaters and precalciners, consuming

approximately 3000MJ thermal energy

per tonne of clinker. However, a

significant amount of cement plants still

operate long wet-process kiln systems

with a thermal energy consumption of

up to 6000MJ/t of clinker. CO2 is saved

when the wet ground raw material

slurry contains less water. Sika offers

special wet-system grinding aids allowing

moisture content reduction of the kiln

feed while maintaining the viscosity of

the slurry.

Reduced CO2 emissions

derived from electric energy

Cement production consumes a high

amount of electric energy, typically in

the range of 90-130kWh/t of cement,

Cement is a major part of today’s construction industry which demands

solutions that consider both economical and ecological aspects. Cement

manufacturers are continuously striving to achieve more efficient and

environmentally-friendly production methods. Sika offers cost-effective

concepts for a more ecologically-friendly production of so-called

‘green’ cement.

by Jorg M Schrabback,

Sika Sevices AG,

Switzerland/Germany

IConcepts for ‘green’ cement

Cement is a major part of construction solutions that

consider both economical and ecological aspects

APRIL2010ICR作為當(dāng)今建筑行業(yè)的一種主要材料,水泥的生產(chǎn)需要統(tǒng)

籌考慮經(jīng)濟(jì)發(fā)展以及生態(tài)保護(hù)兩方面

作者:Jorg M. Schrabback,西卡瑞士公司 2010年4月 ICR

水泥是當(dāng)今建筑行業(yè)的一個(gè)主要構(gòu)成部分,由于需

要在生產(chǎn)過程中同時(shí)兼顧到經(jīng)濟(jì)與生態(tài)效益,對解

決方案有著很高要求。水泥生產(chǎn)商一直致力于不斷

改進(jìn)生產(chǎn)技術(shù),使其更為高效、環(huán)保。針對這種有

利于生態(tài)系統(tǒng)維護(hù)的水泥生產(chǎn)技術(shù),西卡提出了一

個(gè)成本最優(yōu)化理念,即俗稱的“綠色水泥”。

綠色材料可泛指那些對自然資源和能

源的消耗較小,CO2排放量較少的材

料。盡管已投入使用了優(yōu)化、先進(jìn)的

生產(chǎn)工藝,綠色水泥的生產(chǎn)過程仍然

會造成大量CO2的排放。為提高水泥生

產(chǎn)的生態(tài)平衡度,任何能使水泥生產(chǎn)

變得更為“綠色”的創(chuàng)新都值得被考

慮。

從水泥熟料生產(chǎn)中減排

水泥生產(chǎn)過程中的CO2排放量占全世

界碳排放量的5%,每噸傳統(tǒng)波特蘭

水泥熟料產(chǎn)生約0.83噸CO2(范圍在

0.7~1.4間),其中大約60%源自在石灰

石分解(煅燒)過程中產(chǎn)生的不可避

免的化學(xué)反應(yīng),其余的40%則來自于

水泥熟料的加熱過程,在該過程中,

熟料被加熱至1450oC,并因此產(chǎn)生大

量的能源消耗。目前,大部分水泥廠

商使用的回轉(zhuǎn)窯干法煅燒系統(tǒng),都配

有多級旋風(fēng)預(yù)熱器和分解爐,每噸熟

料會產(chǎn)生大約3000MJ的熱能消耗。然

而,絕大多數(shù)的水泥廠仍在使用濕法

長窯系統(tǒng),其熟料的熱能消耗量高達(dá)

60,00MJ/t,而當(dāng)濕磨生料漿含水量較少

時(shí),便會產(chǎn)生CO2。西卡提供的特殊濕

法研磨系統(tǒng)可在保持泥漿流動(dòng)性的同

時(shí)允許降低入窯料的濕度。

減少電能消耗過程中的碳排放

水泥生產(chǎn)過程中會消耗大量的電能,

通常每噸水泥的電能消耗量為90~130

千瓦時(shí),如果使用煤電,每百萬噸水

泥就會產(chǎn)生90,000~130,000噸CO2。實(shí)

際上,CO2的排放量取決于電能來源。

而超過50%的電能消耗產(chǎn)自于生料以

及成品水泥的研磨過程。

諸如助磨劑這樣的化學(xué)處理劑可提高

生產(chǎn)率并降低單位能耗。西卡在傳統(tǒng)

技術(shù)的基礎(chǔ)上對助磨劑進(jìn)行了技術(shù)創(chuàng)

新,通過應(yīng)用聚羧酸聚合物將磨機(jī)產(chǎn)

量提至最高。在保持恒定細(xì)度的前提

下,同傳統(tǒng)助磨劑生產(chǎn)相比,帶來了

產(chǎn)能的顯著提高(見圖表1),而在這

種技術(shù)的支持下,每百萬噸水泥生產(chǎn)

