国产AV88|国产乱妇无码在线观看|国产影院精品在线观看十分钟福利|免费看橹橹网站

9.30《小動物臨床前沿》(神經(jīng)學(xué)專刊-上冊)VOL.12

發(fā)布時間:2022-9-30 | 雜志分類:其他
免費制作
更多內(nèi)容

9.30《小動物臨床前沿》(神經(jīng)學(xué)專刊-上冊)VOL.12

小動物臨床前沿(神經(jīng)學(xué)???- 上冊)· 腦部疾病Brain DiseasesNew Frontier of Veterinary Medicine2022 SEP | 總第 12 期- 99 -診斷評估系統(tǒng)評估對創(chuàng)傷病畜的初步評估應(yīng)著重于病畜的整體穩(wěn)定性,且要特別強調(diào)呼吸和心血管系統(tǒng)的穩(wěn)定性,對有神經(jīng)創(chuàng)傷的患畜來說,這一點尤其重要,因為低血壓、低氧血癥和通氣量的改變都會導(dǎo)致二次傷害且使結(jié)果惡化。神經(jīng)系統(tǒng)評估為了對神經(jīng)系統(tǒng)進行充分評估,最開始的神經(jīng)系統(tǒng)檢查應(yīng)該在任何鎮(zhèn)痛治療開始之前而進行,最初的神經(jīng)系統(tǒng)檢查應(yīng)包括評估意識、顱神經(jīng)反射、躺臥狀態(tài)、是否有自主運動功能(對有潛在VFL的可以行走表1:繼發(fā)性損傷的機制(接上表)表2:修正格拉斯哥昏迷計量表 (modified glasgow coma scale MGCS)意識水平(level of consciousness) 腦干反射 肌動活動(motor activity)6. 偶爾會有警覺性,對環(huán)境反應(yīng)靈敏6.正常的瞳孔光反射(pupillary light reflexes)和 頭眼反射(oculocephalic reflex) 6... [收起]
[展開]
9.30《小動物臨床前沿》(神經(jīng)學(xué)???上冊)VOL.12
粉絲: {{bookData.followerCount}}
文本內(nèi)容
第101頁

小動物臨床前沿(神經(jīng)學(xué)???- 上冊)· 腦部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 總第 12 期

- 99 -

診斷評估

系統(tǒng)評估

對創(chuàng)傷病畜的初步評估應(yīng)著重于病畜的整體穩(wěn)

定性,且要特別強調(diào)呼吸和心血管系統(tǒng)的穩(wěn)定性,對

有神經(jīng)創(chuàng)傷的患畜來說,這一點尤其重要,因為低血

壓、低氧血癥和通氣量的改變都會導(dǎo)致二次傷害且使

結(jié)果惡化。

神經(jīng)系統(tǒng)評估

為了對神經(jīng)系統(tǒng)進行充分評估,最開始的神經(jīng)系

統(tǒng)檢查應(yīng)該在任何鎮(zhèn)痛治療開始之前而進行,最初的

神經(jīng)系統(tǒng)檢查應(yīng)包括評估意識、顱神經(jīng)反射、躺臥狀

態(tài)、是否有自主運動功能(對有潛在VFL的可以行走

表1:繼發(fā)性損傷的機制(接上表)

表2:修正格拉斯哥昏迷計量表 (modified glasgow coma scale MGCS)

意識水平

(level of consciousness) 腦干反射 肌動活動

(motor activity)

6. 偶爾會有警覺性,對環(huán)境反應(yīng)

靈敏

6.正常的瞳孔光反射(pupillary light reflexes)

和 頭眼反射(oculocephalic reflex) 6. 步態(tài)正常,脊柱反射正常

5. 抑郁 或神志不清,有能力做出

回應(yīng),但回應(yīng)可能不恰當(dāng)

5. 瞳孔光反射緩慢

和正常至減弱的頭眼反射

5. 偏癱,四肢癱瘓 或肢體活動障

4. 半昏迷,對視覺刺激有反應(yīng) 4. 雙側(cè)瞳孔無縮小反應(yīng)

和正常到減弱的 頭眼反射 4. 臥躺不起,間歇性外展僵硬

3. 半昏迷,對聽覺刺激有反應(yīng) 3. 瞳孔呈針孔狀 (pinpoint pupils)

和 減弱至缺失的 頭眼反射 3. 臥躺不起,持續(xù)性外展僵硬

2. 半昏迷,

只對重復(fù)的傷害性刺激有反應(yīng)

2. 單側(cè) 瞳孔無放大反應(yīng)

和減弱至缺失的 頭眼反射

2. 臥躺不起,持續(xù)性外展僵硬,

角弓反張 (opisthotonus)

1. 昏迷,

對重復(fù)的傷害性刺激無反應(yīng)

1. 雙側(cè) 瞳孔無放大反應(yīng)

和減弱至缺失的 頭眼反射

1. 臥躺不起, 肌肉張力低下,脊

柱反射低下或缺失

的患者在臥床狀態(tài)下評估)、檢查沒有自主運動功能

的患者是否有淺層痛覺、檢查沒有完整淺層痛覺的患

者是否有深 層 痛覺、脊柱 反 射、皮 膚 軀干肌 反 射

(penniculus-reflex)、肛門張力、和會陰反射。如果

患者可以走動。且醫(yī)生不懷疑患有椎體骨折或脫位

“VFL”,也可以對步態(tài)和感知能力進行評估,對所有懷

疑出現(xiàn)急性SCI的病畜一律都應(yīng)進行脊柱的輕柔觸

診,來確定出現(xiàn)錯位的位置(例如,“階段性”的骨

折)、不穩(wěn)定,不適,或有異響的區(qū)域。在進行神經(jīng)系

統(tǒng)評估時,重要的是確認(rèn)病人已被充分蘇醒,因為休

克可以影響神經(jīng)系統(tǒng)的狀態(tài)。此外,進行徹底的臥位

骨科檢查也是很重要的,這是用來排除骨科損傷作

為明顯神經(jīng)系統(tǒng)癥狀的一個潛在原因13,15。

每當(dāng)懷疑非躺臥患畜有繼發(fā)于椎體骨折或脫位

的急性脊髓損傷時,應(yīng)盡量減少患畜的活動,患畜應(yīng)

被固定在背板上,直到對骨折和脫位完成了最終明確

的評估13,15。

對病畜進行神經(jīng)定位,并根據(jù)體征癥狀的嚴(yán)重程

度進行 分級 是必要的,修正的格 拉斯哥昏迷量表

【modified Glasgow Coma Scale - MGCS】的實用

性已經(jīng)在狗身上得到了驗證,被證實對評估創(chuàng)傷性腦

損傷的病畜十分有用,它提供了一種更為客觀地去評

定臨床癥狀改善或進展的方法,甚至還能提供預(yù)后信

息(表2)24,25。

一項回顧性研究顯示,MGCS與狗在創(chuàng)傷后48小

時內(nèi)的生存概率有著很強的相關(guān)性。

反復(fù)地神經(jīng)系統(tǒng)評估 - 建議在初次發(fā)病后每

30-60 分鐘進行一次評估,來評估治療的臨床反應(yīng)

和臨床癥狀的進展情況。目前有 3 個有效的評分系

統(tǒng)可用于評估與 SCI 相關(guān)的缺陷的嚴(yán)重程度:第一:

改良的弗蘭克爾評分(Modified Frankel Score) ;第

二:14 點運動評分 (14-point Motor score) 和第三:

德 克 薩 斯 脊 髓 損傷評分 (Taxes Spinal cord injury

score )26,27 。

如果病畜只有一側(cè)前肢反射減弱,患側(cè)出現(xiàn)霍納

綜合征、泛神經(jīng)反射減弱,則應(yīng)懷疑臂叢神經(jīng)損傷 13。

脊髓休克(spinal shock)的存在可能影響對急性 SCI

患畜的神經(jīng)定位,脊髓休克導(dǎo)致病變尾部的節(jié)段性脊

柱反射缺失,即使反射弧保持物理的完整,但也會造

成弛緩性癱瘓(flaccid paralysis),這是由于急性 SCI

發(fā)生時,下降的脊髓上輸入突然中斷,人類脊柱休克

的恢復(fù)是漫長的,但在和狗和貓上的恢復(fù)要快得多,

通常在 12 至 24 小時內(nèi) 28。

繼發(fā)性損傷

自由基生成:

次要發(fā)生在 / 在...之后發(fā)生:

1.谷氨酸堆積

2.炎癥介質(zhì)的釋放

3.胞質(zhì)溶膠鈣(cytosolic calcium)

濃度增加

4.缺血再灌注損傷

炎癥介質(zhì)釋放

次要發(fā)生在 / 在...之后發(fā)生:

1.原發(fā)性損傷

2. 由于繼發(fā)性損傷的神經(jīng)元細(xì)胞損壞

喪失自主調(diào)節(jié)功能

次要發(fā)生在 / 在...之后發(fā)生:

1.原發(fā)性損傷

導(dǎo)致:

1.神經(jīng)元細(xì)胞損傷

導(dǎo)致:

1.一氧化氮(nitric oxide NO)的激活和血流及

血管滲透性改變

2.炎癥細(xì)胞涌入

3.凝血激活和血栓形成

導(dǎo)致:

1.缺血癥

第102頁

小動物臨床前沿(神經(jīng)學(xué)專刊 - 上冊)· 腦部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 總第 12 期

- 100 -

影像學(xué)

系統(tǒng)評估

對創(chuàng)傷病畜的初步評估應(yīng)著重于病畜的整體穩(wěn)

定性,且要特別強調(diào)呼吸和心血管系統(tǒng)的穩(wěn)定性,對

有神經(jīng)創(chuàng)傷的患畜來說,這一點尤其重要,因為低血

壓、低氧血癥和通氣量的改變都會導(dǎo)致二次傷害且使

結(jié)果惡化。

神經(jīng)系統(tǒng)評估

為了對神經(jīng)系統(tǒng)進行充分評估,最開始的神經(jīng)系

統(tǒng)檢查應(yīng)該在任何鎮(zhèn)痛治療開始之前而進行,最初的

神經(jīng)系統(tǒng)檢查應(yīng)包括評估意識、顱神經(jīng)反射、躺臥狀

態(tài)、是否有自主運動功能(對有潛在VFL的可以行走

對神經(jīng)系統(tǒng)以外的評估

與任何外傷病人一樣,影像學(xué)檢查應(yīng)包括胸片以

排除肺挫傷、氣胸和其他胸部或肺部創(chuàng)傷,以及腹部

影像學(xué)檢查。理想情況下,還可以進行額外的診斷

(比如說重點對創(chuàng)傷部位進行超聲檢查)以排除器官

骨折和腹腔積液(如血性腹膜、尿性腹膜、化膿性腹

膜炎)29,30。

對顱內(nèi)以及脊柱的評估

TBI小動物患者的顱內(nèi)成像適用于,第一:對進取

的醫(yī)療管理沒有反應(yīng)的患者、第二:對治療后有初步

的患者在臥床狀態(tài)下評估)、檢查沒有自主運動功能

的患者是否有淺層痛覺、檢查沒有完整淺層痛覺的患

者是否有深 層 痛覺、脊柱 反 射、皮 膚 軀干肌 反 射

(penniculus-reflex)、肛門張力、和會陰反射。如果

患者可以走動。且醫(yī)生不懷疑患有椎體骨折或脫位

“VFL”,也可以對步態(tài)和感知能力進行評估,對所有懷

疑出現(xiàn)急性SCI的病畜一律都應(yīng)進行脊柱的輕柔觸

診,來確定出現(xiàn)錯位的位置(例如,“階段性”的骨

折)、不穩(wěn)定,不適,或有異響的區(qū)域。在進行神經(jīng)系

統(tǒng)評估時,重要的是確認(rèn)病人已被充分蘇醒,因為休

克可以影響神經(jīng)系統(tǒng)的狀態(tài)。此外,進行徹底的臥位

骨科檢查也是很重要的,這是用來排除骨科損傷作

為明顯神經(jīng)系統(tǒng)癥狀的一個潛在原因13,15。

每當(dāng)懷疑非躺臥患畜有繼發(fā)于椎體骨折或脫位

的急性脊髓損傷時,應(yīng)盡量減少患畜的活動,患畜應(yīng)

