14
LI Q, SHEN C S, LIN Q F, WANG H, LIN H T, CHEN J Y, FAN Z Q.
Advances in research on the chilling injury occurrence and control
technologies of postharvest banana fruit[J]. Journal of Fruit Science,
2021, 38(5): 817-827. DOI: 10.13925/j.cnki.gsxb.20200500.
[3] HE M, KONG X, JIANG Y, QU H, ZHU H. MicroRNAs: Emerging
regulators in horticultural crops[J]. Trends in Plant Science, 2022,
27: 936-951. DOI: 10.1016/j.tplants.2022.03.011.
[4] 滕露,于月華,何茹月,陳全家,倪志勇 . 大豆 miR164 家族的生物
信息學分析[J]. 大 豆 科 學,2018, 37(5): 704-709. DOI: 10.11861/
j.issn.1000-9841.2018.05.0704.
TENG L, YU Y H, HE R Y, CHEN Q J, NI Z Y. Bioinformatics analysis
of soybean miR164 family[J]. Soybean Science, 2018, 37(5): 704-
709. DOI: 10.11861/j.issn.1000-9841.2018.05.0704.
[5] KIM J H, WOO H R, KIM J, LIM P O, LEE I C, CHOI S H, HWANG
D, NAM H G. Trifurcate feed-forward regulation of age-dependent cell
death involving miR164 in Arabidopsis[J]. Science, 2009, 323(5917):
1053-1057. DOI: 10.1126/science.1166386.
[6] WU X M, LIU M Y, GE X X, XU Q, GUO W W. Stage and tissuespecific modulation of ten conserved miRNAs and their targets during
somatic embryogenesis of Valencia sweet orange[J]. Planta, 2011,
233(3): 495-505. DOI: 10.1007/s00425-010-1312-9.
[7] 楊春文 . 番茄 miR164 對花器官形成和果實發(fā)育的調(diào)控研究[D].
重慶 : 重慶大學,2012. DOI: 10.7666/d.y2152976.
YANG C W. Studies on the regulation of miR164 on flower organ
formation and fruit development in tomato[D]. Chongqing: Chongqing
University, 2012. DOI: 10.7666/d.y2152976.
[8] WEI H, YORDANOV Y S, GEORGIEVA T, LI X, BUSOV V. Nitrogen
deprivation promotes Populus root growth through global transcriptome
reprogramming and activation of hierarchical genetic networks[J].
New Phytologist, 2013, 200(2): 483-497. DOI: 10.1111/nph.12375.
[9] 李春賀,陰祖軍,劉玉棟,沈法富 . 鹽脅迫條件下不同耐鹽棉花
miRNA 差 異表 達研 究[J]. 山東 農(nóng) 業(yè) 科 學,2009(7): 12-17. DOI:
10.3969/j.issn.1001-4942.2009.07.004.
LI C H, YIN Z J, LIU Y D, SHEN F F. Study on miRNA differential
expression of different salt tolerant cotton under salt stress[J].
Shandong Agricultural Sciences, 2009(7): 12-17. DOI: 10.3969/
j.issn.1001-4942.2009.07.004.
[10] MALLORY A C, DUGAS D V, BARTEL D P, BARTEL B. MicroRNA
regulation of NAC-domain targets is required for proper formation
and separation of adjacent embryonic, vegetative, and floral organs
[J]. Current Biology, 2004, 14(12): 1035-1046. DOI: 10.1016/
j.cub.2004.06.022.
[11] GUO H S, XIE Q, FEI J F, CHUA N H. MicroRNA directs mRNA
cleavage of the transcription factor NACl to downregulate auxin signals
for Arabidopsis lateral root development[J]. Plant Cell, 2005, 17(5):
1376-1386. DOI: 10.1105/tpc.105.030841.
[12] ZHAN J, CHU Y, WANG Y, DIAO Y, ZHAO Y, LIU L, WEI X, MENG Y,
LI F, GE X. The miR164-GhCUC2-GhBRC1 module regulates plant
architecture through abscisic acid in cotton[J]. Plant Biotechnology
Journal, 2021, 19(9): 1839-1851. DOI: 10.1111/pbi.13599.
[13] LIN D, ZHU X, QI B, GAO Z, TIAN P, LI Z, LIN Z, ZHANG Y,
HUANG T. SlMIR164A regulates fruit ripening and quality by
controlling SlNAM2 and SlNAM3 in tomato[J]. Plant Biotechnology
Journal, 2022, 20(8): 1456-1469. DOI: 10.1111/pbi.13824.
[14] OLSEN A N, ERNST H A, LEGGIO L L , SKRIVER K. NAC
transcription factors: Structurally distinct, functionally diverse
[J]. Trends in Plant Science, 2005, 10(2): 79-87. DOI: 10.1016/
j.tplants.2004.12.010.