中會減少多達(dá)10,000噸的CO2排放。

“綠色”水泥的概念

第4頁

4 “綠色”水泥的概念 通過調(diào)整水泥配方減排

在水泥的生產(chǎn)過程中,會產(chǎn)生CO2排放

的環(huán)節(jié)主要是水泥熟料的生產(chǎn),這使得

行業(yè)不得不加強(qiáng)優(yōu)化水泥配方。新型水

泥將發(fā)展重點(diǎn)落實(shí)在增加用于替代水泥

熟料的混合材使用上,比如石灰石、火

山灰、粉煤灰和礦渣。每降低一個(gè)百分

比的水泥熟料,可減少每百萬噸混合水

泥中產(chǎn)生的8300噸CO2排放,但與此同

時(shí),也會對強(qiáng)度的發(fā)展產(chǎn)生-0.5N/mm2

的影響。而化學(xué)改進(jìn)劑可以在提高水泥

強(qiáng)度方面為廠商提供更多的選擇性。

通過調(diào)整選粉機(jī)并使用助磨劑提高水

泥細(xì)度

在水泥技術(shù)方面,水泥細(xì)度、熟料含

量及強(qiáng)度之間相互關(guān)聯(lián)緊密,其互相

之間的作用效果會因地域不同而發(fā)生

變化。以初步近似值統(tǒng)計(jì)來看,每增

加100cm2

/g的布萊恩比表面積,強(qiáng)度

即可在2天及28天后分別提高+1N/mm2

和+1.5 N/mm2

。

在粒徑分布方面,3~32μm粒徑范圍內(nèi)

的顆粒越多,強(qiáng)度就會越高。在一個(gè)

恒定的比表面,粒徑在3~32μm之間

的顆粒含量每增加5%就能提高約+1N/

mm2

的后強(qiáng)。

然而細(xì)度越高,意味著生產(chǎn)率越低,

布萊恩比表面積每增加100cm2

/g,會

導(dǎo)致生產(chǎn)率降低約3~4%。如上所述,

助磨劑可以補(bǔ)償生產(chǎn)損失,從而通過

最經(jīng)濟(jì)的方式達(dá)到預(yù)定細(xì)度。相比不

添加助磨劑的情況,這種方法可以使

產(chǎn)量提高10~20%,也可在產(chǎn)量恒定的

情況下增大約300cm2

/g的比表面積。

通過改進(jìn)外加劑質(zhì)量加速水泥水化

化學(xué)物質(zhì)可以加速熟料的水化,從而

提高不同齡期的強(qiáng)度(見圖表2)。在

細(xì)度恒定的情況下,視當(dāng)?shù)貤l件,如

熟料的成分及活性而定,2天后強(qiáng)度

可提高2~5N/mm2

,后強(qiáng)可提高約7N/

mm2

(EN196要求下的標(biāo)準(zhǔn)砂漿)。

上述早強(qiáng)的提高可抵消強(qiáng)度在水泥熟料

摻量下降4~10%時(shí)受到的影響,由此,

在每百萬噸混合水泥的生產(chǎn)過程中可減

少33,000~83,000噸的CO2排放。另一種

增加強(qiáng)度的方法是在生產(chǎn)過程中使用一

部分活性較低的熟料,如貝利特熟料。

綜合化學(xué)改進(jìn)劑以及細(xì)度兩者的影響

力,可以實(shí)現(xiàn)58N/mm2

的強(qiáng)度提高。通

過這種優(yōu)勢,可取代約10~16%的水泥熟

料,從而在每百萬噸水泥生產(chǎn)的過程中

減少80,000~130,000噸的CO2排放。優(yōu)化

粒徑分布可以使這種效果得到進(jìn)一步增

強(qiáng)。西卡為客戶提供的標(biāo)準(zhǔn)及定制型高

效助磨劑、質(zhì)量改進(jìn)劑,可最大程度地

降低二氧化碳排放量。

通過減少原料波動(dòng)保證生產(chǎn)的穩(wěn)定性

水泥生產(chǎn)是一個(gè)會持續(xù)受到自然環(huán)境

變化影響的過程,水泥生產(chǎn)商在生產(chǎn)