被固定在背板上,直到對骨折和脫位完成了最終明確

的評估13,15。

對病畜進行神經(jīng)定位,并根據(jù)體征癥狀的嚴(yán)重程

度進行 分級 是必要的,修正的格 拉斯哥昏迷量表

【modified Glasgow Coma Scale - MGCS】的實用

性已經(jīng)在狗身上得到了驗證,被證實對評估創(chuàng)傷性腦

損傷的病畜十分有用,它提供了一種更為客觀地去評

定臨床癥狀改善或進展的方法,甚至還能提供預(yù)后信

息(表2)24,25。

一項回顧性研究顯示,MGCS與狗在創(chuàng)傷后48小

時內(nèi)的生存概率有著很強的相關(guān)性。

反復(fù)地神經(jīng)系統(tǒng)評估 - 建議在初次發(fā)病后每

30-60 分鐘進行一次評估,來評估治療的臨床反應(yīng)

和臨床癥狀的進展情況。目前有 3 個有效的評分系

統(tǒng)可用于評估與 SCI 相關(guān)的缺陷的嚴(yán)重程度:第一:

改良的弗蘭克爾評分(Modified Frankel Score) ;第

二:14 點運動評分 (14-point Motor score) 和第三:

德 克 薩 斯 脊 髓 損傷評分 (Taxes Spinal cord injury

score )26,27 。

如果病畜只有一側(cè)前肢反射減弱,患側(cè)出現(xiàn)霍納

綜合征、泛神經(jīng)反射減弱,則應(yīng)懷疑臂叢神經(jīng)損傷 13。

脊髓休克(spinal shock)的存在可能影響對急性 SCI

患畜的神經(jīng)定位,脊髓休克導(dǎo)致病變尾部的節(jié)段性脊

柱反射缺失,即使反射弧保持物理的完整,但也會造

成弛緩性癱瘓(flaccid paralysis),這是由于急性 SCI

發(fā)生時,下降的脊髓上輸入突然中斷,人類脊柱休克

的恢復(fù)是漫長的,但在和狗和貓上的恢復(fù)要快得多,

通常在 12 至 24 小時內(nèi) 28。

反應(yīng)后惡化的患者。第三:和/或有局灶性或不對稱的

神經(jīng)體征的患者。CT(Computed-tomography)是用

于急性TBI特征描述的首選方式,因為它快速、相對不

昂貴,并且有很好識別軸外出血(如硬膜外、硬膜下

和蛛網(wǎng)膜下/腦室內(nèi)出血)、軸內(nèi)出血(如皮質(zhì)挫傷、

腦膜內(nèi)血腫和創(chuàng)傷性軸索損傷)、大腦腫脹和腦疝的

能力 9–11。

在急性期之外,當(dāng)患者對藥物治療仍無反應(yīng)或在

CT掃描結(jié)果正常的情況、接受積極的治療但情況仍在

惡化的時候,建議進行磁共振成像(MRI)10,11。盡管單

單使用影像就可以得到有關(guān)小動物患者SCI的重要信

息,但它已被證明對檢測狗的椎體骨折(72%)和半脫

位(77.5%)的敏感性相對較低31。如果不能使用更先

進的成像技術(shù),應(yīng)拍攝正交放射線照片(即使用水平

射線技術(shù)在側(cè)臥位獲得的兩個視圖)。對整個脊柱進

行成像掃描檢查是必要的,因為大約20%的脊柱外傷

患者有多個VFL32。不應(yīng)該單靠放射線照片上沒有VFL

來明確排除其存在。與椎間盤突出癥有關(guān)的放射學(xué)征

象包括:椎間盤空間變窄、椎間盤結(jié)構(gòu)礦化、關(guān)節(jié)面變

窄以及椎間孔變窄或不透明33,34,這些征象在診斷椎

間盤 突出癥 方面的準(zhǔn)確性(51%- 61%)、敏 感性

(64%-69%)和陽性預(yù)測值(63%-71%)都比較低 33。

此外,其他SCI可能會與外傷同時發(fā)生,而單靠影

像檢查可能不明顯。

CT是骨科的首選成像方式,因此,對于臨床癥狀

提示為不穩(wěn)定的VFL的病人,建議使用CT。在一些人

體研究中,CT對診斷VFL的敏感度高達100%。

盡管單獨使用CT仍然可以有相對較好的敏感度,

但脊髓造影和CT結(jié)合使用,可以提高診斷椎間盤突出

部位的敏感度。盡管CT需要鎮(zhèn)靜或全身麻醉,但現(xiàn)代

CT掃描的速度非常迅速,使之成為可以在有多發(fā)性創(chuàng)

傷的患者身上可行的成像方法。全身CT掃描通??梢?/p>

短于一分鐘內(nèi)獲得,并可以評估顱骨、大腦、脊柱、胸

腔和腹部結(jié)構(gòu)。

脊髓造影(myelography)包括向蛛網(wǎng)膜下腔注

射造影劑,并確定硬膜外被壓迫部位的腹側(cè)、背側(cè)或

側(cè)方造影柱的衰減,脊髓造影比普通放射性檢查提

供更多關(guān)于椎間盤突出部位的信息。研究表明,脊髓

造影和手術(shù)結(jié)果的一致性約為81%-98%,病變側(cè)向

的準(zhǔn)確性約為53%-100%34–37。然而,脊髓造影術(shù)幾乎

不能提供有關(guān)VFL的存在或?qū)嵸|(zhì)內(nèi)損傷的額外信息。

另外,脊髓造影是需要全身麻醉,也有與造影劑使用

相關(guān)的風(fēng)險,包括術(shù)后癲癇發(fā)作38,39。

MRI 被認(rèn)為對包括:脊髓實質(zhì)、椎間盤和神經(jīng)根

(nerve root) 在內(nèi)的軟組織的最佳成像方式。然而,它

提供的骨性結(jié)構(gòu)的細(xì)節(jié)相對較少,因此,在對 VFLs

進行進一步成像時,它不是首選方式 40。這種方式比

其他技術(shù)更昂貴,而且需要更長的麻醉時間。在作者

所在的機構(gòu) / 醫(yī)院,當(dāng)其他技術(shù)(如 CT)不能揭示創(chuàng)

傷性 SCI 病人的神經(jīng)功能障礙的原因時,通常會使用

這種方式。

第103頁

小動物臨床前沿(神經(jīng)學(xué)???- 上冊)· 腦部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 總第 12 期

- 101 -

用藥方案/藥理策略

對神經(jīng)系統(tǒng)以外的評估

與任何外傷病人一樣,影像學(xué)檢查應(yīng)包括胸片以

排除肺挫傷、氣胸和其他胸部或肺部創(chuàng)傷,以及腹部

影像學(xué)檢查。理想情況下,還可以進行額外的診斷

(比如說重點對創(chuàng)傷部位進行超聲檢查)以排除器官

骨折和腹腔積液(如血性腹膜、尿性腹膜、化膿性腹

膜炎)29,30。

對顱內(nèi)以及脊柱的評估

TBI小動物患者的顱內(nèi)成像適用于,第一:對進取

的醫(yī)療管理沒有反應(yīng)的患者、第二:對治療后有初步

反應(yīng)后惡化的患者。第三:和/或有局灶性或不對稱的

神經(jīng)體征的患者。CT(Computed-tomography)是用

于急性TBI特征描述的首選方式,因為它快速、相對不

昂貴,并且有很好識別軸外出血(如硬膜外、硬膜下

和蛛網(wǎng)膜下/腦室內(nèi)出血)、軸內(nèi)出血(如皮質(zhì)挫傷、

腦膜內(nèi)血腫和創(chuàng)傷性軸索損傷)、大腦腫脹和腦疝的

能力 9–11。

在急性期之外,當(dāng)患者對藥物治療仍無反應(yīng)或在

CT掃描結(jié)果正常的情況、接受積極的治療但情況仍在

惡化的時候,建議進行磁共振成像(MRI)10,11。盡管單

單使用影像就可以得到有關(guān)小動物患者SCI的重要信

息,但它已被證明對檢測狗的椎體骨折(72%)和半脫

位(77.5%)的敏感性相對較低31。如果不能使用更先

進的成像技術(shù),應(yīng)拍攝正交放射線照片(即使用水平

射線技術(shù)在側(cè)臥位獲得的兩個視圖)。對整個脊柱進

行成像掃描檢查是必要的,因為大約20%的脊柱外傷

患者有多個VFL32。不應(yīng)該單靠放射線照片上沒有VFL

來明確排除其存在。與椎間盤突出癥有關(guān)的放射學(xué)征

象包括:椎間盤空間變窄、椎間盤結(jié)構(gòu)礦化、關(guān)節(jié)面變

窄以及椎間孔變窄或不透明33,34,這些征象在診斷椎

間盤 突出癥 方面的準(zhǔn)確性(51%- 61%)、敏 感性

(64%-69%)和陽性預(yù)測值(63%-71%)都比較低 33。

此外,其他SCI可能會與外傷同時發(fā)生,而單靠影

像檢查可能不明顯。

CT是骨科的首選成像方式,因此,對于臨床癥狀

提示為不穩(wěn)定的VFL的病人,建議使用CT。在一些人

體研究中,CT對診斷VFL的敏感度高達100%。

盡管單獨使用CT仍然可以有相對較好的敏感度,

但脊髓造影和CT結(jié)合使用,可以提高診斷椎間盤突出

部位的敏感度。盡管CT需要鎮(zhèn)靜或全身麻醉,但現(xiàn)代

CT掃描的速度非常迅速,使之成為可以在有多發(fā)性創(chuàng)

傷的患者身上可行的成像方法。全身CT掃描通常可以

短于一分鐘內(nèi)獲得,并可以評估顱骨、大腦、脊柱、胸

腔和腹部結(jié)構(gòu)。

脊髓造影(myelography)包括向蛛網(wǎng)膜下腔注

射造影劑,并確定硬膜外被壓迫部位的腹側(cè)、背側(cè)或

側(cè)方造影柱的衰減,脊髓造影比普通放射性檢查提

供更多關(guān)于椎間盤突出部位的信息。研究表明,脊髓

造影和手術(shù)結(jié)果的一致性約為81%-98%,病變側(cè)向

的準(zhǔn)確性約為53%-100%34–37。然而,脊髓造影術(shù)幾乎

不能提供有關(guān)VFL的存在或?qū)嵸|(zhì)內(nèi)損傷的額外信息。

另外,脊髓造影是需要全身麻醉,也有與造影劑使用

相關(guān)的風(fēng)險,包括術(shù)后癲癇發(fā)作38,39。

MRI 被認(rèn)為對包括:脊髓實質(zhì)、椎間盤和神經(jīng)根

(nerve root) 在內(nèi)的軟組織的最佳成像方式。然而,它

提供的骨性結(jié)構(gòu)的細(xì)節(jié)相對較少,因此,在對 VFLs

進行進一步成像時,它不是首選方式 40。這種方式比

其他技術(shù)更昂貴,而且需要更長的麻醉時間。在作者

所在的機構(gòu) / 醫(yī)院,當(dāng)其他技術(shù)(如 CT)不能揭示創(chuàng)