[15] 王芳,孫立嬌,趙曉宇,王婕婉,宋興舜 . 植物 NAC 轉錄因子的研
究進展[J]. 生物技術通報,2019, 35(4): 88-93. DOI: 10.13560/j.cnki.
biotech.bull.1985.2018-0905.
WANG F, SUN L J, ZHAO X Y, WANG J W, SONG X S. Research
progresses on plant NAC transcription factors[J]. Biotechnology
Bulletin, 2019, 35(4): 88-93. DOI: 10.13560/j.cnki.biotech.
bull.1985.2018-0905.
[16] ERNST H A, OLSEN A N, SKRIVER K, LEGGIO L L. Structure
of the conserved domain of ANAC, a member of the NAC family of
transcription factors[J]. EMBO Reports, 2004, 5(3): 297-303. DOI:
10.1038/sj.embor.7400093.
[17] WELNER D H, LINDEMOSE S, GROSSMANN J G, MOLLEGAARD
N E, OLSEN A N, HELGSTRAND C, SKRIVER K, LEGGIO L L.
DNA binding by the plant-specific NAC transcription factors in crystal
and solution: A firm link to WRKY and GCM transcription factors
[J]. Biochemical Journal, 2012, 444(3): 395-404. DOI: 10.1042/
BJ20111742.
[18] ZHU H, ZHANG Y, TANG R, QU H, DUAN X, JIANG Y. Banana
sRNAome and degradome identify microRNAs functioning in
differential responses to temperature stress[J]. BMC Genomics, 2019,
20(1): 33. DOI: 10.1186/s12864-018-5395-1.
[19] CHEN C, CHEN H, ZHANG Y, THOMAS H R, FRANK M H, HE
Y, XIA R. TBtools: An integrative toolkit developed for interactive
analyses of big biological data[J]. Molecular Plant, 2020, 13(8):
1194-1202. DOI: 10.1016/j.molp.2020.06.009.
[20] LIU Y, WANG L, CHEN D, WU X, HUANG D, CHEN L, LI L, DENG
X, XU Q. Genome-wide comparison of microRNAs and their targeted
transcripts among leaf, flower and fruit of sweet orange[J]. BMC
Genomics, 2014, 15(1): 695. DOI: 10.1186/1471-2164-15-695.
[21] 曾俊 . 香蕉后熟過程中相關 miRNA 的鑒定及轉錄調(diào)控初探[D].
廣州 : 中國科學院華南植物園,2020.
ZENG J. Identification and transcriptional regulation of miRNAs
related to banana fruit ripening[D]. Guangzhou: South China
Botanical Garden, Chinese Academy of Sciences, 2020.
[22] LI B, FAN R, YANG Q, HU C, SHENG O, DENG G, DONG T, LI C,
PENG X, BI F, YI G. Genome-wide identification and characterization
of the NAC transcription factor family in Musa acuminata and
expression analysis during fruit ripening[J]. International Journal of
Molecular Sciences, 2020, 21(2): 634. DOI: 10.3390/ijms21020634.
[23] D’HONT A, DENOEUD F, AURY J M, BAURENS F C, CARREEL
F, et al. The banana (Musa acuminata) genome and the evolution of
monocotyledonous plants[J]. Nature, 2012, 488(7410): 213-217. DOI:
10.1038/nature11241.
[24] WANG Z, MIAO H, LIU J, XU B, YAO X, et al. Musa balbisiana
genome reveals subgenome evolution and functional divergence[J].
Nature Plants, 2019, 5(8): 810-821. DOI: 10.1038/s41477-019-
0452-6.
[25] SHAN W, KUANG J F, CHEN L, XIE H, PENG H H, XIAO Y Y, LI X P,
CHEN W X, HE Q G, CHEN J Y, LU W J. Molecular characterization
of banana NAC transcription factors and their interactions with ethylene
signalling component EIL during fruit ripening[J]. Journal of
Experimental Botany, 2012, 63(14): 5171-5187. DOI: 10.1093/jxb/
ers178.
[26] NEGI S, TAK H, GANAPATHI T R. Functional characterization of
secondary wall deposition regulating transcription factors MusaVND2
and MusaVND3 in transgenic banana plants[J]. Protoplasma, 2016,
253(2): 431-446. DOI: 10.1007/s00709-015-0822-5.
[27] NEGI S, TAK H, GANAPATHI T R. A banana NAC transcription factor
(MusaSNAC1) impart drought tolerance by modulating stomatal closure
and H2
O2
content[J]. Plant Molecular Biology, 2018, 96(4-5): 457-
471. DOI: 10.1007/s11103-018-0710-4.
[28] TAK H, NEGI S, GANAPATHI T R. Banana NAC transcription