鏈中的均化設(shè)備上投資很多,從不同

原材料到生料及熟料的儲存,再到水

泥成品庫。在每道工序中控制質(zhì)量的

穩(wěn)定性,可以確保變化被控制在盡可

能小的范圍內(nèi)。變化越小,需要的安

全限度也越低,因而為保證水泥性能

所需要的熟料含量也可以變得更低。

在水泥的研磨過程中,變量小的穩(wěn)定

生產(chǎn)可以帶來更高的生產(chǎn)率及更好的

強(qiáng)度效果。通過分析粒徑分布結(jié)果,

對水泥細(xì)度進(jìn)行常規(guī)控制,并以諸如

西卡助磨劑這樣的化學(xué)改進(jìn)劑加以輔

助,便可實(shí)現(xiàn)水泥生產(chǎn)商的預(yù)設(shè)質(zhì)量。

案例分析:減排的潛力

案例分析是用以闡明減排潛力的最佳

方法。在本案例中,廠家年產(chǎn)CEM III/A

32.5N礦渣水泥770,000噸,熟料摻量為

0.46。這個(gè)項(xiàng)目的目標(biāo)是將水泥配方進(jìn)

equivalent to 90,000-130,000t CO2

per 1Mt of cement if the electricity is

coal-generated. Indeed, the related CO2

emission depends on the source of the

electric energy. More than 50 per cent of

the consumed electrical energy is related

to the grinding of raw materials and the

finish cement grinding process.

Chemical processing agents like

grinding aids increase production rates

and reduce specific energy consumption.

Sika offers products based on traditional

technologies for grinding aids but also a

unique new grinding aid technology which

uses polycarboxylate polymers to generate

the highest mill output3. Significant

production increase versus blank grinding

at constant fineness is achievable (Figure

1). As a consequence, CO2 emissions can

be reduced by up to 10,000t CO2 per

1Mt of cement.

Reduced CO2 emissions with

cement formulation

The fact that clinker causes the main

CO2 emissions during cement production

leads the industry to a stronger cement

formulation optimisation. The focus

of new cement developments is to

increasingly replace clinker with secondary

cementitious materials like limestone,

natural pozzolanes, fly ash and slag. Each

percentage of reduced clinker content

lowers the carbon dioxide emission by

8300t CO2 per 1Mt blended cement,

but also adversely affects the strength

development in the magnitude of -0.5N/

mm2. Chemical processing agents offer

different opportunities to enhance the

4Improved cement fineness

with adjusted separator

settings and grinding aids

In cement technology, fineness, clinker

content and strength are in close

connection. Exact relations can be

determined for different local conditions.

As a first approximation, increasing

specific surface according to Blaine by

additional 100cm2/g leads to enhanced

strength development in the scale of

+1N/mm2 after two days and +1.5N/mm2

after 28 days respectively.

Significant enhancements can be

achieved when targeting an optimised

particle size distribution towards a greater

proportion of the particle size fraction

3-32μm, which is the most important for

strength development5. At a constant

specific surface, an additional five per

cent content of particles 3-32μm result

in approximately 1N/mm2 more final

strength.

Higher fineness also implicates a

lower production rate. Each 100cm2/g

more specific surface according to Blaine

reduces the cement production rate by

approximately 3-4 per cent6. As already

described, grinding aids can compensate a

loss of production and thus contribute to

achieving the desired fineness in the most

economical way. A typical production

increase of 10-12 per cent with a grinding

aid versus blank grinding could in this

way generate an approximately 300cm2/

g higher specific surface at constant

production rate.

Acceleration of cement

hydration with quality

improving additives

Chemical substances can accelerate the

hydration of the clinker phases, leading

to higher strength at different ages

(see Figure 2). At constant fineness and

depending on the local conditions like

the amount of clinker and reactivity,

strength after two days can be improved

in the range of 2-5N/mm2 while the

final strength can be enhanced up to

approximately 7N/mm2 (standard mortar

according to EN 196).

The indicated early strength

development allows reducing clinker

content by 4-10 per cent. Consequently,

the carbon footprint is diminished in the

range of 33,000-83,000t CO2 per 1Mt of

blended cement. Another opportunity to

take advantage of the strength increase

would be to partially use less reactive

clinker, eg belite clinker.

CEMENT ADDITIVES

Figure 1: increasing mill output reduces the specific energy consumption per tonne of cement and

The cement production

process offers multiple

possibilities to reduce

the CO2 emissions

水泥生產(chǎn)過程的許多

環(huán)節(jié)都有降低CO2排

放的可能

equivalent to 90,000-130,000t CO2

per 1Mt of cement if the electricity is

coal-generated. Indeed, the related CO2

emission depends on the source of the

electric energy. More than 50 per cent of

the consumed electrical energy is related

to the grinding of raw materials and the

finish cement grinding process.

Chemical processing agents like

grinding aids increase production rates

and reduce specific energy consumption.

Sika offers products based on traditional

technologies for grinding aids but also a

unique new grinding aid technology which

uses polycarboxylate polymers to generate

the highest mill output3. Significant

production increase versus blank grinding

at constant fineness is achievable (Figure

1). As a consequence, CO2 emissions can

be reduced by up to 10,000t CO2 per

1Mt of cement.

