97
參考文獻(xiàn)(References):
[1] 夏巖石,洪豪,賴景詩,蘇偉生,李榮華,張潤霖,李光光,郭培國 .
夏冬兩季廣州菜心的硝酸鹽含量及營養(yǎng)品質(zhì)分析[J]. 廣東農(nóng)業(yè)科
學(xué),2018, 45(4): 28-33. DOI: 10.16768/j.issn.1004-874X.2018.04.005.
XIA Y S, HONH H, LAI J S, SU W S, LI R H, ZHANG R L, LI G
G, GUO P G. Analysis of nitrate and nutrition of flowering Chinese
cabbage in summer and winter in Guangzhou city[J]. Guangdong
Agricultural Sciences, 2018, 45(4): 28-33. DOI:10.16768/j.issn.1004-
874X.2018.04.005.
[2] 陳漢才,吳增祥,林悅欣,沈卓,黎庭耀,楊易,周軒,張艷 . 廣東菜心、
芥藍(lán)研究現(xiàn)狀與展望[J]. 廣東農(nóng)業(yè)科學(xué),2021, 48(9): 62-71. DOI:
10.16768/j.issn.1004-874X.2021.09.007.
CHEN H C, WU Z X, LIN Y X, SHEN Z, LI T Y, YANG Y, ZHOU X,
ZHANG Y. Research status and prospect of flowering Chinese cabbage
and Chinese kale in Guangdong[J]. Guangdong Agricultural
Sciences, 2021, 48(9): 62-71. DOI: 10.16768/j.issn.1004-
874X.2021.09.007.
[3] ZHU Y N, QI B F, HAO Y W, LIU H C, SUN G W, CHEN R Y, SONG
S W. Appropriate NH4
+/NO3
– ratio triggers plant growth and nutrient
uptake of flowering Chinese cabbage by optimizing the pH value of
nutrient solution[J]. Frontiers in Plant Science, 2021, 12:656144.
DOI: 10.3389/fpls.2021.656144.
[4] LANQUAR V, LOQUé D, HORMANN F, YUAN L X, BOHNER A,
ENGELSBERGER W R, LALONDE S, SCHULZE W X, VON WIRéN
N, FROMMER W B. Feedback inhibition of ammonium uptake by a
phospho-dependent allosteric mechanism in Arabidopsis[J]. The
Plant Cell, 2009, 21(11): 3610-3622. DOI: 10.1105/tpc.109.068593.
[5] HO C, TSAY Y. Nitrate, ammonium, and potassium sensing and
signaling[J]. Current Opinion in Plant Biology, 2010, 13(5): 604-
610. DOI: 10.1016/j.pbi.2010.08.005.
[6] SATHEE L, KRISHNA, G K, ADAVI S B, JHA S K, JAIN V. Role of
protein phosphatases in the regulation of nitrogen nutrition in plants[J].
Physiology and Molecular Biology of Plants, 2021, 27(12): 2911-
2922. DOI: 10.1007/s12298-021-01115-x.
[7] RóDENAS R, VéRT G. Regulation of root nutrient transporters by
CIPK23: ‘One kinase to rule them all’[J]. Plant and Cell Physiology,
2021, 62(4): 553-563. DOI: 10.1093/pcp/pcaa156.
[8] MAO J J, MO Z J, YUAN G, XIANG H Y, VISSER R G F, BAI Y L,
LIU H B, WANG Q, VAN DER LINDEN C G. The CBL-CIPK network
is involved in the physiological crosstalk between plant growth and
stress adaptation[J]. Plant, Cell & Environment, 2023, 46(10): 3012-
3022. DOI: 10.1111/pce.14396.
[9] ZHU J K, LIU J, XIONG L. Genetic analysis of salt tolerance in
Arabidopsis: evidence for a critical role of potassium nutrition[J]. The
Plant Cell, 1998, 10(7): 1181-1191. DOI: 10.1105/tpc.10.7.1181.
[10] QUINT ERO F J, OHTA M, SHI H, ZHU J K, PARDO J M.
Reconstitution in yeast of the Arabidopsis SOS signaling pathway
for Na+
homeostasis[J]. Proceedings of the National Academy of
Sciences of the United States of America, 2002, 99(13): 9061-9066.
DOI: 10.1073/pnas.132092099.