傷性 SCI 病人的神經(jīng)功能障礙的原因時,通常會使用

這種方式。

給氧治療 / 氧氣治療

在需要的情況下,應(yīng)補充氧氣以維持常氧血癥

(氧分壓 [ PaO2 ]= 80-100 mmHg 和脈搏氧飽和度 [

SpO2 ]=94%-98%),但應(yīng)調(diào)整劑量以避免高氧血癥,

因為這可能會加劇再灌注損傷 7

。

供氧方式包括面罩、鼻腔或鼻咽插管、氧氣籠或

帳篷,以及氣管內(nèi)給氧 41。 在初步評估狀態(tài)和搶救過

程中,通常建議使用面罩給氧,直到可以開始進行氧

合監(jiān)測。鼻腔或鼻咽插管的好處是確保高濃度的吸入

氧,但鼻腔刺激可誘發(fā)打噴嚏,這可能導(dǎo)致 ICP 增加,

但由于意識水平的降低,大多數(shù)創(chuàng)傷性腦損傷患者對

鼻腔氧氣的耐受性很好。氧氣籠也可以提供相對較高

的吸氧量,但不幸的是,對危重病人來說,氧氣籠的使

用范圍很小 42。 應(yīng)該對每只患者進行評估,才能確定

適合不同患者的最佳給氧方式。如果使用超過 60%

的高氧濃度( FiO2 )都不能維持足夠的氧氣供應(yīng),則

需要機械通氣 43。

靜脈輸液治療

獸醫(yī)界對神經(jīng)創(chuàng)傷患者的輸液復(fù)蘇最佳選擇存

在爭議,液體復(fù)蘇對選擇包括等滲冷凍液、高滲溶液、

人工膠體溶液和血制品。對創(chuàng)傷性腦損傷的管理中,

人們特別擔(dān)心大腦對水腫加重(由于細(xì)胞之間的緊密

連接遭到破壞后,隨后的離子和較大的膠體大小的分

子涌入產(chǎn)生的二次滲透力導(dǎo)致的大腦水腫)的保護能

力 4

,因此,建議使用含有最少游離水的等滲液體(例

如,0.9%NaCl 除非在發(fā)病時已經(jīng)出現(xiàn)明顯的鈉鹽失

調(diào),否則應(yīng)給予 NaCl)由于大腦間質(zhì)和細(xì)胞內(nèi)質(zhì)之間

的液體轉(zhuǎn)移主要由滲透壓決定,而不是由血漿滲透壓

決定,因此膠體溶液并沒有顯示出比晶體液治療有更

明顯的優(yōu)勢 44。然而,由于晶體液在給藥后在身體的

快速分布,可以考慮將膠體療法與晶體液療法(等滲

或高滲)相結(jié)合,以提供更持久的容量復(fù)蘇 7

。

高滲鹽水(Hypertonic Saline - HTS)對有神經(jīng)

創(chuàng)傷患者(尤其是創(chuàng)傷性休克患者)有幾個潛在的好

處,包括迅速增加血管內(nèi)容量,增加心輸出量,通過使

腦血管內(nèi)皮細(xì)胞脫水來改善區(qū)域腦和脊髓血流,增加

血管直徑,降低 ICP,并加強腦氧輸送 45–50。重要的是

要注意所使用的 HTS 的濃度,因為這將影響溶液的

劑量 4

,HTS 應(yīng)僅用于無明顯鈉失調(diào)的脫水病人。

此外,當(dāng)務(wù)之急是在 HTS 之后要進行晶體液輸

液治療以維持足夠的組織含水量。?

貧血病人應(yīng)使用填充紅細(xì)胞或全血治療,以保持

足夠的動脈含氧量和對受損神經(jīng)組織的氧氣輸送。輸

血目標(biāo)包括灌注參數(shù)的正?;òㄖ行撵o脈血氧飽

和度 >70%)。凝血功能障礙的病人應(yīng)使用新鮮冷凍血

漿 7

。那些對液體復(fù)蘇沒有反應(yīng)的病人需要血管收縮

劑支持 7

。在最初的液體復(fù)蘇后,應(yīng)繼續(xù)進行輸液治

療,以滿足維持需求、不足和任何持續(xù)損失。表 3 中列

出了建議的靜脈輸液的初始劑量。

表3:靜脈輸液的治療以及其建議劑量

輸液類型 建議劑量

等滲性晶體液(首選 0.9%NaCl)

Isotonic crystalloid

狗 20-30mL/kg、貓 10-20 mL/kg

在15-20分鐘內(nèi)輸完,之后進行評估

合成膠體(例如,6%羥乙基淀粉)

Synthetic colloid (e.g.6% hydroxyethylstarch)

5-10mL/kg、在15-20分鐘內(nèi)輸完,之后進行評估,在這之

后始終要使用晶體液注射

7.5% 氯化鈉 NaCl 4mL/kg 在15-20分鐘內(nèi)輸完,之后進行評估,在這之后始

終要使用晶體液注射

3% 氯化鈉 NaCl 5.4mL/kg 在15-20分鐘內(nèi)輸完,之后進行評估,在這之后始

終要使用晶體液注射

1:2的23.4%NaCl和6%羥乙基淀粉

或其他合成膠體

1:2 ratio of 23.4% NaCl and 6% hydroxyethylstarch or other

synthetic colloid

4mL/kg,在15-20分鐘內(nèi)輸完,之后進行評估,在這之后始

終要使用晶體液注射

紅細(xì)胞/全血治療

Packed red blood cells

~ 10 - 15mL/kg,少于 每四個小時一個單位 4g/unint以達到

灌注為正常作為治療目標(biāo) (normalization of perfusion)

參數(shù)和PCV= 25% - 30%

新鮮冷凍血漿

Fresh frozen plasma

5-10mL/kg 少于 每四個小時一個單位 4g/unint在這以達到

凝血時間正常作為治療目標(biāo)

第104頁

小動物臨床前沿(神經(jīng)學(xué)???- 上冊)· 腦部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 總第 12 期

- 102 -

疼痛管理

給氧治療 / 氧氣治療

在需要的情況下,應(yīng)補充氧氣以維持常氧血癥

(氧分壓 [ PaO2 ]= 80-100 mmHg 和脈搏氧飽和度 [

SpO2 ]=94%-98%),但應(yīng)調(diào)整劑量以避免高氧血癥,

因為這可能會加劇再灌注損傷 7

供氧方式包括面罩、鼻腔或鼻咽插管、氧氣籠或

帳篷,以及氣管內(nèi)給氧 41。 在初步評估狀態(tài)和搶救過

程中,通常建議使用面罩給氧,直到可以開始進行氧

合監(jiān)測。鼻腔或鼻咽插管的好處是確保高濃度的吸入

氧,但鼻腔刺激可誘發(fā)打噴嚏,這可能導(dǎo)致 ICP 增加,

但由于意識水平的降低,大多數(shù)創(chuàng)傷性腦損傷患者對

鼻腔氧氣的耐受性很好。氧氣籠也可以提供相對較高

的吸氧量,但不幸的是,對危重病人來說,氧氣籠的使

用范圍很小 42。 應(yīng)該對每只患者進行評估,才能確定

適合不同患者的最佳給氧方式。如果使用超過 60%

的高氧濃度( FiO2 )都不能維持足夠的氧氣供應(yīng),則

需要機械通氣 43。

靜脈輸液治療

獸醫(yī)界對神經(jīng)創(chuàng)傷患者的輸液復(fù)蘇最佳選擇存

在爭議,液體復(fù)蘇對選擇包括等滲冷凍液、高滲溶液、

人工膠體溶液和血制品。對創(chuàng)傷性腦損傷的管理中,

人們特別擔(dān)心大腦對水腫加重(由于細(xì)胞之間的緊密

連接遭到破壞后,隨后的離子和較大的膠體大小的分

子涌入產(chǎn)生的二次滲透力導(dǎo)致的大腦水腫)的保護能

力 4

,因此,建議使用含有最少游離水的等滲液體(例

如,0.9%NaCl 除非在發(fā)病時已經(jīng)出現(xiàn)明顯的鈉鹽失

調(diào),否則應(yīng)給予 NaCl)由于大腦間質(zhì)和細(xì)胞內(nèi)質(zhì)之間

的液體轉(zhuǎn)移主要由滲透壓決定,而不是由血漿滲透壓

決定,因此膠體溶液并沒有顯示出比晶體液治療有更

明顯的優(yōu)勢 44。然而,由于晶體液在給藥后在身體的

快速分布,可以考慮將膠體療法與晶體液療法(等滲

或高滲)相結(jié)合,以提供更持久的容量復(fù)蘇 7

。

高滲鹽水(Hypertonic Saline - HTS)對有神經(jīng)

創(chuàng)傷患者(尤其是創(chuàng)傷性休克患者)有幾個潛在的好

處,包括迅速增加血管內(nèi)容量,增加心輸出量,通過使

腦血管內(nèi)皮細(xì)胞脫水來改善區(qū)域腦和脊髓血流,增加

血管直徑,降低 ICP,并加強腦氧輸送 45–50。重要的是

要注意所使用的 HTS 的濃度,因為這將影響溶液的

劑量 4

,HTS 應(yīng)僅用于無明顯鈉失調(diào)的脫水病人。

此外,當(dāng)務(wù)之急是在 HTS 之后要進行晶體液輸

液治療以維持足夠的組織含水量。?

貧血病人應(yīng)使用填充紅細(xì)胞或全血治療,以保持

足夠的動脈含氧量和對受損神經(jīng)組織的氧氣輸送。輸

血目標(biāo)包括灌注參數(shù)的正?;òㄖ行撵o脈血氧飽

和度 >70%)。凝血功能障礙的病人應(yīng)使用新鮮冷凍血

漿 7

。那些對液體復(fù)蘇沒有反應(yīng)的病人需要血管收縮

劑支持 7

。在最初的液體復(fù)蘇后,應(yīng)繼續(xù)進行輸液治

療,以滿足維持需求、不足和任何持續(xù)損失。表 3 中列

出了建議的靜脈輸液的初始劑量。

鎮(zhèn)痛治療在神經(jīng)創(chuàng)傷患者中的管理是至關(guān)重要

的。 鎮(zhèn)痛和鎮(zhèn)靜必須與保持血壓和通氣狀態(tài)相平衡,

因為這些參數(shù)的抑制會導(dǎo)致二次傷害,要盡可能不妨

礙對神經(jīng)系統(tǒng)狀態(tài)的重新評估。TBI 患者充分的鎮(zhèn)痛

可以避免因疼痛和躁動引起的 ICP 的短暫增加,這可

能導(dǎo)致腦代謝率的增加,從而導(dǎo)致腦血流和腦容量的

增加 51?。

阿片類藥物 (Opioids) 是重癥中的首選鎮(zhèn)痛藥

物,因為它們易于逆轉(zhuǎn),而且在滴定至生效時相對安

全。一些研究表明,應(yīng)避免阿片類藥物的快速大劑量

注射 (bolus infusinon),而首選恒速注射(Constant

rate infusion - CRI)51–55。由于容易逆轉(zhuǎn),建議使用完

全激動性阿片類藥物 56,57?。

氯胺酮 (Ketamine) 對 N- 甲基 -D- 天門冬氨酸

(N-methyl-D-aspartate NMDA)接收器體有非競爭

性抑制作用 , 因此,這種藥劑除了對心血管和呼吸道

具有保護的特性外,還可能具有針對缺血和谷氨酸引

起的神經(jīng)損傷有保護作用。最近的研究未能證明氯胺

酮(ketamine)會導(dǎo)致如以往文獻中常報道的 ICP 增

加 51,然而,它已被證明可能是通過抑制 G- 氨基丁酸

(GABA)受體從而增加腦耗氧量,因此,使用 GABA 激

動劑(如丙泊酚 propofol)可能會減少這些負(fù)面效應(yīng)。?

