極T代謝磁共振全球科研集錦
259
2612 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 37, NO. 12, DECEMBER 2018
[11] Y. Guo, Y. Zhu, S. G. Lingala, R. M. Lebel, and K. S. Nayak, “Highly
accelerated brain DCE MRI with direct estimation of pharmacokinetic
parameter maps,” in Proc. 23rd Annu. Meeting ISMRM, Toronto, ON,
Canada, 2015, p. 573.
[12] Y. Guo et al., “High-resolution whole-brain DCE-MRI using constrained
reconstruction: Prospective clinical evaluation in brain tumor patients,”
Med. Phys., vol. 43, no. 5, pp. 2013–2023, 2016.
[13] J. Maidens et al., “Spatio-temporally constrained reconstruction
for hyperpolarized carbon-13 MRI using kinetic models,” in
Proc. ISMRM Annu. Meeting, 2017, p. 3040. [Online]. Available:
http://indexsmart.mirasmart.com/ISMRM2017/PDFfiles/3040.html
[14] C. Harrison et al., “Comparison of kinetic models for analysis of
pyruvate-to-lactate exchange by hyperpolarized 13C NMR,” NMR Biomed., vol. 25, no. 11, pp. 1286–1294, 2012.
[15] P. J. Huber and E. M. Ronchetti, Robust Statistics. Hoboken, NJ, USA:
Wiley, 2009.
[16] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning, 2nd ed. New York, NY, USA: Springer, 2009.
[17] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition
by basis pursuit,” SIAM Rev., vol. 43, no. 1, pp. 129–159, 2001.
[18] R. Tibshirani, “Regression shrinkage and selection via the lasso,” J. Roy.
Stat. Soc. Ser. B, Methodol., vol. 58, no. 1, pp. 267–288, 1996.
[19] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based
noise removal algorithms,” Phys. D, Nonlinear Phenomena, vol. 60,
nos. 1–4, pp. 259–268, 1992.
[20] á. Barbero and S. Sra, “Fast Newton-type methods for total variation regularization,” in Proc. Int. Conf. Mach. Learn. (ICML),
L. Getoor and T. Scheffer, Eds. Madison, WI, USA: Omnipress, 2011,
pp. 313–320.
[21] á. Barbero and S. Sra. (2014). “Modular proximal optimization for
multidimensional total-variation regularization.” [Online]. Available:
https://arxiv.org/abs/1411.0589
[22] D. Strong and T. Chan, “Edge-preserving and scale-dependent properties
of total variation regularization,” Inverse Problems, vol. 19, no. 6,
p. S165, 2003.
[23] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1–122,
Jan. 2011.
[24] L. Vandenberghe. (2016). Lecture 13: Douglas-Rachford Method
and ADMM. [Online]. Available: https://web.archive.org/web/
20170405001209/ and http://www.seas.ucla.edu/~vandenbe/236C/
lectures/dr.pdf
[25] J. E. Dennis, Jr., and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Philadelphia, PA, USA:
SIAM, 1996.
[26] J. J. Moré, B. S. Garbow, and K. E. Hillstrom, “User guide
for MINPACK-1,” Argonne Nat. Lab., Lemont, IL, USA,
Tech. Rep. ANL-80-74, 1980.
[27] J. Maidens, “Optimal control for learning with applications in
dynamic MRI,” Ph.D. dissertation, Dept. Elect. Eng. Comput.
Sci., Univ. California, Berkeley, CA, USA, Aug. 2017. [Online].
Available: http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS2017-135.html
[28] Y. Xing, G. D. Reed, J. M. Pauly, A. B. Kerr, and
P. E. Z. Larson, “Optimal variable flip angle schemes for dynamic
acquisition of exchanging hyperpolarized substrates,” J. Magn. Reson.,
vol. 234, pp. 75–81, Sep. 2013.
[29] J. W. Gordon, D. B. Vigneron, and P. E. Z. Larson, “Development
of a symmetric echo planar imaging framework for clinical translation
of rapid dynamic hyperpolarized 13C imaging,” Magn. Reson. Med.,
vol. 77, no. 2, pp. 826–832, 2017.
[30] P. E. Z. Larson et al., “Fast dynamic 3D MR spectroscopic imaging with
compressed sensing and multiband excitation pulses for hyperpolarized
13C studies,” Magn. Reson. Med., vol. 65, no. 3, pp. 610–619, 2011.
[31] J. C. Crane, M. P. Olson, and S. J. Nelson, “SIVIC: Open-source,
standards-based software for DICOM MR spectroscopy workflows,” Int.
J. Biomed. Imag., vol. 2013, p. 169526, Jan. 2013.
[32] J. Kurhanewicz, D. Vigneron, P. Carroll, and F. Coakley, “Multiparametric magnetic resonance imaging in prostate cancer: Present and future,”
Current Opinion Urol., vol. 18, no. 1, pp. 71–77, 2008.
[33] V. Solo, “Selection of regularisation parameters for total variation
denoising,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.,
vol. 3, Mar. 1999, pp. 1653–1655.
[34] J. Maidens, J. W. Gordon, M. Arcak, and P. E. Z. Larson, “Optimizing
flip angles for metabolic rate estimation in hyperpolarized carbon13 MRI,” IEEE Trans. Med. Imag., vol. 35, no. 11, pp. 2403–2412,
Nov. 2016.