Reduced CO2 emissions with

cement formulation

The fact that clinker causes the main

CO2 emissions during cement production

leads the industry to a stronger cement

formulation optimisation. The focus

of new cement developments is to

increasingly replace clinker with secondary

cementitious materials like limestone,

natural pozzolanes, fly ash and slag. Each

percentage of reduced clinker content

lowers the carbon dioxide emission by

8300t CO2 per 1Mt blended cement,

but also adversely affects the strength

development in the magnitude of -0.5N/

mm2. Chemical processing agents offer

different opportunities to enhance the

strength development of cement4.

Improved cement fineness

with adjusted separator

settings and grinding aids

In cement technology, fineness, clinker

content and strength are in close

connection. Exact relations can be

determined for different local conditions.

As a first approximation, increasing

specific surface according to Blaine by

additional 100cm2/g leads to enhanced

strength development in the scale of

+1N/mm2 after two days and +1.5N/mm2

after 28 days respectively.

Significant enhancements can be

achieved when targeting an optimised

particle size distribution towards a greater

proportion of the particle size fraction

3-32μm, which is the most important for

strength development5. At a constant

specific surface, an additional five per

cent content of particles 3-32μm result

in approximately 1N/mm2 more final

strength.

Higher fineness also implicates a

lower production rate. Each 100cm2/g

more specific surface according to Blaine

reduces the cement production rate by

approximately 3-4 per cent6. As already

described, grinding aids can compensate a

loss of production and thus contribute to

achieving the desired fineness in the most

economical way. A typical production

increase of 10-12 per cent with a grinding

aid versus blank grinding could in this

way generate an approximately 300cm2/

g higher specific surface at constant

production rate.

Acceleration of cement

hydration with quality

improving additives

Chemical substances can accelerate the

hydration of the clinker phases, leading

to higher strength at different ages

(see Figure 2). At constant fineness and

depending on the local conditions like

the amount of clinker and reactivity,

strength after two days can be improved

in the range of 2-5N/mm2 while the

final strength can be enhanced up to

approximately 7N/mm2 (standard mortar

according to EN 196).

The indicated early strength

development allows reducing clinker

content by 4-10 per cent. Consequently,

the carbon footprint is diminished in the

range of 33,000-83,000t CO2 per 1Mt of

blended cement. Another opportunity to

take advantage of the strength increase

would be to partially use less reactive

clinker, eg belite clinker.

CEMENT ADDITIVES

ICR APRIL 2010

Figure 1: increasing mill output reduces the specific energy consumption per tonne of cement and

hence the CO2 emission

The cement production

process offers multiple

possibilities to reduce

the CO2 emissions

圖表1:磨機(jī)產(chǎn)量提高使每噸水泥的電耗降低,因而減少CO2排放產(chǎn)量提高

水泥中西卡助磨劑摻量(%)

一般摻量范圍

新技術(shù)

傳統(tǒng)技術(shù)

第5頁

“綠色”水泥的概念 5

行“綠色”優(yōu)化,使其生產(chǎn)更為經(jīng)濟(jì)環(huán)

保,并將礦渣的含量盡量提高到CEMIII/

A標(biāo)準(zhǔn)容許的最大值。表1中,工廠使用

了傳統(tǒng)助磨劑(醇胺類助磨劑)和兩種

SikaGrind?-800系列產(chǎn)品(一種為純助

磨劑,另一種為有增加強(qiáng)度效果的助磨

劑),并將其使用結(jié)果進(jìn)行了對比。在

配方?jīng)]有任何改動(dòng)的情況下,兩種西

卡助磨劑產(chǎn)品均實(shí)現(xiàn)了4.6%的產(chǎn)量增

長,并在特定能耗下降低了4.3%的CO2

排放。在這個(gè)案例中,每年產(chǎn)生于水泥

研磨耗電中的CO2排放占全部CO2排放量

的8.8%。因此,雖然電能消耗中CO2的

排放量有所降低,但對降低CO2的總排

放量并無顯著貢獻(xiàn)(降低0.4%)。

當(dāng)把實(shí)驗(yàn)條件由提高產(chǎn)量轉(zhuǎn)換為增大比表

面并維持恒定產(chǎn)量時(shí)(方案1),水泥熟

料摻量可被降至44%并降低3%的CO2排放

量,遠(yuǎn)大于通過節(jié)電帶來的減排效應(yīng)。

第二種方案是通過西卡性能改進(jìn)劑增

強(qiáng)水泥特性,在該方案下,熟料摻量

下降到42%,且相應(yīng)提高了礦渣的含

量,此時(shí)可將年CO2排放量降低6.3%。

第三種方案是將前兩種方案合并,此

時(shí),水泥熟料摻量可降至40%,并節(jié)