[11] QIU Q S, GUO Y, DIETRICH M A, SCHUMAKER K S, ZHU J
K. Regulation of SOS1, a plasma membrane Na+/H+ exchanger in
Arabidopsis thaliana, by SOS2 and SOS3[J]. Proceedings of the
National Academy of Sciences of the United States of America, 2002,
99(12): 8436-8441. DOI: 10.1073/pnas.132092099.
[12] KUDLA J, XU Q, HARTER K, GRUISSEM W, LUAN S. Genes for
calcineurin B-like proteins in Arabidopsis are differentially regulated
by stress signals[J]. Proceedings of the National Academy of
Sciences of the United States of America, 1999, 96(8): 4718-4723.
DOI: 10.1073/pnas.96.8.4718.
[13] AMTMANN A, ARMENGAUD P. The role of calcium sensorinteracting protein kinases in plant adaptation to potassium-deficiency:
new answers to old questions[J]. Cell Research, 2007, 17(6): 483-
485. DOI: 10.1038/cr.2007.49.
[14] YU Y, XIA X, YIN W, ZHANG H. Comparative genomic analysis of
CIPK gene family in Arabidopsis and Populus[J]. Plant Growth
Regulation, 2007, 52(2): 101-110. DOI: 10.1007/s10725-007-9165-3.
[15] KOLUKISAOGLU U, WEINL S, BLAZEVIC D, BATISTIC O, KUDLA
J. Calcium sensors and their interacting protein kinases: Genomics of
the Arabidopsis and rice CBL-CIPK signaling networks[J]. Plant
Physioliogy, 2004, 134(1): 43-58. DOI: 10.1104/pp.103.033068.
[16] CHEN X F, GU Z M, XIN D D, HAO L, LIU C J, HUANG J, MA B
J, ZHANG H S. Identification and characterization of putative CIPK
genes in maize[J]. Journal of Genetics and Genomics, 2011, 38(2):
77-87. DOI: 10.1016/j.jcg.2011.01.005.
[17] 劉濤,王萍萍,何紅紅,梁國平,盧世雄,陳佰鴻,毛娟 . 草莓 CIPK
基因家族的鑒定與表達(dá)分析[J]. 園藝學(xué)報(bào),2020, 47(1): 127-142.
DOI: 10.16420/j.issn.0513-353x.2019-0219.
LIU T, WANG P P, HE H H, LIANG G P, LU S X, CHEN B H, MAO
J. Identification and expression analysis of CIPK gene family in
strawberry[J]. Acta Horticulturae Sinica, 2020, 47(1): 127-142.
DOI: 10.16420/j.issn.0513-353x.2019-0219.
[18] ZHU K K, CHEN F, LIU J Y, CHEN X L, HEWEZI T, CHENG Z
M. Evolution of an intron-poor cluster of the CIPK gene family and
expression in response to drought stress in soybean[J]. Scientific
Reports, 2016, 6(1): 628225. DOI: 10.1038/srep28225.
[19] LI L B, ZHANG Y R, LIU K C, NI Z F, FANG Z J, SUN Q X, GAO J W.
Identification and bioinformatics analysis of SnRK2 and CIPK family
genes in sorghum[J]. Agricultural Sciences in China, 2010, 9(1):19-
30. DOI: 10.1016/S1671-2927(09)60063-8.
[20] 周國華 . 水稻冷誘導(dǎo)蛋白激酶基因 CIPK07g 的克隆與表達(dá)分析[J].
廣 東 農(nóng) 業(yè) 科 學(xué) , 2015, 42(21): 150-155. DOI: 10.16768/j.issn.1004-
874X.2015.21.002.
ZHOU G H. Cloning and expression analysis of cold induced
proteinkinase gene CIPK07g in rice (Oryza sativa L.)[J]. Guangdong
Agricultural Sciences, 2015, 42(21): 150-155. DOI: 10.16768/
j.issn.1004-874X.2015.21.002.
[21] MA X, LI Q H, YU Y N, QIAO Y M, HAQ S U, GONG Z H. The CBLCIPK pathway in plant response to stress signals[J]. International
Journal of Molecular Sciences, 2020, 21(16): 5668. DOI: 10.3390/
ijms21165668.
[22] STRAUB T, LUDEWIG U, NEUH?USER B. The kinase CIPK23
inhibits ammonium transport in Arabidopsis thaliana[J]. The Plant
Cell, 2017, 29(2): 409-422. DOI: 10.1105/tpc.16.00806.
[23] STRAUB T. Plant ammonium transporter (AMT) integration in