美托咪定(medetomidine),一種α2- 激動劑,根

據(jù)記錄表明對麻醉中的狗 ICP 沒有影響。58 因為這類

藥物的鎮(zhèn)痛或鎮(zhèn)靜特性,使用時必須謹(jǐn)慎,因為它們

可以引起臨床上顯著的心率和心輸出量 (cardiac

output) 的降低,從而影響中樞神經(jīng)系統(tǒng)的灌注 23。表

4 列出了推薦的鎮(zhèn)痛劑和它們各自相對的劑量。

表4:鎮(zhèn)痛和建議使用劑量

鎮(zhèn)痛劑

analgesic

推薦使用劑量

recommended dose

芬太尼

(fentanyl)

狗 ,以 的速度

勻速持續(xù)輸液(

貓 ,以 的速度

勻速持續(xù)輸液(

嗎啡

(morphine)

狗 ,先緩慢地輸 然后以 的速度勻速

持續(xù)輸液(

氯胺酮 (ketamine) ,然后以 的速度勻速持續(xù)輸液(

利多卡因(lidocaine) 狗: , 以 的速度勻速持續(xù)輸液(

右美托咪啶 (dexmedetomidine)

2μg/kg 2-5μg/kg/h

CRI)

1μg/kg 1-2μg/kg/h

CRI)

0.15-0.5 μg/kg 0.1-1μg/kg/h

CRI)

0.1-1 mg/kg 2-10μg/kg/h CRI)

1-2mg/kg 25-80μg/kg/h CRI)

0.5-1 μg/kg/h

第105頁

小動物臨床前沿(神經(jīng)學(xué)???- 上冊)· 腦部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 總第 12 期

- 103 -

針對創(chuàng)傷性腦損傷的藥理策略

參考文獻:

1. Simpson S, Syring R, Otto C. Severe blunt trauma in

dogs: 235 cases (1997-2003). J Vet Emerg Crit Care (San Antonio) 2009;19(6):588–602.

2. Marioni-Henry K, Vite CH, Newton AL, et al. Prevalence

of diseases of the spinalcord of cats. J Vet Intern Med

2004;18(6):851–8.

3. Fluehmann G, Doherr MG, Jaggy A. Canine neurological

diseases in a referralhospital population between 1989 and

2000 in Switzerland. J Small Anim Pract2006;47(10):582–7.

4. Sande A, West C. Traumatic brain injury: a review of

pathophysiology and management.J Vet Emerg Crit Care (San

Antonio) 2010;20(2):177–90.

5. Dewey C. Emergency management of the head trauma

patient. Vet Clin NorthAm Small Anim Pract 2000;30?207–25.

6. Hopkins A. Head trauma. Vet Clin North Am Small Anim

Pract 1996;26?875–91.

7. Dewey C, Fletcher D. Head trauma management. In:

Dewey C, editor. A practicalguide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell;2008. p. 221–35.

8. Aries M, Czrosynka M, Budohoski K, et al. Continuous

determination of optimalcerebral perfusion pressure in traumatic brain injury. Crit Care Med 2012;40(8):2456–63.

9. Ling G, Marshall S, Moore D. Diagnosis and management of traumatic braininjury. Continuum 2010;16(6):27–40.

10. Kim J, Gean A. Imaging for the diagnosis and management of traumatic braininjury. Neurotherapeutics

2011;8(1):39–53.

11. Tsang K, Whitfield P. Traumatic brain injury: review of

current management strategies.Br J Oral Maxillofac Surg

2012;50?298–308.

12. Proulx J, Dhupa N. Severe brain injury: part I: pathophysiology. CompendContin Educ Vet 1998;20?897–905.

13. Fletcher DJ, Dewey CW. Spinal trauma management.

In: Dewey CW, editor.A practical guide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell; 2008. p.

405–17.

14. Johnson K, Vite C. Spinal cord injury. In: Silverstein D,

Hopper K, editors. Smallanimal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders;2009. p. 419–23.

15. Park EH, White GA, Tieber LM. Mechanisms of injury

and emergency care ofacute spinal cord injury in dogs and cats.

J Vet Emerg Crit Care (San Antonio)2012;22(2):160–78.

16. Olby N. The pathogenesis and treatment of acute

spinal cord injuries in dogs.Vet Clin North Am Small Anim Pract

2010;40(5):791–807.

17. Fletcher D, Syring R. Traumatic brain injury. In: Silverstein D, Hopper K, editors.Small animal critical care medicine.

1st edition. St Louis (MO): Elsevier Saunders;2009. p. 658–62.

18. Leonard SE, Kirby R. The role of glutamate, calcium

and magnesium in secondarybrain injury. J Vet Emerg Crit Care

2002;12(1):17–32.

19. McMichael M, Moore R. Ischemia and reperfusion

injury pathophysiology, part I.J Vet Emerg Crit Care (San Antonio) 2004;14(4):231–41.

20. Oyinbo C. Secondary injury mechanisms in traumatic

spinal cord injury: anugget of this multiply cascade. Acta Neurobiol Exp 2011;71(2):281–99.

21. Tator C, Fehlings M. Review of the secondary injury

theory of acute spinal cordtrauma with emphasis on vascular

mechanisms. J Neurosurg 1991;75(1):15–26.

22. Dooney N, Dagal A. Anesthetic considerations in acute

spinal cord trauma. Int JCrit Illn Inj Sci 2011;1(1):36–43.

高滲療法 (hyperosmolar therapy)

顱內(nèi)高血壓一直與創(chuàng)傷性休克患者的不良后果

有關(guān) 59。自 20 世紀(jì)初,高滲鹽溶液(HTS) 和葡萄糖溶

液被證明可以降低貓的 CSF 壓力以來,高滲治療一直

是管理顱內(nèi)高血壓的基本操作 60。大腦是由?80% 的水

組成,使其體積對水含量的變化反應(yīng)很大。滲透劑只

有在 BBB 對其不可滲透的情況下才有效,鈉和甘露醇

(mannitol) 對 BBB 有近乎完美的排斥作用,使 HTS

和甘露醇對解決顱內(nèi)高血壓極為有效。TBI 高滲治療

主要影響正常的腦組織,而不是受傷的腦組織 61。 甘

露醇是一種糖醇,不會有明顯的代謝,靜脈輸液后在

尿液中以同等的量排泄掉。它被推薦作為顱內(nèi)高壓的

一線治療藥物,表 5 總結(jié)了甘露醇的作用機制、推薦

劑量及它的副作用 4,63-81。 除非擔(dān)心 ICP 升高,否則不

推薦將甘露醇用于創(chuàng)傷性休克患者的預(yù)防性治療,因

為其有效性與顱內(nèi)高壓的程度有關(guān),而且隨著累積劑

量的增加,其相關(guān)反應(yīng)也會減少(即在真正需要時,其

有效性可能會降低)64,65。甘露醇給藥后應(yīng)始終進行等

滲性冰片和 / 或膠體治療,以避免其利尿作用引起低

血容量,如果可能的話,在重復(fù)給藥的時候最好能測

量血清滲透壓 7

。?

高滲鹽水治療提供了與甘露醇治療類似的滲透

性益處,但它是一種不太有效的利尿劑,表 5 總結(jié)了

表5:甘露醇 (mannitol)與高滲鹽溶液(HTS) 作對比

縮寫:BBB,血腦屏障;CRI,恒速輸注;ICP,顱內(nèi)壓

高滲鹽水的作用機制、建議劑量、不良反應(yīng)和相對禁

忌癥 63,66。一般建議鈉濃度保持在 160mEq/L 以下,但

也有報道在人身上使用高滲鹽水治療,鈉濃度高達

180mEq/L 也沒有發(fā)生并發(fā)癥 67。

沒有證據(jù)表明甘露醇在治療顱內(nèi)高血壓方面優(yōu)

于HTS,反之亦然?,F(xiàn)有的少量研究顯示了相互矛盾

的結(jié)果68–71。對于等容量的病人來說,HTS可能更可

取,但對于等容積性的病人來說,兩者都是合理

的。當(dāng)病人對一種藥物的治療沒有反應(yīng)時,應(yīng)考慮

另一種藥物。?

單獨使用呋塞米(fursemide)或與甘露醇同時

使用來治療顱內(nèi)高血壓并沒有顯示出任何額外的好

處,而且會增加容量耗竭的風(fēng)險72。因此,不推薦使

用該藥。?

皮質(zhì)類固醇?(corticosteroids)

皮質(zhì)類固醇以前被主張用于治療創(chuàng)傷性腦損傷

患者,原因是皮質(zhì)類固醇可以減少腦水腫。來自

CRASH 試驗的突破性證據(jù)表明,使用大劑量的甲基

強的松龍(methylprednisolone) 與傷后 2 周和 6 個

月的死亡率增加有關(guān) 73,74。因此,皮質(zhì)類固醇不再被推

薦用于治療創(chuàng)傷性腦損傷患者。?

抗驚厥劑治療?(anti-convulsant)

創(chuàng)傷后的癲癇發(fā)作分為立即發(fā)作(發(fā)生在受傷后

24 小時內(nèi))、早期(發(fā)生在受傷后 24 小時至 7 天內(nèi))

或晚期(發(fā)生在受傷后 7 天以上)62。癲癇發(fā)作通過增

加腦代謝需求、增加 ICP 和導(dǎo)致釋放過多的神經(jīng)遞質(zhì)

而 增 加 繼 發(fā) 性 腦 損 傷。最 近 的 一 項 Cochrane

meta-analysis 認(rèn)為,預(yù)防性抗癲癇藥物在減少早期

癲癇發(fā)作方面是有效的,但沒有證據(jù)表明它們在預(yù)防

晚期癲癇發(fā)作是有效的 , 因此,建議在人類創(chuàng)傷后 7

天內(nèi)使用預(yù)防性抗癲癇藥物 75, 但獸醫(yī)界關(guān)于這個的

數(shù)據(jù)很少,但如果出現(xiàn)癲癇發(fā)作,應(yīng)積極進行抗癲癇

藥物(AED)治療,以減少繼發(fā)性腦損傷。小動物創(chuàng)傷

后癲癇發(fā)作的發(fā)生率沒有被很好的記錄,但已知小動

物身上也會有癲癇發(fā)作。 目前,在獸醫(yī)領(lǐng)域還沒有關(guān)

于預(yù)防性 AED 治療的明確建議。如果存在癲癇發(fā)作

的潛在因素(例如,頭部穿透性損傷、顱骨凹陷性骨折

等等),根據(jù)來源于人類身上的建議,在受傷后的頭 7

天考慮預(yù)防性 AED 治療是合理的。AED 治療的持續(xù)

時間是有爭議的,如果癲癇發(fā)作,應(yīng)將苯二氮卓類藥

物(bezodiazapines) 作為第一選擇治療,以阻止癲癇

發(fā)作 76。有多種用于持續(xù)控制癲癇發(fā)作的 AED 可供狗

和貓使用,這些藥物列于表 6。在作者所在的機構(gòu),左

乙拉西坦因(levetiracetam) 其起效快、副作用小、毒

性低而被經(jīng)常使用。?