省8.9%的碳排放。

而本案例中,在之前方案的基礎(chǔ)上還

同時(shí)降低了熟料成分的波動(dòng),且再次

加強(qiáng)了穩(wěn)定生產(chǎn)的管控(方案4),最

終使得水泥熟料摻量達(dá)到最低值38%,

每年減少CO2排放47,400(11.9%)。

混凝土生產(chǎn)中的減排

迄今為止,針對水泥干、濕法生產(chǎn)中化

學(xué)添加劑和外加劑作用機(jī)理的研究一直

都在進(jìn)行。以這些研究結(jié)果作為基礎(chǔ),

面對當(dāng)今市場的各方面挑戰(zhàn),無論是為

滿足大方向需求還是針對個(gè)例進(jìn)行創(chuàng)造

性解決方案開發(fā),都會有廣闊的市場空

間。綠色水泥最關(guān)注的兩點(diǎn)是用水量和

凝聚性,后者對于其在混凝土中發(fā)揮的

效果具有關(guān)鍵作用。研磨較細(xì)的混合水

泥會引發(fā)過高的用水量,從而導(dǎo)致混凝

土和易性變差并加大坍落度損失。基于

聚羧酸聚合物的西卡性能改進(jìn)劑可以在

幫助水泥實(shí)現(xiàn)良好工作性的同時(shí)滿足塌

落度保持的要求。

在水泥建材領(lǐng)域擁有的一百多年研究

技術(shù)和經(jīng)驗(yàn),讓西卡公司的助磨劑和

混凝土外加劑成為了現(xiàn)代建筑行業(yè)領(lǐng)

域中,對高性能混凝土生產(chǎn)的一道有

力保障。

結(jié)論

為了使更為高效、環(huán)保的生產(chǎn)理念得

以實(shí)現(xiàn),水泥廠商不斷嘗試對熟料

生產(chǎn)過程進(jìn)行各方面優(yōu)化。此外,持

續(xù)加大的減排壓力也使得在水泥配方

中,熟料替換料的比重一再加大,進(jìn)

而導(dǎo)致強(qiáng)度受損并降低了生產(chǎn)力。

西卡提供的化學(xué)添加劑可以在水泥生產(chǎn)

的不同階段及應(yīng)用階段減少碳排放,并

同時(shí)提高水泥以及混凝土的性能。西卡

將助磨劑技術(shù)的重點(diǎn)主要落實(shí)在降低熟

料含量及每噸水泥生產(chǎn)的能量消耗上。

新的聚羧酸助磨劑技術(shù)SikaGrind?-800

系列可以最大限度的提高生產(chǎn)率,也可

配置成性能改進(jìn)劑,用于提高早強(qiáng)和后

強(qiáng)。通過這種方式,西卡助磨劑便能幫

助水泥廠,在降低碳排放的同時(shí)實(shí)現(xiàn)利

潤的最大化。

the carbon footprint is diminished in the

range of 33,000-83,000t CO2 per 1Mt of

blended cement. Another opportunity to

take advantage of the strength increase

would be to partially use less reactive

clinker, eg belite clinker.

Combining the effects of chemical

acceleration and fineness, strength

improvements in the range of 5-8N/

mm2 after two days are possible. This

advantage can be used to replace clinker

by 10-16 per cent of the cement and in

that way reduce 80,000-130,000t CO2

per 1Mt of blended cement. Effects of an

optimisedparticlesizedistributioncouldSika offers standard and tailormade

quality improvers which include efficient

grinding aid technologies to minimise the

carbon footprint.

Constant production with

reduced variations

Cement production is a continuous

process subject to natural variations.

Cement manufacturers invest a lot in

homogenising equipment along the

production chain, from raw material

storage to different raw meal and clinker

storages to finished cement silos. On all

levelsconstantqualitycontrolensurespossible. The smaller the variations, the

smaller the necessary safety margins are

and hence the needed clinker content is

lower to ensure the cement properties.

During cement grinding, a more constant

production with reduced variation leads to

highest production rates and best strength

results. Regular control of cement fineness

with help of particle size analysis and the

use of chemical processing agents like

SikaGrind can help to ensure that cement

plants achieve the required quality.

Case study: CO2 reduction

potential

The potential to reduce the carbon

footprint can be demonstrated best in a

case study. The chosen plant produces

770,000tpa of CEM III/A 32.5N with

a clinker factor of 0.46. The target

of the project was the ecological and

economical optimisation of the cement

formulation, bringing the slag content

close to the maximum allowed for a CEM

III/A. Table 1 shows plant results which

compare a pure traditional grinding aid

with two products of the SikaGrind-800

Series, a pure grinding aid and a strength

enhancer with incorporated grinding aid.

Without any changes of formulation, both

SikaGrind products increase production

by 4.6 per cent and consequently reduce

the CO2 emissions which are related to

the specific energy consumption by 4.3

per cent. In this example, the annual CO2

emission derived from electrical energy

used for the cement grinding process

accounts to 8.8 per cent of the total CO2

emission. Therefore, the effect of the

reduced electric energy consumption on

total CO2 emission is only very limited

(0.4 per cent saving).

