http:∥xuebao.gxnu.edu.cn
[4] BI J, WANG Y X, SAI Q Y, et al. Estimating remaining driving range of battery electric vehicles based on real-world data:
A case study of Beijing, China[J]. Energy, 2019, 169: 833-843. DOI: 10.1016 / j.energy.2018.12.061.
[5] ZHAI G R, LIU S J, WANG Z G, et al. State of energy estimation of lithium titanate battery for rail transit application[J].
Energy Procedia, 2017, 105: 3146-3151. DOI: 10.1016 / j.egypro.2017.03.681.
[6] LI K Y, WEI F, TSENG K J, et al. A practical lithium-ion battery model for state of energy and voltage responses prediction
incorporating temperature and ageing effects[ J]. IEEE Transactions on Industrial Electronics, 2018, 65( 8): 6696-6708.
DOI: 10.1109 / TIE.2017.2779411.
[7] 陳德海, 任永昌, 華銘, 等. 基于 STM32-OCV 法的純電動汽車剩余里程預(yù)測[J]. 電子技術(shù)應(yīng)用, 2017, 43(12): 33-
35, 39. DOI: 10.16157 / j.issn.0258-7998.172168.
[8] 林仕立, 宋文吉, 呂杰, 等. 基于電池 SOE 預(yù)測電動汽車的續(xù)駛里程[ J]. 電池, 2017, 47(3): 137-139. DOI: 10.
19535 / j.1001-1579.2017.03.003.
[9] 熊瑞. 動力電池管理系統(tǒng)核心算法[M]. 北京: 機械工業(yè)出版社, 2018: 87-88.
[10] WANG Z, WANG X H, WANG L Z, et al. Research on electric vehicle (EV) driving range prediction method based on
PSO-LSSVM[C]∥ 2017 IEEE International Conference on Prognostics and Health Management (ICPHM). Piscataway, NJ:
IEEE, 2017: 260-265. DOI: 10.1109 / ICPHM.2017.7998338.
[11] 段化娟, 尉永清, 劉培玉, 等.一種面向不平衡分類的改進多決策樹算法[ J]. 廣西師范大學學報(自然科學版),
2020, 38(2): 72-80. DOI: 10.16088 / j.issn.1001-6600.2020.02.008.
[12] SARRAFAN K, MUTTAQI K M, SUTANTO D, et al. A real-time range indicator for EVs using web-based environmental
data and sensorless estimation of regenerative braking power [ J]. IEEE Transactions on Vehicular Technology, 2018, 67
(6): 4743-4756. DOI: 10.1109 / TVT.2018.2829728.
[13] 張偉彬, 吳軍, 易見兵. 基于 RFB 網(wǎng)絡(luò)的特征融合管制物品檢測算法研究[ J]. 廣西師范大學學報(自然科學版),
2021, 39(4): 34-46. DOI: 10.16088 / j.issn.1001-6600.2020080902.
[14] SUN S, ZHANG J, BI J, et al. A machine learning method for predicting driving range of battery electric vehicles[ J].
Journal of Advanced Transportation, 2019, 2019: 4109148. DOI: 10.1155 / 2019 / 4109148.
[15] ZHAO L, YAO W, WANG Y, et al. Machine learning-based method for remaining range prediction of electric vehicles[J].
IEEE Access, 2020, 8: 212423-212441. DOI: 10.1109 / ACCESS.2020.3039815.
[16] MODI S, BHATTACHARYA J, BASAK P. Convolutional neural network-bagged decision tree: a hybrid approach to reduce
electric vehicle's driver's range anxiety by estimating energy consumption in real-time[ J]. Soft Computing, 2021, 25 (3):
2399-2416. DOI: 10.1007 / s00500-020-05310-y.
[17] MURARI A, PELUSO E, LUNGARONI M, et al. Application of symbolic regression to the derivation of scaling laws for
tokamak energy confinement time in terms of dimensionless quantities[J]. Nuclear Fusion, 2016, 56(2): 026005. DOI: 10.
1088 / 0029-5515 / 56 / 2 / 026005.
[18] 馬炫, 李星, 唐榮俊, 等.一種求解符號回歸問題的粒子群優(yōu)化算法[ J]. 自動化學報, 2020, 46(8): 1714-1726.
DOI: 10.16383 / j.aas.c180035.
[19] 韓博文. 考慮實時需求的需求響應(yīng)式公交調(diào)度方法研究[J]. 廣西師范大學學報(自然科學版), 2019, 37(3): 9-20.
DOI: 10.16088 / j.issn.1001-6600.2019.03.002.
[20] NEMBHARD D A, SUN Y Z. A symbolic genetic programming approach for identifying models of learning-by-doing[ J].
Computers & Industrial Engineering, 2019, 131: 524-533. DOI: 10.1016 / j.cie.2018.08.020.
[21] PAN B Y. Application of XGBoost algorithm in hourly PM2. 5 concentration prediction[ J]. IOP Conference Series: Earth
and Environmental Science, 2018, 113: 012127. DOI: 10.1088 / 1755-1315 / 113 / 1 / 012127.
[22] 武康康, 周鵬, 陸葉, 等. 基于小批量梯度下降法的 FIR 濾波器[ J]. 廣西師范大學學報(自然科學版), 2021, 39
(4): 9-20. DOI: 10.16088 / j.issn.1001-6600.2020062602.
[23] DHALIWAL S S, NAHID A A, ABBAS R. Effective intrusion detection system using XGBoost[ J]. Information, 2018, 9
(7): 149. DOI: 10.3390 / info9070149.
[24] LI W, YIN Y B, QUAN X W, et al. Gene expression value prediction based on XGBoost algorithm [ J]. Frontiers in
Genetics, 2019, 10: 1027. DOI: 10.3389 / fgene.2019.01077.
[25] DONG W, HUANG Y M, LEHANE B, et al. XGBoost algorithm-based prediction of concrete electrical resistivity for
structural health monitoring[J]. Automation in Construction, 2020, 114: 103155. DOI: 10.1016 / j.autcon.2020.103155.
35