巴比妥類藥物治療

巴比妥類藥物被認(rèn)為是治療難治性(refractory)

的顱內(nèi)高壓的次要療法,因為當(dāng)其他藥物和手術(shù)治療

失敗時,大劑量的巴比妥藥物可以控制 ICP。然而,目

前還沒有證據(jù)表明有任何療效 62。巴比妥類藥物的神

經(jīng)保護作用與它們能夠引起腦血管收縮、降低腦代

謝、減少 ICP、減少興奮性毒性和減少自由基介導(dǎo)的

損傷有關(guān) 77,巴比妥類藥物還具有抗驚厥的特性,與

使用巴比妥類藥物有關(guān)的并發(fā)癥有心血管和呼吸抑

制,且具有潛在臨床意義的低血壓(和相關(guān)的 CPP 的

下降)和換氣不足(hypoventilation)。最廣泛用于治

療創(chuàng)傷性休克的巴比妥類藥物是戊巴比妥 4

。最近有

一份研究記錄了一只有創(chuàng)傷性骨折和難治性癲癇活

動的狗身上表明 - 巴比妥類昏迷(用苯巴比妥或其他

鎮(zhèn)靜劑等藥物誘導(dǎo))與治療性低溫(therapeutic

hypothermia - TH)有關(guān)。對接受巴比妥酸鹽治療的

病人必須密切監(jiān)?測是否有換氣不足的情況,并可能

需要機械通氣(mechanical ventilation)。

新的治療方法

目前人類醫(yī)學(xué)界正在研究針對興奮性毒性和活

性氧產(chǎn)生的新療法,但迄今為止還沒有任何一種療法

被 用 于 獸 醫(yī) 實 踐。最 近 的 一 項 關(guān) 于 金 剛 烷 胺

(amantadine)的隨機對照試驗表明,在 4 周的時間

里,接受治療的病人的功能恢復(fù)明顯加快 79。在不久

的將來,會有更多專門針對繼發(fā)性傷害的療法將會提

供給獸醫(yī)來選擇。?

23. Armitage-Chan E, Wetmore L, Chan D. Anesthetic

management of the headtrauma patient. J Vet Emerg Crit Care

(San Antonio) 2007;17(1):5–14.

24. Shores A. Craniocerebral trauma. In: Kirk R, editor. Current veterinary therapy X.X. Philadelphia: WB Saunders; 1983. p.

847–54.

25. Platt S, Radaelli S, McDonnell J. The prognostic value of

the Modified GlasgowComa Scale in head trauma in gods. J Vet

Intern Med 2001;15(6):581–4.

26. Levine GJ, Levine JM, Budke CM, et al. Description and

repeatability of anewly developed spinal cord injury scale for

dogs. Prev Vet Med 2009;89(1–2):121–7.

27. Olby N, De Risio L, Munana K, et al. Development of a

functional scoring systemin dogs with acute spinal cord injuries.

Am J Vet Res 2001;62(10):1624–8.

28. Smith P, Jeffery N. Spinal shock—comparative aspects

and clinical relevance.J Vet Intern Med 2005;19?788–93.

29. Boysen S, Rozanski E, Tidwell A, et al. Evaluation of a

focused assessment with sonography for trauma protocol to

detect free abdominal fluid in dogs involved in motor vehicle

accidents. J Am Vet Med Assoc 2004;225(8):1198–204.

30. Lisciandro GR. Abdominal and thoracic focused assessment with sonographyfor trauma, triage, and monitoring in small

animals. J Vet Emerg Crit Care(San Antonio) 2011;21(2):104–22.

31. Kinns J, Mai W, Seiler G, et al. Radiographic sensitivity

and negative predictive value for acute canine spinal trauma. Vet

Radiol Ultrasound 2006;47(6):563–70.

32. Vitale C, Coates J. Acute spinal injury. Compendium

Standards of Care: Emergencyand Critical Care Medicine

2007;9(7):1–11.

33. Lamb CR, Nicholls A, Targett M, et al. Accuracy of

survey radiographic diagnosis of intervertebral disc protrusion in

dogs. Vet Radiol Ultrasound 2002;43(3):222–8.

34. Brisson BA. Intervertebral disc disease in dogs. Vet Clin

North Am Small Anim Pract 2010;40(5):829–58.

35. Israel SK, Levine JM, Kerwin SC, et al. The relative sensitivity of computed tomography and myelography for identification of thoracolumbar intervertebral disk herniations in dogs. Vet

Radiol Ultrasound 2009;50(3):247–52.

36. Olby N, Dyce J, Houlton J. Correlation of plain radiographic and lumbar myelographic findings with surgical findings

in thoracolumbar disc disease. J SmallAnim Pract

1994;35(7):345–50.

37. Griffin J, Levine J, Kerwin S. Canine thoracolumbar

intervertebral disk disease:pathophysiology, neurologic examination, and emergency medical therapy.Compend Contin Educ

Vet 2009;31(3):E1–13.

38. Lewis D, Hosgood G. Complications associated with

the use of iohexol for myelographyof the cervical vertebral

column in dogs: 66 cases (1988-1990). J AmVet Med Assoc

1992;200(9):1381–4.

39. Barone G, Ziemer L, Shofer F, et al. Risk factors associated with the developmentof seizures after use of iohexol for

myelography in dogs: 182 cases(1998). J Am Vet Med Assoc

2002;220(10):1499–502.

40. Johnson P, Beltran E, Dennis R, et al. Magnetic resonance imaging characteristics of suspected vertebral instability

associated with fracture or subluxation in eleven dogs. Vet

Radiol Ultrasound 2012;53(5):552–9.

41. Rozanski EA, Rondeau MP. Respiratory pharmacotherapy in emergency and critical care medicine. Vet Clin North Am

Small Anim Pract 2002;32(5):1073–86.

42. Mazzaferro E. Oxygen therapy. In: Silverstein D, Hopper

K, editors. Small animal critical caremedicine. 1stedition. StLouis(MO): Elsevier Saunders; 2009.p. 78–81.

43. Hopper K. Basic mechanical ventilation. In: Silverstein

D, Hopper K, editors. Small animal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders; 2009. p. 900–4.

44. Zhuang J, Shackford S, Schmoker J, et al. Colloid infusion after brain injury: an effect on intracranial pressure, cerebral

blood flow, and oxygen delivery. Crit Care Med

1995;23(1):140–8.

45. Wade C, Grady J, Kramer G, et al. Individual patient

cohort analysis of the efficacy of hypertonic saline/dextran in

patients with traumatic brain injury and hypotension. J Trauma

1997;42?561–5.

46. Vassar M, Perry C, Gannaway W, et al. Analysis of

potential risks associated with 7.5% sodium chloride resuscitation of traumatic shock. Arch Surg 1990;124: 1309–15.

47. Vassar M, Perry C, Gannaway W, et al. 7.5% sodium

chloride/dextran for resuscitation of trauma patients undergoing

helicopter transport. Arch Surg 1991;126: 1065–72.

48. Vassar M, Perry C, Holcroft J. Prehospital resuscitation

of hypotensive trauma patients with 7.5% NaCl versus 7.5% NaCl

with added dextran: a controlled trial. J Trauma 1993;34?622–32.

49. Vassar M, Fisher R, O’ Brien P, et al. A multicenter trial

for resuscitation of injured patients with 7.5% sodium chloride.

Arch Surg 1993;128?1003–11.

50. Cooper J, Myles P, McDermott F, et al. Prehospital

hypertonic saline resuscitation of patients with hypotension and

severe traumatic brain injury. JAMA 2004;291?1350–7.

51. Roberts D, Hall R, Kramer A. Sedation for critically ill

adults with severe traumatic brain injury: a systematic review of

randomized controlled trials. CritCare Med 2012;39(12):2743–51.

52. Sperry R, Bailey P, Reichman M, et al. Fentanyl and

sulfentanil increase intracranial pressure in head trauma patients.

Anesthesiology 1992;77?416–20.

53. Lauer K, Connolly L, Schmeling W. Opioid sedation

does not alter intracranial pressure in head injured patients. Can

J Anaesth 1997;44?929–33.

54. Albanese J, Viviand X, Potie F, et al. Sulfentanil, fentanyl,

and alfentanil in head trauma patients: a study on cerebral

hemodynamics. Crit Care Med 1999;27?407–11.

55. de Nadal M, Munar F, Poca M, et al. Cerebral hemodynamic effects of morphine and fentanyl in patients with severe

head injury: absence of correlation to cerebral autoregulation.

Anesthesiology 2000;92?11–9.

56. Hansen B. Acute pain management. Vet Clin North Am

Small Anim Pract 2000;30(4):899–916.

57. Pascoe P. Opioid analgesics. Vet Clin North Am Small

Anim Pract 2000;30(4):757–69.

58. Keegan R, Green S, Bagley R, et al. Effects of medetomidine administration on intracranial pressure and cardiovascular variables of isoflurane-anesthetized dogs. Am J Vet Res

1996;56(2):193–8.

59. Treggiari M, Schultz N, Yanez N, et al. Role of intracranial pressure values and patterns in predicting outcome of traumatic brain injury: a systematic review. Neurocrit Care

2007;6?104–12.

60. Weed L, McKibbon P. Pressure changes in the cerebrospinal fluid following intravenous injection of solutions of various

concentrations. Am J Phys 1919;48?512–30.

61. Ropper A. Hyperosmolar therapy for raised intracranial

pressure. N Engl J Med 2012;367(8):746–52.

62. Brain Trauma Foundation, American Association of

Neurological Surgeons,Congress of Neurological Surgeons.

Guidelines for the management of severetraumatic brain injury. J

Neurotrauma 2007;24(1):S1–106.

63. Fink M. Osmotherapy for intracranial hypertension:

mannitol versus hypertonic saline. Continuum

2012;18(3):640–54.

64. Kaufmann A, Cardoso E. Aggravation of vasogenic

cerebral edema by multipledose mannitol. J Neurosurg

1992;77(4):584–9.

65. McManus M, Soriano S. Rebound swelling of astroglial

cells exposed to hypertonic mannitol. Anesthesiology

1998;88(6):1586–91.

66. Oddo M, Levine J, Frangos S, et al. Effect of mannitol

and hypertonic salineon cerebral oxygenation in patients with

severe traumatic brain injury and refractoryintracranial hypertension. J Neurol Neurosurg Psychiatr 2009;80(8):916–20.

67. Aiyagari V, Deibert E, Diringer M. Hypernatremia in the

neurologic intensive careunit: how high is too high? J Crit Care

2006;21(2):163–72.

68. Battison C, Andrews P, Graham C, et al. Randomized,

controlled trial on theeffect of a 20% mannitol solution and a

7.5% saline/6% dextran solution onincreased intracranial pressure after brain injury. Crit Care Med 2005;33(1):196–202.

69. Francony C, Fauvage B, Falcon D, et al. Equimolar

doses of mannitol and hypertonicsaline in the treatment of intracranial pressure. Crit Care Med 2008;36(3):795–800.

70. Zeng H, Wang Q, Deng Y, et al. A comparative study on

the efficacy of 10%hypertonic saline and equal volume of 20%

mannitol in the treatment of experimentallyinduced cerebral

edema in adult rats. BMC Neurosci 2010;11?153.

71. da Silva J, de Lima F, Valenca M, et al. Hypertonic saline

more efficacious thanmannitol in lethal intracranial hypertension

model. Neurol Res 2010;32(2):139–43.

72. Todd M, Cutkomp J, Brian J. Influence of mannitol and

furosemide, alone and incombination, on brain water content

after fluid percussion injury. Anesthesiology2006;105?1176–80.