Converting the production increase

into higher specific surface at a constant

production rate (Option 1) would reduce

the clinker factor to 0.44 and save three

per cent of total CO2 emissions, which is

distinctly more than with the savings of

electrical energy.

The strength-enhancing property of

the SikaGrind Quality Improver allows the

reduction in the clinker factor to 0.42 and

increasing the slag content accordingly

(Option 2). This reduces the annual CO2

emissions by 6.3 per cent.

Options 1 and 2 can be combined

(Option 3), resulting in a clinker factor

of040whichsaves89percentCOCEMENT ADDITIVES

Figure 2: enhanced strength development with SikaGrind products can be used to minimise CO2

emission of cement

Research in interactions of chemical processing additive and

possible cementitious materials

圖表2:使用西卡助磨劑帶來的強(qiáng)度增加,可減少水泥中熟料的比例,從而降低CO2排放抗壓強(qiáng)度提高

天數(shù)

摻量純助磨劑

摻量早強(qiáng)改進(jìn)型助磨劑

the carbon footprint is diminished in the

range of 33,000-83,000t CO2 per 1Mt of

blended cement. Another opportunity to

take advantage of the strength increase

would be to partially use less reactive

clinker, eg belite clinker.

Combining the effects of chemical

acceleration and fineness, strength

improvements in the range of 5-8N/

mm2 after two days are possible. This

advantage can be used to replace clinker

by 10-16 per cent of the cement and in

that way reduce 80,000-130,000t CO2

per 1Mt of blended cement. Effects of an

optimised particle size distribution could

furtherboostthisbenefitSika offers standard and tailormade

quality improvers which include efficient

grinding aid technologies to minimise the

carbon footprint.

Constant production with

reduced variations

Cement production is a continuous

process subject to natural variations.

Cement manufacturers invest a lot in

homogenising equipment along the

production chain, from raw material

storage to different raw meal and clinker

storages to finished cement silos. On all

levels, constant quality control ensures

thatthevariationsarekeptaslowaspossible. The smaller the variations, the

smaller the necessary safety margins are

and hence the needed clinker content is

lower to ensure the cement properties.

During cement grinding, a more constant

production with reduced variation leads to

highest production rates and best strength

results. Regular control of cement fineness

with help of particle size analysis and the

use of chemical processing agents like

SikaGrind can help to ensure that cement

plants achieve the required quality.

Case study: CO2 reduction

potential

The potential to reduce the carbon

footprint can be demonstrated best in a

case study. The chosen plant produces

770,000tpa of CEM III/A 32.5N with

a clinker factor of 0.46. The target

of the project was the ecological and

economical optimisation of the cement

formulation, bringing the slag content

close to the maximum allowed for a CEM

III/A. Table 1 shows plant results which

compare a pure traditional grinding aid

with two products of the SikaGrind-800

Series, a pure grinding aid and a strength

enhancer with incorporated grinding aid.

Without any changes of formulation, both

SikaGrind products increase production

by 4.6 per cent and consequently reduce

the CO2 emissions which are related to

the specific energy consumption by 4.3

per cent. In this example, the annual CO2

emission derived from electrical energy

used for the cement grinding process

accounts to 8.8 per cent of the total CO2

emission. Therefore, the effect of the

reduced electric energy consumption on

total CO2 emission is only very limited

(0.4 per cent saving).

Converting the production increase

into higher specific surface at a constant

production rate (Option 1) would reduce

the clinker factor to 0.44 and save three

per cent of total CO2 emissions, which is

distinctly more than with the savings of

electrical energy.

The strength-enhancing property of

the SikaGrind Quality Improver allows the

reduction in the clinker factor to 0.42 and

increasing the slag content accordingly

(Option 2). This reduces the annual CO2

emissions by 6.3 per cent.

Options 1 and 2 can be combined

(Option 3), resulting in a clinker factor

of 0.40 which saves 8.9 per cent CO2

emissionsCEMENT ADDITIVES

Figure 2: enhanced strength development with SikaGrind products can be used to minimise CO2

emission of cement

Research in interactions of chemical processing additive and 對化學(xué)添加劑和各種膠凝材料之間相互作用的研究 possible cementitious materials

第6頁

6 “綠色”水泥的概念 1. EDVARDSEN, C and K TOLLOSE, “Environmentally ‘Green’ Concrete Structures.” Proceedings of the FIB Symposium: Concrete and

Environment, Berlin, Oct 2001.

