SILIAO GONGYE 2023年第44卷第18期 總第687期
是乳酸菌產(chǎn)生的細(xì)菌素對(duì)甲烷減排均有重要作用,例
如體外試驗(yàn)中乳酸鏈球菌產(chǎn)生的鏈球菌素可降低甲烷
排放達(dá)到20%,而對(duì)VFAs的產(chǎn)生沒有顯著影響[54]
。
5 小結(jié)與展望
我國每年產(chǎn)生大量的飼料秸稈,其中大量秸稈未
被利用,造成了環(huán)境的污染和資源的浪費(fèi),而我國目
前又處于飼料的嚴(yán)重短缺階段,每年需要進(jìn)口大量飼
料,而秸稈可以被反芻動(dòng)物瘤胃消化利用,因此秸稈
飼料化是處理目前秸稈及飼料問題的最佳選擇,秸稈
由于其特殊結(jié)構(gòu),消化利用率不高,因此了解農(nóng)作物
秸稈在瘤胃中降解的時(shí)空程序、甲烷在瘤胃中的來
源、提高農(nóng)作物秸稈利用率的方式、以及甲烷減排策
略可以為秸稈飼料化利用提供一些啟發(fā)。
參考文獻(xiàn)
[1] 高晶, 尹相明, 王東成, 等 . 農(nóng)作物秸稈飼料化技術(shù)分析及在動(dòng)
物生產(chǎn)中的應(yīng)用進(jìn)展[J]. 吉林農(nóng)業(yè)大學(xué)學(xué)報(bào), 2023, 45(4): 414-
419.
[2] 景旭東. 化學(xué)預(yù)處理強(qiáng)化還田玉米秸稈分解及其殘?bào)w對(duì)農(nóng)藥的
吸附特性[D]. 碩士學(xué)位論文. 大連: 大連理工大學(xué), 2022.
[3] LI H, DAI M, DAI S, et al. Current status and environment im?
pact of direct straw return in China's cropland - a review[J]. Eco?
toxicology and Environmental Safety, 2018, 159: 293-300.
[4] 施其成. 生物強(qiáng)化和蒸汽爆破對(duì)共存甲烷菌的厭氧真菌降解秸
稈的影響及其阿魏酸酯酶表達(dá)[D]. 碩士學(xué)位論文 . 南京: 南京
農(nóng)業(yè)大學(xué), 2020.
[5] GIGER-REVERDIN S, RIGALMA K, DESNOYERS M, et al. Ef?
fect of concentrate level on feeding behavior and rumen and blood
parameters in dairy goats: relationships between behavioral and
physiological parameters and effect of between-animal variability
[J]. Journal of Dairy Science, 2014, 97: 4367-4378.
[6] 汪營 . 奶牛粗飼料瘤胃降解及微生物附著規(guī)律的研究[D]. 碩士
學(xué)位論文. 南京: 南京農(nóng)業(yè)大學(xué), 2016.
[7] 成艷芬. 厭氧真菌與產(chǎn)甲烷菌共培養(yǎng)系統(tǒng)的建立及其代謝與菌
群變化的研究[D]. 博士學(xué)位論文. 南京: 南京農(nóng)業(yè)大學(xué), 2008.
[8] 趙楚琦, 王喜成, 姜濤, 等. 秸稈飼料化處理技術(shù)[J]. 吉林畜牧獸
醫(yī), 2022, 43: 109-110.
[9] 陸剛 . 農(nóng)作物秸稈飼料化的利用技術(shù)[J]. 浙江畜牧獸醫(yī), 2022,
47(5): 26-27, 31.
[10] 常娟 . 高效玉米秸稈生物飼料的研制及其在肉雞生產(chǎn)中的應(yīng)
用研究[D]. 博士學(xué)位論文. 鄭州: 河南農(nóng)業(yè)大學(xué), 2011.
[11] 劉培劍, 曹玉芳, 朱風(fēng)華, 等. 不同厭氧堿化處理對(duì)鮮麥秸營養(yǎng)
成分、超微結(jié)構(gòu)和體外發(fā)酵參數(shù)的影響[J]. 動(dòng)物營養(yǎng)學(xué)報(bào),
2018, 30: 3229-3238.
[12] 王晶, 周禾 . 提高秸稈類飼料利用率研究進(jìn)展[J]. 飼料工業(yè),
2005(3): 28-31.