73. Edwards P, Arango M, Balica L, et al. Final results of

MRC CRASH, a randomized placebo-controlled trial of intravenous corticosteroids in adults with headinjury- outcomes at 6

months. Lancet 2005;365(9475):1957–9.

74. Roberts I, Yates D, Sandercock P, et al. Effect of intravenous corticosteroids on death within 14 days in 10,008 adults

with clinically significant head injury (MRC CRASH trial): randomized placebo-controlled trial. Lancet 2004;364?9442.

75. Schierhout G, Roberts I. Withdrawn: antiepileptic drugs

for preventing seizures following acute traumatic brain injury.

Cochrane Database Syst Rev 2012;(6):CD000173.

76. Musulin S, Mariani C, Papich M. Diazepam pharmacokinetics after nasal drop and atomized nasal administration in

dogs. J Vet Pharmacol Ther 2011;34(1): 17–24.

77. Kassell N, Hitchon P, Gerk M, et al. Alterations in cerebral blood flow,oxygen metabolism, and electrical activity produced by high-dose thiopental.Neurosurgery 1980;7?598–603.

78. Hayes G. Severe seizures associated with traumatic

brain injury managed bycontrolled hypothermia, pharmacologic

coma, and mechanical ventilation in a dog. J Vet Emerg Crit Care

(San Antonio) 2009;19(6):629–34.

79. Giacino J, Whyte J, Bagiella E, et al. Placebo-controlled

trial of amantadine for severe traumatic brain injury. N Engl J

Med 2012;366?819–26.

80. Hall E. The neuroprotective pharmacology of methylprednisolone. J Neurosurg 1992;76(1):13–22.

81. Parker A, Smith C. Functional recovery from spinal cord

trauma following dexamethasone and chlorpromazine therapy in

dogs. Res Vet Sci 1976;21(2):246–7.

82. Levine J, Levine G, Boozer L, et al. Adverse effects and

outcome associatedwith dexamethasone administration in dogs

with acute thoracolumbar intervertebral disk herniation: 161

cases (2000-2006). J Am Vet Med Assoc 2008;232(3):411–7.

83. Bracken M, Shepard M, Collins W. A randomized, controlled trial of methylprednisolone or naloxone in the treatment

of acute spinal-cord injury. Results of the second national acute

spinal cord injury study. N Engl J Med 1990;322(20):1405–11.

84. Bracken M, Shepard M, Hellenbrand K. Methylprednisolone and neurologicalfunction 1 year after spinal cord injury.

Results of the National Acute Spinal Cord Injury Study. J Neurosurg 1985;63(5):704–13.

85. Bracken M, Shepard M, Holford T. Administration of

methylprednisolone for 24 or

48 hours or tirilazad mesylate for 48 hours in the treatment

of acute spinal cord injury. Results of the Third National Acute

Spinal Cord Injury Randomized Controlled Trial. National Acute

Spinal Cord Injury.JAMA 1997;277(20):1597–604.

86. Nesathurai S. Steroids and spinal cord injury: revisiting

the NASCIS 2 and NASCIS 3 trials. J Trauma Acute Care Surg

1998;45(6):1088–93.

87. Rabinowitz R, Eck J, Harper C. Urgent surgical decompression compared to methylprednisolone for the treatment of

acute spinal cord injury. Spine 2008;33(21):2260–8.

88. Coates J, Sorjonen D, Simpson S, et al. Clinicopathologic effects of a 21-aminosteroid compound (U74389G) and high

dose methylprednisolone onspinal cord function after simulated

spinal cord trauma. Vet Surg 1995;24?128–39.

89. Baltzer W, McMichael MA, Hosgood G. Randomized,

blinded, placebocontrolledclinical trial of N-acetylcysteine in

dogs with spinal cord trauma from acute intervertebral disc

disease. Spine 2008;33(13):1397–402.

90. Bains M, Hall E. Antioxidant therapies in traumatic brain

injury and spinal cord injury. Biochim Biophys Acta

2012;1822(5):675–84.

91. Hall E, Wolf D. A pharmacological analysis of the

pathophysiologicalmechanisms of posttraumatic spinal cord

ischemia. J Neurosurg 1986;64(6):951–61.

92. Ates O, Cayli S, Gurses I. Comparative neuroprotective

effect of sodium channel blockers after experimental spinal cord

injury. J Clin Neurosci 2007;14(7):658–65.

93. Kaptanoglu E, Solaroglu I, Surucu H. Blockade of

sodium channels by phenytoin protects ultrastructure and attenuates lipid peroxidation in experimental spinal cord injury. Acta

Neurochir 2005;147(4):405–12.

94. Hains B, Saab C, Lo A. Sodium channel blockade with

phenytoin protects spinal cord axons, enhances axonal conduction, and improves functional recovery after contusion SCI. Exp

Neurol 2004;188(2):365–77.

95. Schwartz G, Fehlings M. Secondary injury mechanisms

of spinal cord trauma:novel therapeutic approach for the management of secondary pathophysiology with the sodium channel blocker riluzole. Prog Brain Res 2002;137?177–90.

96. Park E, Velumian A, Fehlings M. The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with

an emphasis on the implications for white matter degeneration. J

Neurotrauma 2004;21?754–74.

97. Walters M, Kaste M, Lees K, et al. The AMPA antagonist

ZK 200775 in patients with acute ischaemic stroke: a double-blind, multi-centre, placebo-controlled safety and tolerability study. Cerebrovasc Dis 2005;20?304–9.

98. Chan P. White matter injury in spinal cord ischemia:

protection by AMPA/kainite glutamate receptor antagonism—Editoral comment. Stroke 2000;31?1952.

99. Chen HS, Lipton S. The chemical biology of clinically

tolerated NMDA receptor antagonists. J Neurochem

2006;97?1611–26.

100. Tadie M, D’ Arbigny P, Mathe J, et al. Acute spinal cord

injury. Early care and treatment in a multicenter study with

gacylidine. Soc Neurosci 1999;25?1090.

101. Kwon B, Okon E, Hillyer J. A systematic review of

non-invasive pharmacologic neuroprotective treatments for

acute spinal cord injury. J Neurotrauma 2011;28(8):1545–88.

102. Sturges B, LeCouteur R. Intracranial hypertension. In:

Silverstein D, Hopper K,editors. Small animal critical care medicine. 1st edition. St Louis (MO): ElsevierSaunders; 2009. p.

423–9.

103. Brain Trauma Foundation T, National Association of

State EMS Officials T,National Association of EMTs. Guidelines for

prehospital management of traumatic brain injury. Prehosp

Emerg Care 2007;12(1):1–52.

104. Davis D, Dunford J, Poste J, et al. The impact of hypoxia and hyperventilation on outcome after paramedic rapid

sequence intubation of severely head-injured patients. J Trauma

2004;57(1):1–8.

105. Muizelaar J, Marmarou A, Ward J, et al. Adverse effects

of prolonged hyperventilationin patients with severe head injury;

a randomized clinical trial. J Neurosurg 1991;75(5):731–9.

106. Deutschman C, Konstantinides F, Raup S. Physiological and metabolic response to isolated closed-head injury. Part i:

basal metabolic state: correlations of metabolic and physiological parameters with fasting and stressed controls. J Neurosurg

1986;64?89–98.

107. Jeremitsky E, Omert L, Dunham C, et al. The impact of

hyperglycemia on patients with severe brain injury. J Trauma

2005;58(1):47–50.

108. Syring R, Otto C, Drobatz K. Hyperglycemia in dogs

and cats with head trauma:122 cases (1997-1999). J Am Vet

Med Assoc 2001;218?1124–9.

109. Vespa P, McArthur D, Stein N, et al. Tight glycemic

control increases metabolic distress in traumatic brain injury: a

randomized controlled within subjects trial. Crit Care Med

2012;40(6):1923–9.

110. Green D, O’ Phelan K, Bassin S, et al. Intensive versus

conventional insulin therapy in critically ill neurologic patients.

Neurocrit Care 2010;13(3):299–306.

111. Bilotta F, Caramia R, Cernak I, et al. Intensive insulin

therapy after severe traumatic brain injury: randomized clinical

trial. Neurocrit Care 2008;9(2):159–66.

112. Dewey C. Urinary bladder management. In: Dewey

CW, editor. A practical guide to canine and feline neurology. St

Louis (MO): Elsevier Saunders; 2003. p. 419–26.

113. Bubenik L, Hosgood G. Urinary tract infection in dogs

with thoracolumbar intervertebral disc herniation and urinary

bladder dysfunction managed by manual expression, indwelling

catheterization or intermittent catheterization. Vet Surg

2008;37?791–800.

114. Smarick S, Haskins S, Aldrich J, et al. Incidence of

catheter-associated urinary tract infection among dogs in a

small animal intensive care unit. J Am Vet Med Assoc

2004;224(12):1936–40.

115. Ng I, Lim J, Wong H. Effects of head posture on cerebral hemodynamics its influences on intracranial pressure, cerebral perfusion pressure, and cerebral oxygenation. Neurosurgery

2004;54(3):593–7.

116. Sadaka F, Veremakis C. Therapeutic hypothermia for

the management of intracranial hypertension in severe traumatic

brain injury: a systematic review. Brain Inj 2012;26(7–8):899–908.

117. McCarthy P, Scott L, Ganta C, et al. Hypothermic protection in traumatic brain injury. Pathophysiology 2012;735–57.

118. Wijayatilake D, Shepherd S, Sherren P. Updates in the

management of intracranial pressure in traumatic brain injury.

Curr Opin Anaesthesiol 2012;25(5):540–7.

119. Hutchinson P, Corteen E, Czosnyka M, et al. Decompressive craniectomy intraumatic brain injury: the randomized

multicenter RESCUEicp study. Acta Neurochir 2006;96(S):17–20.

120. La Rosa G, Conti A, Cardali S, et al. Does early decompression improve neurological outcome of spinal cord injured

patients? Appraisal of the literature using a meta-analytical

approach. Spinal Cord 2004;42(9):503–12.

121. Croce M, Bee T, Pritchard E, et al. Does optimal timing

for spine fracture fixation exist? Ann Surg 2001;233(6):851–8.

122. Fehlings M, Perrin R. The timing of surgical intervention in the treatment of spinal cord injury: a systematic review of

recent clinical evidence. Spine 2006;31(11): S28–35.

123. Jeffery ND. Vertebral fracture and luxation in small

animals. Vet Clin North Am Small Anim Pract 2010;40(5):809–28.

124. Denis F. Spinal instability as defined by the three-column spine concept in acute spinal trauma. Clin Orthop Relat Res

1984;189?65–76.

125. Hillman R, Kengeri S, Waters D. Reevaluation of predictive factors for complete recovery in dogs with nonambulatory tetraparesis secondary to cervical disk herniation. J Am Anim

Hosp Assoc 2009;45?155–63.

126. Cherrone K, Dewey C, Coates J, et al. A retrospective

comparison of cervical intervertebral disk disease in nonchondrodystrophic large dogs versus small dogs. J Am Anim Hosp

Assoc 2004;40?316–20.

127. Gage E, Hoerlein B. Hemilaminectomy and dorsal

laminectomy for relieving compressions of the spinal cord in the

dog. J Am Vet Med Assoc 1968;152: 351–9.

128. Seim H 3rd, Prata R. Ventral decompression for the

treatment of cervical disk disease in the dog: a review of 54

cases. J Am Anim Hosp Assoc 1982;18: 233–40.

129. Gill P, Lippincott C, Anderson S. Dorsal laminectomy in

the treatment of cervical intervertebral disk disease in small

dogs: a retrospective study of 30 cases.J Am Anim Hosp Assoc

1996;32?77–80.

