廣西師范大學(xué)學(xué)報(自然科學(xué)版),2022,40(2)
[9] KLIPP E, WADE R C, KUMMER U. Biochemical network-based drug-target prediction[J]. Current opinion in
biotechnology, 2010, 21(4): 511-516. DOI: 10.1016 / j.copbio.2010.05.004.
[10] YAMANISHI Y, ARAKI M, GUTTERIDGE A, et al. Prediction of drug-target interaction networks from the integration of
chemical and genomic spaces[J]. Bioinformatics, 2008, 24(13): i232-i240. DOI: 10.1093 / bioinformatics/ btn162.
[11] BLEAKLEY K, YAMANISHI Y. Supervised prediction of drug-target interactions using bipartite local models [ J ].
Bioinformatics, 2009, 25(18): 2397-2403. DOI: 10.1093 / bioinformatics/ btp433.
[12] MEI J P, KWOH C K, YANG P, et al. Drug-target interaction prediction by learning from local information and neighbors
[J]. Bioinformatics, 2013, 29(2): 238-245. DOI: 10.1093 / bioinformatics/ bts670.
[13] VAN LAARHOVEN T, NABUURS S B, MARCHIORI E. Gaussian interaction profile kernels for predicting drug-target
interaction[J]. Bioinformatics, 2011, 27(21): 3036-3043. DOI: 10.1093 / bioinformatics/ btr500.
[14] PAHIKKALA T, AIROLA A, PIETIL? S, et al. Toward more realistic drug-target interaction predictions[ J]. Briefings in
Bioinformatics, 2015, 16(2): 325-337. DOI: 10.1093 / bib / bbu010.
[15] HAO M, WANG Y L, BRYANT S H. Improved prediction of drug-target interactions using regularized least squares
integrating with kernel fusion technique[J]. Analytica Chimica Acta, 2016, 909: 41-50. DOI: 10.1016 / j.aca.2016.01.014.
[16] NASCIMENTO A C A, PRUDêNCIO R B C, COSTA I G. A multiple kernel learning algorithm for drug-target interaction
prediction[J]. BMC Bioinformatics, 2016, 17: 46. DOI: 10.1186 / s12859-016-0890-3.
[17] LIU Y, WU M, MIAO C Y, et al. Neighborhood regularized logistic matrix factorization for drug-target interaction prediction
[J]. PLOS Computational Biology, 2016, 12(2): e1004760. DOI: 10.1371 / journal.pcbi.1004760.
[18] G?NEN M. Predicting drug-target interactions from chemical and genomic kernels using Bayesian matrix factorization[ J].
Bioinformatics, 2012, 28(18): 2304-2310. DOI: 10.1093 / bioinformatics/ bts360.
[19] ZHENG X D, DING H, MAMITSUKA H, et al. Collaborative matrix factorization with multiple similarities for predicting
drug-target interactions[C]∥ Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. New York, NY: ACM Press, 2013: 1025-1033. DOI: 10.1145 / 2487575.2487670.
[20] HAO M, BRYANT S H, WANG Y L. Predicting drug-target interactions by dual-network integrated logistic matrix
factorization[J]. Scientific Reports, 2017, 7: 40376. DOI: 10.1038 / srep40376.
[21] MIZUTANI S, PAUWELS E, STOVEN V, et al. Relating drug-protein interaction network with drug side effects [ J].
Bioinformatics, 2012, 28(18): i522-i528. DOI: 10.1093 / bioinformatics/ bts383.
[22] LUO Y N, ZHAO X B, ZHOU J T, et al. A network integration approach for drug-target interaction prediction and
computational drug repositioning from heterogeneous information [ J]. Nature Communications, 2017, 8: 537. DOI: 10.
1038 / s41467-017-00680-8.
[23] NATARAJAN N, DHILLON I S. Inductive matrix completion for predicting gene-disease associations[ J]. Bioinformatics,
2014, 30(12): i60-i68. DOI: 10.1093 / bioinformatics/ btu269.
[24] CHEN Q F, LAI D H, LAN W, et al. ILDMSF: inferring associations between long non-coding RNA and disease based on
multi-similarity fusion[J]. IEEE/ ACM Transactions on Computational Biology and Bioinformatics, 2021, 18( 3): 1106-
1112. DOI: 10.1109 / TCBB.2019.2936476.
[25] LAN W, LAI D H, CHEN Q F, et al. LDICDL: LncRNA-disease association identification based on collaborative deep
learning[J/ OL]. IEEE/ ACM Transactions on Computational Biology and Bioinformatics, 2020 [ 2021-07-23]. https:∥
ieeexplore.ieee.org / document / 9246263. DOI: 10.1109 / TCBB.2020.3034910.
[26] 李琳, 梁永全, 劉廣明. 基于重啟隨機(jī)游走的圖自編碼器[ J]. 計算機(jī)應(yīng)用研究, 2021, 38(10): 3009-3013. DOI:
10.19734 / j.issn.1001-3695.2021.03.0083.
[27] 翟正利, 梁振明, 周煒, 等. 變分自編碼器模型綜述[ J]. 計算機(jī)工程與應(yīng)用, 2019, 55(3): 1-9. DOI: 10.3778 / j.
issn.1002-8331.1810-0284.
[28] 郭景峰, 董慧, 張庭瑋, 等. 主題關(guān)注網(wǎng)絡(luò)的表示學(xué)習(xí)[J]. 計算機(jī)應(yīng)用, 2020, 40(2): 441-447. DOI: 10.11772 / j.
issn.1001-9081.2019081529.
[29] 王佩琪, 高原, 劉振宇, 等. 深度卷積神經(jīng)網(wǎng)絡(luò)的數(shù)據(jù)表示方法分析與實踐[J]. 計算機(jī)研究與發(fā)展, 2017, 54(6):
100