[13] SUN S, CHEN W, TANG J, et al. Synergetic effect of dilute acid
and alkali treatments on fractional application of rice straw[J].
Biotechnology for Biofuels, 2016, 9: 217.
[14] 李茂春, 李雄, 蘇文璇, 等. 秸稈飼草料產(chǎn)品加工工藝及提質(zhì)增
效策略探討[J]. 湖南畜牧獸醫(yī),2022(6): 50-53.
[15] 韋體, 吳登宇, 高丹丹, 等. 農(nóng)作物秸稈飼料化加工技術(shù)研究進(jìn)
展[J]. 甘肅畜牧獸醫(yī), 2021, 51(7):61-64.
[16] 吳艾麗, 肖宇, 邵濤, 等. 青貯發(fā)酵產(chǎn)物——角鯊烯抑制β-胡蘿
卜素?fù)p失的機(jī)理探究[J]. 草地學(xué)報(bào), 2023, 31(7): 1988-1995.
[17] 王福春, 瞿明仁, 歐陽克蕙, 等. 油菜秸稈與皇竹草混合微貯料
瘤胃動(dòng)態(tài)降解參數(shù)的研究[J]. 飼料工業(yè), 2015, 36(11): 51-55.
[18] 郭子琦, 李與琦, 成艷芬, 等. 厭氧真菌纖維降解酶及其應(yīng)用潛
力的研究進(jìn)展[J]. 微生物學(xué)通報(bào), 2023, 50(1): 377-391.
[19] SHI Q C, LI Y Q, LI Y F, et al. Effects of steam explosion on
lignocellulosic degradation of, and methane production from,
corn stover by a co-cultured anaerobic fungus and methanogen
[J]. Bioresource Technology, 2019, 290: 121796.
[20] LI Y, HOU Z, SHI Q, et al. Methane production from different
parts of corn stover via a simple co-culture of an anaerobic fun?
gus and methanogen[J]. Frontiers in Bioengineering and Biotech?
nology, 2020, 8: 314.
[21] OZKOSE E, AKYOL I, KAR B, et al. Expression of fungal cellu?
lase gene in Lactococcus lactis to construct novel recombinant si?
lage inoculants[J]. Folia Microbiologica (Praha), 2009, 54: 335-
342.
[22] MA J, MA Y, LI Y, et al. Characterization of feruloyl esterases
from Pecoramyces sp. F1 and the synergistic effect in biomass
degradation[J]. World Journal of Microbiology & Biotechnology,
2022, 39: 17.
[23] MA J, ZHONG P, LI Y Q, et al. Hydrogenosome, pairing anaero?
bic fungi and H2-utilizing microorganisms based on metabolic
ties to facilitate biomass utilization[J]. Journal of Fungi, 2022, 8:
338.
[24] REZAEIAN M, BEAKES G W, PARKER D S, et al. Distribution
and estimation of anaerobic zoosporic fungi along the digestive
tracts of sheep[J]. Mycological Research, 2004, 108: 1227-1233.
[25] MINATO H, ENDO A, HIGUCHI M, et al. Ecological treatise on
the rumen fermentation in the fractionation of bacteria attached
to the rumen digesta solids[J]. The Journal of General and Ap?
plied Microbiology, 1966, 12: 39-52.
[26] WON M Y, OYAMA L B, COURTNEY S J, et al. Can rumen
bacteria communicate to each other?[J]. Microbiome, 2020, 8: 23.
[27] EZEMA C. Probiotics in animal production: a review[J]. Journal
of Veterinary Medicine and Animal Health, 2013, 5: 308-316.
[28] VIBHUTE V M, SHELKE R R, CHAVAN S D, et al. Effect of
probiotics supplementation on the performance of lactating cross?
bred cows[J]. Veterinary World, 2011, 4: 557.
[29] QIAO G H, SHAN A S, MA N, et al. Effect of supplemental Ba?
cillus cultures on rumen fermentation and milk yield in Chinese
Holstein cows[J]. Journal of Animal Physiology and Animal Nutri?
tion, 2010, 94: 429-436.
[30] CHIQUETTE J, TALBOT G, MARKWELL F, et al. Repeated ru?
minal dosing of Ruminococcus flavefaciens NJ along with a probi?
otic mixture in forage or concentrate-fed dairy cows: effect on ru?
minal fermentation, cellulolytic populations and in sacco digest?
ibility[J]. Canadian Journal of Animal Science, 2007, 87: 237-
249.
07