130. Felts J, Prata R. Cervical disk disease in the dog: intraforaminal and lateral extrusions. J Am Anim Hosp Assoc

1983;19?755–60.

131. Tanaka H, Nakayama M, Takase K. Usefulness of hemilaminectomy for cervical intervertebral disk disease in small

dogs. J Vet Med Sci 2005;67?679–83.

132. McCartney W. Comparison of recovery times and

complication rates between a modified slanted slot and the

standard ventral slot for the treatment of cervical disc disease in

20 dogs. J Small Anim Pract 2007;48?498–501.

133. Levine J, Levine G, Johnson S, et al. Evaluation of the

success of medical management for presumptive thoracolumbar

intervertebral disk herniation in dogs. Vet Surg 2007;36?482–91.

134. Kent M. Intraaxial spinal cord hemorrhage secondary

to atlantoaxial subluxationin a dog. J Am Anim Hosp Assoc

2010;46(2):132–7.

135. Cerda-Gonzalez S, Olby NJ. Fecal incontinence associated with epidural spinalhematoma and intervertebral disk

extrusion in a dog. J Am Vet Med Assoc 2006;228(2):230–5.

136. Caswell JL, Nykamp SG. Intradural vasculitis and hemorrhage in full sibling Welsh springer spaniels. Can Vet J

2003;44(2):137–9.

137. Tidwell AS, Specht A, Blaeser L, et al. Magnetic resonance imaging features ofextradural hematomas associated with

intervertebral disc herniation in a dog.Vet Radiol Ultrasound

2001;43(4):319–24.

138. Jeffery N, Lakatos A, Franklin R. Autologous olfactory

glial cell transplantation is eliable and safe in naturally occurring

spinal cord injury. J Neurotrauma 2005;22(11):1282–93.

139. Nishida H, Nakayama M, Tanaka H. Safety of autologous bone marrow stromal cell transplantation in dogs with

acute spinal cord injury. Vet Surg 2012;41?437–42.

140. Olby N, Levine J, Harris T. Long-term functional outcome of dogs with severe injuries of the thoracolumbar spinal

cord: 87 cases (1996-2001). J Am VetMed Assoc

2003;222(6):762–9.

141. Dewey CW. Myelopathies: disorders of the spinal cord.

In: Dewey CW, editor. A practical guide to canine and feline neurology. 2nd edition. Ames (IA):Wiley-Blackwell; 2008. p. 323–88.

142. Hawthorne J, Blevins W, Wallace L, et al. Cervical vertebral fractures in 56 dogs:a retrospective study. J Am Anim

Hosp Assoc 1999;35?135–46.

143. Eminaga S, Palus V, Cherubini G. Acute spinal cord

injury in the cat: causes,treatment and prognosis. J Feline Med

Surg 2011;13(11):850–62.spontaneous hyperadrenocorticism in

dogs. Part 2: Adrenal function testing and differentiating tests[J].

The Veterinary Journal, 2019, 252?105343.

甘露醇 (mannitol) 高滲鹽溶液(HTS)

作用機制

1.增加滲透BBB的滲透壓梯度(osmotic

gradient)

2. 血漿增多和血液粘稠度降低

3.改善腦部氧氣輸送和自我調(diào)節(jié)

4. 導(dǎo)致腦部血管收縮,減少腦血容量和ICP降低

和減少自由基清除

1.增加滲透BBB的滲透壓梯度(osmotic

gradient)

2.容積增加

3.增加心輸出量和血壓上升

建議劑量

1.0.5 - 1.0 g/kg

在15-20分鐘內(nèi)緩慢地注射

2.在幾分鐘內(nèi)生效

3.在15-120分鐘內(nèi)達到峰值

①7.5% NaCl: 4mL/kg

②3% NaCl: 5.4mL/kg

③1:2 的比例 23.4%NaCl 兌6%的氫化淀粉

(hetastarch)4mL/kg

在15-20分鐘內(nèi)完成注射,完成后進行評估,之

后始終要使用晶體液注射

副作用 低血容量 明顯的鈉紊亂、脫水

第106頁

小動物臨床前沿(神經(jīng)學(xué)???- 上冊)· 腦部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 總第 12 期

- 104 -

表6:抗癲癇藥物和推薦劑量

參考文獻:

1. Simpson S, Syring R, Otto C. Severe blunt trauma in

dogs: 235 cases (1997-2003). J Vet Emerg Crit Care (San Antonio) 2009;19(6):588–602.

2. Marioni-Henry K, Vite CH, Newton AL, et al. Prevalence

of diseases of the spinalcord of cats. J Vet Intern Med

2004;18(6):851–8.

3. Fluehmann G, Doherr MG, Jaggy A. Canine neurological

diseases in a referralhospital population between 1989 and

2000 in Switzerland. J Small Anim Pract2006;47(10):582–7.

4. Sande A, West C. Traumatic brain injury: a review of

pathophysiology and management.J Vet Emerg Crit Care (San

Antonio) 2010;20(2):177–90.

5. Dewey C. Emergency management of the head trauma

patient. Vet Clin NorthAm Small Anim Pract 2000;30?207–25.

6. Hopkins A. Head trauma. Vet Clin North Am Small Anim

Pract 1996;26?875–91.

7. Dewey C, Fletcher D. Head trauma management. In:

Dewey C, editor. A practicalguide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell;2008. p. 221–35.

8. Aries M, Czrosynka M, Budohoski K, et al. Continuous

determination of optimalcerebral perfusion pressure in traumatic brain injury. Crit Care Med 2012;40(8):2456–63.

9. Ling G, Marshall S, Moore D. Diagnosis and management of traumatic braininjury. Continuum 2010;16(6):27–40.

10. Kim J, Gean A. Imaging for the diagnosis and management of traumatic braininjury. Neurotherapeutics

2011;8(1):39–53.

11. Tsang K, Whitfield P. Traumatic brain injury: review of

current management strategies.Br J Oral Maxillofac Surg

2012;50?298–308.

12. Proulx J, Dhupa N. Severe brain injury: part I: pathophysiology. CompendContin Educ Vet 1998;20?897–905.

13. Fletcher DJ, Dewey CW. Spinal trauma management.

In: Dewey CW, editor.A practical guide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell; 2008. p.

405–17.

14. Johnson K, Vite C. Spinal cord injury. In: Silverstein D,

Hopper K, editors. Smallanimal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders;2009. p. 419–23.

15. Park EH, White GA, Tieber LM. Mechanisms of injury

and emergency care ofacute spinal cord injury in dogs and cats.

J Vet Emerg Crit Care (San Antonio)2012;22(2):160–78.

16. Olby N. The pathogenesis and treatment of acute

spinal cord injuries in dogs.Vet Clin North Am Small Anim Pract

2010;40(5):791–807.

17. Fletcher D, Syring R. Traumatic brain injury. In: Silverstein D, Hopper K, editors.Small animal critical care medicine.

1st edition. St Louis (MO): Elsevier Saunders;2009. p. 658–62.

18. Leonard SE, Kirby R. The role of glutamate, calcium

and magnesium in secondarybrain injury. J Vet Emerg Crit Care

2002;12(1):17–32.

19. McMichael M, Moore R. Ischemia and reperfusion

injury pathophysiology, part I.J Vet Emerg Crit Care (San Antonio) 2004;14(4):231–41.

20. Oyinbo C. Secondary injury mechanisms in traumatic

spinal cord injury: anugget of this multiply cascade. Acta Neurobiol Exp 2011;71(2):281–99.

21. Tator C, Fehlings M. Review of the secondary injury

theory of acute spinal cordtrauma with emphasis on vascular

mechanisms. J Neurosurg 1991;75(1):15–26.

22. Dooney N, Dagal A. Anesthetic considerations in acute

spinal cord trauma. Int JCrit Illn Inj Sci 2011;1(1):36–43.

高滲療法 (hyperosmolar therapy)

顱內(nèi)高血壓一直與創(chuàng)傷性休克患者的不良后果

有關(guān) 59。自 20 世紀(jì)初,高滲鹽溶液(HTS) 和葡萄糖溶

液被證明可以降低貓的 CSF 壓力以來,高滲治療一直

是管理顱內(nèi)高血壓的基本操作 60。大腦是由?80% 的水

組成,使其體積對水含量的變化反應(yīng)很大。滲透劑只

有在 BBB 對其不可滲透的情況下才有效,鈉和甘露醇

(mannitol) 對 BBB 有近乎完美的排斥作用,使 HTS

和甘露醇對解決顱內(nèi)高血壓極為有效。TBI 高滲治療

主要影響正常的腦組織,而不是受傷的腦組織 61。 甘

露醇是一種糖醇,不會有明顯的代謝,靜脈輸液后在

尿液中以同等的量排泄掉。它被推薦作為顱內(nèi)高壓的

一線治療藥物,表 5 總結(jié)了甘露醇的作用機制、推薦

劑量及它的副作用 4,63-81。 除非擔(dān)心 ICP 升高,否則不

推薦將甘露醇用于創(chuàng)傷性休克患者的預(yù)防性治療,因

為其有效性與顱內(nèi)高壓的程度有關(guān),而且隨著累積劑

量的增加,其相關(guān)反應(yīng)也會減少(即在真正需要時,其

有效性可能會降低)64,65。甘露醇給藥后應(yīng)始終進行等

滲性冰片和 / 或膠體治療,以避免其利尿作用引起低

血容量,如果可能的話,在重復(fù)給藥的時候最好能測

量血清滲透壓 7

。?

高滲鹽水治療提供了與甘露醇治療類似的滲透

性益處,但它是一種不太有效的利尿劑,表 5 總結(jié)了

高滲鹽水的作用機制、建議劑量、不良反應(yīng)和相對禁

忌癥 63,66。一般建議鈉濃度保持在 160mEq/L 以下,但

也有報道在人身上使用高滲鹽水治療,鈉濃度高達

180mEq/L 也沒有發(fā)生并發(fā)癥 67。

沒有證據(jù)表明甘露醇在治療顱內(nèi)高血壓方面優(yōu)

于HTS,反之亦然?,F(xiàn)有的少量研究顯示了相互矛盾

的結(jié)果68–71。對于等容量的病人來說,HTS可能更可

取,但對于等容積性的病人來說,兩者都是合理

的。當(dāng)病人對一種藥物的治療沒有反應(yīng)時,應(yīng)考慮

另一種藥物。?

單獨使用呋塞米(fursemide)或與甘露醇同時

使用來治療顱內(nèi)高血壓并沒有顯示出任何額外的好

處,而且會增加容量耗竭的風(fēng)險72。因此,不推薦使

用該藥。?

皮質(zhì)類固醇?(corticosteroids)

皮質(zhì)類固醇以前被主張用于治療創(chuàng)傷性腦損傷

患者,原因是皮質(zhì)類固醇可以減少腦水腫。來自

CRASH 試驗的突破性證據(jù)表明,使用大劑量的甲基

強的松龍(methylprednisolone) 與傷后 2 周和 6 個

月的死亡率增加有關(guān) 73,74。因此,皮質(zhì)類固醇不再被推

薦用于治療創(chuàng)傷性腦損傷患者。?

