SHANGHAI ENERGY SAVING
上海節(jié)能 No.01
2024
ENERGY SAVING FORUM
SHANGHAI ENERGY CONSERVATION
上海節(jié)能 No.08
2018
節(jié)能論壇
of traditional and emerging techniques and fluids for electronics cooling[J]. Renewable and Sustainable Energy Reviews,2017,78:
821-833.
[5]Bulut, M., Kandlikar, S. G., & Sozbir, N. (2018). A Review of Vapor
Chambers. Heat Transfer Engineering, 1-23.
[6]S. G. Kandlikar,“Critical heat flux in subcooled flow boiling-an assessment of current understanding and future directions for research,”Multiphase Science and Technology, vol.13, no.3, pp. 207-232, 2001.
[7]X. Ji, J. Xu, and A. M. Abanda,“Copper foam based vapor chamber for
high heat flux dissipation,”Exp. Therm. Fluid Sci., vol.40, pp. 93-102,
2012.
[8]J. Wei, A. Chan, and D. Copeland,“Measurement of vapor chamber
performance[Heatsink Applications],”IEEE, pp. 191-194, 2003.
[9]S.-C. Wong, K.-C. Hsieh, J.-D. Wu, et al.“A novel vapor chamber and
its performance,”Int. J. Heat Mass Transfer, vol. 53, no. 11-12, pp.
2377-2384, 2010.
[10]S. S. Kim, J. A. Weibel, T. S. Fisher, et al.“Thermal performance of
carbon nanotube enhanced vapor chamber wicks,”2010 14th International Heat Transfer Conference, Washington, D.C., pp. 417-424, 8-
13 August 2010.
[11]X. Ji, J. Xu, A. M. Abanda, et al.“A Vapor Chamber using extended
condenser concept for ultra high heat flux and large heater area,”Int.
J. Heat Mass Transfer, vol. 55, no. 17-18, pp. 4908-4913, 2012.
[12]Y.-T. Chen, J.-M. Miao, D.-Y. Ning, et al.“Thermal performance of a
vapor chamber heat pipe with diamond-copper composition wick
structures,”Microsystems, Packaging, Assembly and Circuits Technology Conference, IMPACT, 4th International, pp. 340-343, 21-23
Oct. 2009.
[13]H. R. Boukhanouf, and C. Buffone. in Advanced Computational Methods in Heat Transfer IX, pp. 270-279, ed. B. Sunden & C. A. Brebbia,
Southampton, UK, 2006.
[14]Boukhanouf, A. Haddad, M. T. North, et al.“Experimental investigation of a flat plate heat pipe performance using ir thermal imaging
camera,”Appl. Therm. Eng., vol. 26, no. 17-18, pp. 2148-2156, 2006.
[15]Xuan, Y. Hong, and Q. Li.“Investigation on Transient behaviors of
flat plate heat pipes,”Exp. Therm. Fluid Sci.,vol. 28, no. 2-3, pp.
249-255, 2004.
[16]S. Hwang, et al.“Multi-artery heat pipespreader: experiment,”Int. J.
Heat Mass Transfer, vol. 53, no.13-14, pp. 2662-2669, 2010.
[17]C. Wang, R.-T. Wang, T.-L. Chang, et al.“Development of 30 watt
high-power LEDs vapor chamber-based plate,”Int. J. Heat Mass
Transfer, vol. 53, no.19-20, pp. 3990-4001, 2010.
[18]Tang, D. Yuan, L. Lu, and Z. Wang, 2013,“A multi-artery vapor
chamber and its performance,”Appl. Therm. Eng., vol. 60, no. 1-2,
pp. 15-23, 2013.
[19]S. Hwang, et al. 2011,“Multi-artery heatpipe spreader: lateral liquid
supply,”Int. J. Heat Mass Transfer, vol. 54, pp. 2334-2340.
[20]S. Ju, et al.“Planar vapor chamber with hybrid evaporator wicks for
the thermal management of high-heat-flux and high-power optoelectronic devices,”Int. J. Heat Mass Transfer, vol. 60, pp. 163- 169,
2013.