2. Cembureau publication “Climate Change, Cement and the EU,” www.cembureau.be, July 1998

3. SCHRABBACK, J M, “Polycarboxylate polymer-powered grinding efficiency,” Global Cement, July-Aug 2009, pp14-16

4. SCHRABBACK, J M, “Finest strength development”, International Cement Review, Sept 2009, pp75-80

5. TSIVILIS S, TSIMAS, S, BENETATOU, A and HANIOTAKIS, E, “Study on the contribution of the fineness on cement strength,”

Zement-Kalk-Gips, Jan 1990, pp26-29

6. BRUGAN, J M, “High efficiency separators – Problems and solutions,” Zement-Kalk-Gips, July 1988, pp350-355

7. SCHRABBACK, J M? “Additives for a challenging cement market,” World Cement, Oct 2009.

表1:SikaGrind? 800系列兩種產(chǎn)品以及醇胺類助磨劑產(chǎn)品在工廠的應(yīng)用比較

CEM III/A 32.5N 醇胺類助磨劑 SikaGrind?-800系列助磨劑 SikaGrind?-800系列強(qiáng)度改進(jìn)劑

產(chǎn)量(噸/時(shí)) 109 114 114

摻量(%) 0.025 0.025 0.025

熟料摻量 0.46 0.46 0.46

布萊恩比表面積

(cm2/g)

目標(biāo)值 3450 cm2/g 3535 3565 3550

波動(dòng) +/-200 +/-200 +/-200

篩余32μm (%) 14.5 13.4 14.1

RRSB圖表:均勻性系數(shù)n 1.02 1.03 1.02

RRSB圖表:特征粒徑X(μm) 21.6 20.82 21.1

需水量(%) 28 28.2 27.7

2天抗壓強(qiáng)度(N/mm2) 8.0 8.8 10.2

7天抗壓強(qiáng)度(N/mm2) 21.9 22.9 25.6

28天抗壓強(qiáng)度(N/mm2) 41.1 41.0 48.7

原材料帶來的CO2排放(噸/年) 314300 314300 314300

工廠電能消耗帶來的CO2排放(噸/年)

a)研磨過程電能消耗 35100 33600 33600

b)其它工序電能消耗 49600

CO2排放(噸/年) 排放量 399000 397500 397500

節(jié)省量 1500 1500

表2:水泥配方優(yōu)化以及西卡助磨劑的添加帶來的CO2排放減少

CEM III/A 32.5N

基準(zhǔn)

醇胺類

助磨劑

方案1

使用助磨劑提高細(xì)

度,降低熟料含量

方案2

使用強(qiáng)度改進(jìn)劑

降低熟料含量

方案3

使用強(qiáng)度改進(jìn)劑以及提

高細(xì)度來降低熟料含量

方案4

使用選擇3強(qiáng)度改進(jìn)

劑加上更穩(wěn)定的生產(chǎn)

產(chǎn)量(噸/時(shí)) 109 109 114 109 109

摻量(%) 0.025 0.025 0.025 0.025 0.025

熟料摻量 0.46 0.44 0.42 0.40 0.38

布萊恩比表面積

(cm2/g)

目標(biāo)值

3450 cm2/g 3535 ≈3650 ≈3550 ≈3650 ≈3650

波動(dòng) +/-200 +/-200 +/-200 +/-200 +/-100

2天抗壓強(qiáng)度 (N/mm2) 8.0 ≈9.0 ≈8.0 ≈8.0 ≈7.0

28天抗壓強(qiáng)度 (N/mm2) 41.1 ≈41.0 ≈43.0 ≈43.0 ≈42.0

原材料帶來的CO2排放(噸/年) 314300 302500 290600 278700 266900

工廠電能消耗帶來的CO2排放(噸/年)

a)研磨過程電能消耗 35100 35100 33600 35100 35100

b)其它工序電能消耗 49600

CO2排放(噸/年) 排放量 399000 387200 373800 363400 351600

節(jié)省量 11800 25200 35600 47400

參考書目

第7頁

“綠色”水泥的概念 7

Creative Grinding Solutions

by Philippe Jost and Jorg M. Schrabback

Sika Services AG, Tüffenwies 16, CH-8048 Zürich, Switzerland

Phone +41 44 436 4040, Fax +41 44 436 4150, www.sika.com

Reprint of September 2007:

performance of polycarboxylate polymer-powered

grinding aids. In this case, the innovative technology

cant production

e traditional amine-based

product reached its limit with an 8% production increase at a dosage of 0.03% (Figure 5). Moreover, these

exible the production process

can become if the mill output can be economically correlated to the grinding aid dosage.

Case study of PCE powered glycol-based

grinding aid technology

e third plant trial example demonstrates that an

ciency is also possible in the tra-

gure

c case, 0.025% of a traditional glycolbased grinding aid achieved a production increase of

9%, while the same dosage of the PCE/glycol formulation easily achieved a production increase of 16%.