[21]C. Wang, R.-T. Wang, T.-L. Chang, et al.“Development of 30 watt
high-powerLEDs vapor chamber-based plate,”Int. J. Heat Mass
Transfer, vol. 53, no. 19-20, pp. 3990-4001, 2010.
[22]T. Wang, J.-C. Wang, and T.-L. Chang.“Experimental analysis for
thermal performance of a vapor chamber applied to high-performance servers,”Journal of Marine Science and Technology, vol.19,
no.4, pp. 353-36, 2011.
[23]Wang, and G. P. Peterson.“Investigation of a novel flat heat pipe,”J.
Heat Transfer, vol. 127, no. 2, pp. 165-170, 2005.
[24]H. S. Obata, J. C. Fukushima, T. A. Alves, et al.“Experimental study
of a Cu-Mo Alloy vapor chamber,”MATEC Web Conference, vol.39,
p. 2001, 4 pages, 2016.
[25]Wei, S. Somasundaram, B. He, et al.“Experimental characterization
of si micropillar based evaporator for advanced vapor chambers,”
Electronics Packaging Technology Conference (EPTC), 2014 IEEE
16th, pp. 335-340, 2014.
[26]-C. Wong, S.-F. Huang, and K.-C. Hsieh.“Performance tests on a novel vapor chamber,” Appl.Therm. Eng., vol. 31, no. 10, pp.
1757-1762, 2011.
[27]J. S. Go.“Quantitative thermal performance evaluation of a cost-effective vapor chamber heat sink containing a metal-etched microwick
structure for advanced microprocessor cooling,”Sensor and Actuators A: Physical, vol.121, no. 2, pp. 549-556, 2005.
[28]S. Lips, F. Lefèvre, and J. Bonjour.“Nucleate boiling in a flat grooved
heat pipe,”Int. J.Therm. Sci., vol. 48, no. 7, pp. 1273-1278, 2009.
[29]Lefèvre, R. Rullière, S. Lips, et al.“Confocal microscopy for capillary film measurements in a flat plate heat pipe,”J. Heat Transfer,
vol. 132, no. 3, pp. 031502-1-6,
[30]S. Lips, F. Lefèvre, and J. Bonjour.“Physical mechanisms involved in
grooved flat heat pipes:experimental and numerical analyses,”Int. J.
Therm. Sci., vol. 50, no. 7, pp. 1243-1252, 2011.
[31]PAIVA K V D,MANTELLI B H M,SLONGO L K. Thermal behavior analysis of wire mini heat pipe[J]. Journal of Heat Transfer,
2011,133(12):121502.
[32]DING C,SONI G,BOZORGI P,et al. A flat heat pipe architecture
based on nanostructured titania[J]. Journal of Microelectromechanical Systems,2010,19(4):878-884.
[33]DENG D,HUANG Q,XIE Y,et al. Thermal performance of composite porous vapor chambers with uniform radial grooves[J]. Applied
Thermal Engineering,2017,125:1334-1344.
[34]CHEN L,DENG D,HUANG Q,et al. Development and thermal performance of a vapor chamber with multi-artery reentrant microchannels for high-power LED[J]. Applied Thermal Engineering,2020,
166:114686.
[35]王宙,銀了飛,丁藝,等.具有梯度結(jié)構(gòu)吸液芯的均熱板傳熱特性[J].
工程熱物理學(xué)報,2023,44(2):532-539.
[36]SUN Zhen, CHEN Xiaodan, QIU Huihe. Experimental Investigation
of a Novel Asymmetric Heat Spreader With Nanostructure Surfaces
[J]. Experimental Thermal and Fluid Science, 2014, 52: 197-204.
[37]LI Yong, LI Zixi, ZHOU Wenjie, et al. Experimental Investigation of
Vapor Chambers with Difffferent Wick Structures at Various Parameters[J], Experimental Thermal and Fluid Science. 2016, 77: 132-143.
[38]Min D H, Hwang G S, Kaviany M. Multi-artery, Heat pipe Spreader
102