Polycarboxylate polymers improve the performance

of the traditional grinding aid technologies of amino

alcohols and glycols and allow for a further increase

neness

and more favourable PSD at constant production rate.

e resulting enhanced quality allows plants to reduce

their clinker content and hence to decrease their carbon

footprints while increasing the cement manufacturer’s

tability.

Conclusions

ect on the grinding and

neness of

cement to be achieved in the most economic way. Polycarboxylate polymers improve the performance of the

traditional grinding aid technologies of amino alcohols

and glycols and allow a further increase of the production rate.

c energy consumption. It

can also be used to achieve strength enhancements with

neness and optimised particle size

e potential clinker reduction minimises the carbon footprint.

Sika’s polycarboxylate polymer-powered grinding

ers

solutions for individual challenges and also maximises

tability.

globalcement MAGAZINE July - August 2009

Figure 4 (right):PCE

powered GA increases the

p .

Figure 5 (right):PCE

powered GA allows

production

planning.

Figure 6: PCE powered GA

increase the production

s y.

Reprint of

Polycarboxylate polymer-powered

grinding efficiency

by Jorg M. Schrabback

July-August 2009:

Sika Services AG, Tüffenwies 16, CH-8048 Zürich, Switzerland

Phone +58 44 436 4040, Fax +58 44 436 4150, www.sika.com

Introduction

In today’s market of increasing competition and decreasing

volumes, cement manufacturers as well as cement users

are aiming for cost reduction with the aim to increase

profitability and stabilise or extend their own position in the

global market. Additives that offer additional benefits during

cement production and cement application in concrete can

help to differentiate oneself from the competition.

While the major quality parameters are regulated in the

different standards, additional unregulated properties can

become the decisive factor when choosing a particular cement.

Cement quality

Cement producers need to supply the cement quality

as it is defined by the standards, such as the European

standard EN 197-1, while also meeting customers

demands. Strength development is the most important

property since it is the reason why cement is used in the

construction industry.

Concrete producers look for a cement that supports

their daily work as much as possible. Key words from

this perspective are homogeneity and good concrete

workability, but also easy handling of the cement itself.

JORG M. SCHRABBACK, CORPORATE PRODUCT

ENGINEER CEMENT ADDITIVES, SIKA SERVICES AG,

SWITZERLAND/GERMANY, DESCRIBES HOW MODERN

CEMENT ADDITIVES CAN CONTRIBUTE TO AN

IMPROVED PROFITABILITY IN CEMENT BUSINESS.

Additives for

a Challenging

Cement Market

Reprinted from October 2009

[Reprinted from Oct 09] worldcement.com

Reprint of

Additives for a Challenging

Cement Market

by Jorg M. Schrabback

October 2009

since

1910

Innovation &

Consistency

SikaGrind?

西卡水泥助磨劑技術(shù)

其他文章

第8頁

西卡,可靠的本地化合作伙伴

? Sika (China) Ltd. / Concrete / 05.2016

瑞士西卡

總部位于瑞士巴爾市的西卡集團(tuán)創(chuàng)立于1910年,是全球特殊化學(xué)品領(lǐng)

域的領(lǐng)先企業(yè)。西卡的核心競爭力、主要產(chǎn)品和目標(biāo)市場集中于:混

凝土生產(chǎn),密封,粘接,防水,屋面,工業(yè)地坪,結(jié)構(gòu)修補(bǔ)和加固,工業(yè)

化學(xué)品。

同時(shí)西卡也是工業(yè)制造領(lǐng)域領(lǐng)先的服務(wù)和產(chǎn)品供應(yīng)商。主要為轎車制

造、汽車維修、交通運(yùn)輸行業(yè)提供粘接、密封、減震降噪和結(jié)構(gòu)加固的

快速解決方案,為船舶制造提供可靠和持久的防水密封解決方案,為

玻璃幕墻、門窗制造、三明治板、太陽能及風(fēng)力發(fā)電設(shè)備以及其它電

器與工業(yè)構(gòu)件提供創(chuàng)新設(shè)計(jì)和系統(tǒng)解決方案。

適用最新的銷售條款。

在使用本樣本前,請咨詢具體的產(chǎn)品數(shù)據(jù)。

西卡(中國)有限公司

蘇州工業(yè)園區(qū)

涇東路 28 號

郵編:215121

電話:+86 512 6273 2888

傳真:+86 512 6287 7055

郵件:marketing@cn.sika.com

網(wǎng)址:http://chn.sika.com

百萬用戶使用云展網(wǎng)進(jìn)行在線電子書制作,只要您有文檔,即可一鍵上傳,自動(dòng)生成鏈接和二維碼(獨(dú)立電子書),支持分享到微信和網(wǎng)站!
收藏
轉(zhuǎn)發(fā)
下載
免費(fèi)制作
其他案例
更多案例
免費(fèi)制作
x
{{item.desc}}
下載
{{item.title}}
{{toast}}