抗驚厥劑治療?(anti-convulsant)

創(chuàng)傷后的癲癇發(fā)作分為立即發(fā)作(發(fā)生在受傷后

24 小時內(nèi))、早期(發(fā)生在受傷后 24 小時至 7 天內(nèi))

或晚期(發(fā)生在受傷后 7 天以上)62。癲癇發(fā)作通過增

加腦代謝需求、增加 ICP 和導(dǎo)致釋放過多的神經(jīng)遞質(zhì)

而 增 加 繼 發(fā) 性 腦 損 傷。最 近 的 一 項 Cochrane

meta-analysis 認(rèn)為,預(yù)防性抗癲癇藥物在減少早期

癲癇發(fā)作方面是有效的,但沒有證據(jù)表明它們在預(yù)防

晚期癲癇發(fā)作是有效的 , 因此,建議在人類創(chuàng)傷后 7

天內(nèi)使用預(yù)防性抗癲癇藥物 75, 但獸醫(yī)界關(guān)于這個的

數(shù)據(jù)很少,但如果出現(xiàn)癲癇發(fā)作,應(yīng)積極進行抗癲癇

藥物(AED)治療,以減少繼發(fā)性腦損傷。小動物創(chuàng)傷

后癲癇發(fā)作的發(fā)生率沒有被很好的記錄,但已知小動

物身上也會有癲癇發(fā)作。 目前,在獸醫(yī)領(lǐng)域還沒有關(guān)

于預(yù)防性 AED 治療的明確建議。如果存在癲癇發(fā)作

的潛在因素(例如,頭部穿透性損傷、顱骨凹陷性骨折

等等),根據(jù)來源于人類身上的建議,在受傷后的頭 7

天考慮預(yù)防性 AED 治療是合理的。AED 治療的持續(xù)

時間是有爭議的,如果癲癇發(fā)作,應(yīng)將苯二氮卓類藥

物(bezodiazapines) 作為第一選擇治療,以阻止癲癇

發(fā)作 76。有多種用于持續(xù)控制癲癇發(fā)作的 AED 可供狗

和貓使用,這些藥物列于表 6。在作者所在的機構(gòu),左

乙拉西坦因(levetiracetam) 其起效快、副作用小、毒

性低而被經(jīng)常使用。?

巴比妥類藥物治療

巴比妥類藥物被認(rèn)為是治療難治性(refractory)

的顱內(nèi)高壓的次要療法,因為當(dāng)其他藥物和手術(shù)治療

失敗時,大劑量的巴比妥藥物可以控制 ICP。然而,目

前還沒有證據(jù)表明有任何療效 62。巴比妥類藥物的神

經(jīng)保護作用與它們能夠引起腦血管收縮、降低腦代

謝、減少 ICP、減少興奮性毒性和減少自由基介導(dǎo)的

損傷有關(guān) 77,巴比妥類藥物還具有抗驚厥的特性,與

使用巴比妥類藥物有關(guān)的并發(fā)癥有心血管和呼吸抑

制,且具有潛在臨床意義的低血壓(和相關(guān)的 CPP 的

下降)和換氣不足(hypoventilation)。最廣泛用于治

療創(chuàng)傷性休克的巴比妥類藥物是戊巴比妥 4

。最近有

一份研究記錄了一只有創(chuàng)傷性骨折和難治性癲癇活

動的狗身上表明 - 巴比妥類昏迷(用苯巴比妥或其他

鎮(zhèn)靜劑等藥物誘導(dǎo))與治療性低溫(therapeutic

hypothermia - TH)有關(guān)。對接受巴比妥酸鹽治療的

病人必須密切監(jiān)?測是否有換氣不足的情況,并可能

需要機械通氣(mechanical ventilation)。

新的治療方法

目前人類醫(yī)學(xué)界正在研究針對興奮性毒性和活

性氧產(chǎn)生的新療法,但迄今為止還沒有任何一種療法

被 用 于 獸 醫(yī) 實 踐。最 近 的 一 項 關(guān) 于 金 剛 烷 胺

(amantadine)的隨機對照試驗表明,在 4 周的時間

里,接受治療的病人的功能恢復(fù)明顯加快 79。在不久

的將來,會有更多專門針對繼發(fā)性傷害的療法將會提

供給獸醫(yī)來選擇。?

23. Armitage-Chan E, Wetmore L, Chan D. Anesthetic

management of the headtrauma patient. J Vet Emerg Crit Care

(San Antonio) 2007;17(1):5–14.

24. Shores A. Craniocerebral trauma. In: Kirk R, editor. Current veterinary therapy X.X. Philadelphia: WB Saunders; 1983. p.

847–54.

25. Platt S, Radaelli S, McDonnell J. The prognostic value of

the Modified GlasgowComa Scale in head trauma in gods. J Vet

Intern Med 2001;15(6):581–4.

26. Levine GJ, Levine JM, Budke CM, et al. Description and

repeatability of anewly developed spinal cord injury scale for

dogs. Prev Vet Med 2009;89(1–2):121–7.

27. Olby N, De Risio L, Munana K, et al. Development of a

functional scoring systemin dogs with acute spinal cord injuries.

Am J Vet Res 2001;62(10):1624–8.

28. Smith P, Jeffery N. Spinal shock—comparative aspects

and clinical relevance.J Vet Intern Med 2005;19?788–93.

29. Boysen S, Rozanski E, Tidwell A, et al. Evaluation of a

focused assessment with sonography for trauma protocol to

detect free abdominal fluid in dogs involved in motor vehicle

accidents. J Am Vet Med Assoc 2004;225(8):1198–204.

30. Lisciandro GR. Abdominal and thoracic focused assessment with sonographyfor trauma, triage, and monitoring in small

animals. J Vet Emerg Crit Care(San Antonio) 2011;21(2):104–22.

31. Kinns J, Mai W, Seiler G, et al. Radiographic sensitivity

and negative predictive value for acute canine spinal trauma. Vet

Radiol Ultrasound 2006;47(6):563–70.

32. Vitale C, Coates J. Acute spinal injury. Compendium

Standards of Care: Emergencyand Critical Care Medicine

2007;9(7):1–11.

33. Lamb CR, Nicholls A, Targett M, et al. Accuracy of

survey radiographic diagnosis of intervertebral disc protrusion in

dogs. Vet Radiol Ultrasound 2002;43(3):222–8.

34. Brisson BA. Intervertebral disc disease in dogs. Vet Clin

North Am Small Anim Pract 2010;40(5):829–58.

35. Israel SK, Levine JM, Kerwin SC, et al. The relative sensitivity of computed tomography and myelography for identification of thoracolumbar intervertebral disk herniations in dogs. Vet

Radiol Ultrasound 2009;50(3):247–52.

36. Olby N, Dyce J, Houlton J. Correlation of plain radiographic and lumbar myelographic findings with surgical findings

in thoracolumbar disc disease. J SmallAnim Pract

1994;35(7):345–50.

37. Griffin J, Levine J, Kerwin S. Canine thoracolumbar

intervertebral disk disease:pathophysiology, neurologic examination, and emergency medical therapy.Compend Contin Educ

Vet 2009;31(3):E1–13.

38. Lewis D, Hosgood G. Complications associated with

the use of iohexol for myelographyof the cervical vertebral

column in dogs: 66 cases (1988-1990). J AmVet Med Assoc

1992;200(9):1381–4.

39. Barone G, Ziemer L, Shofer F, et al. Risk factors associated with the developmentof seizures after use of iohexol for

myelography in dogs: 182 cases(1998). J Am Vet Med Assoc

2002;220(10):1499–502.

40. Johnson P, Beltran E, Dennis R, et al. Magnetic resonance imaging characteristics of suspected vertebral instability

associated with fracture or subluxation in eleven dogs. Vet

Radiol Ultrasound 2012;53(5):552–9.

41. Rozanski EA, Rondeau MP. Respiratory pharmacotherapy in emergency and critical care medicine. Vet Clin North Am

Small Anim Pract 2002;32(5):1073–86.

42. Mazzaferro E. Oxygen therapy. In: Silverstein D, Hopper

K, editors. Small animal critical caremedicine. 1stedition. StLouis(MO): Elsevier Saunders; 2009.p. 78–81.

43. Hopper K. Basic mechanical ventilation. In: Silverstein

D, Hopper K, editors. Small animal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders; 2009. p. 900–4.

44. Zhuang J, Shackford S, Schmoker J, et al. Colloid infusion after brain injury: an effect on intracranial pressure, cerebral

blood flow, and oxygen delivery. Crit Care Med

1995;23(1):140–8.

45. Wade C, Grady J, Kramer G, et al. Individual patient

cohort analysis of the efficacy of hypertonic saline/dextran in

patients with traumatic brain injury and hypotension. J Trauma

1997;42?561–5.

46. Vassar M, Perry C, Gannaway W, et al. Analysis of

potential risks associated with 7.5% sodium chloride resuscitation of traumatic shock. Arch Surg 1990;124: 1309–15.

47. Vassar M, Perry C, Gannaway W, et al. 7.5% sodium

chloride/dextran for resuscitation of trauma patients undergoing

helicopter transport. Arch Surg 1991;126: 1065–72.

48. Vassar M, Perry C, Holcroft J. Prehospital resuscitation

of hypotensive trauma patients with 7.5% NaCl versus 7.5% NaCl

with added dextran: a controlled trial. J Trauma 1993;34?622–32.

49. Vassar M, Fisher R, O’ Brien P, et al. A multicenter trial

for resuscitation of injured patients with 7.5% sodium chloride.

Arch Surg 1993;128?1003–11.

50. Cooper J, Myles P, McDermott F, et al. Prehospital

hypertonic saline resuscitation of patients with hypotension and

severe traumatic brain injury. JAMA 2004;291?1350–7.

51. Roberts D, Hall R, Kramer A. Sedation for critically ill

adults with severe traumatic brain injury: a systematic review of

randomized controlled trials. CritCare Med 2012;39(12):2743–51.

52. Sperry R, Bailey P, Reichman M, et al. Fentanyl and

sulfentanil increase intracranial pressure in head trauma patients.

Anesthesiology 1992;77?416–20.

53. Lauer K, Connolly L, Schmeling W. Opioid sedation

does not alter intracranial pressure in head injured patients. Can

J Anaesth 1997;44?929–33.

54. Albanese J, Viviand X, Potie F, et al. Sulfentanil, fentanyl,

and alfentanil in head trauma patients: a study on cerebral

hemodynamics. Crit Care Med 1999;27?407–11.

55. de Nadal M, Munar F, Poca M, et al. Cerebral hemodynamic effects of morphine and fentanyl in patients with severe

head injury: absence of correlation to cerebral autoregulation.

Anesthesiology 2000;92?11–9.

56. Hansen B. Acute pain management. Vet Clin North Am

Small Anim Pract 2000;30(4):899–916.

57. Pascoe P. Opioid analgesics. Vet Clin North Am Small

Anim Pract 2000;30(4):757–69.

58. Keegan R, Green S, Bagley R, et al. Effects of medetomidine administration on intracranial pressure and cardiovascular variables of isoflurane-anesthetized dogs. Am J Vet Res

1996;56(2):193–8.

59. Treggiari M, Schultz N, Yanez N, et al. Role of intracranial pressure values and patterns in predicting outcome of traumatic brain injury: a systematic review. Neurocrit Care

2007;6?104–12.

60. Weed L, McKibbon P. Pressure changes in the cerebrospinal fluid following intravenous injection of solutions of various

concentrations. Am J Phys 1919;48?512–30.

61. Ropper A. Hyperosmolar therapy for raised intracranial

pressure. N Engl J Med 2012;367(8):746–52.

62. Brain Trauma Foundation, American Association of

Neurological Surgeons,Congress of Neurological Surgeons.

Guidelines for the management of severetraumatic brain injury. J

Neurotrauma 2007;24(1):S1–106.

63. Fink M. Osmotherapy for intracranial hypertension:

mannitol versus hypertonic saline. Continuum

2012;18(3):640–54.

64. Kaufmann A, Cardoso E. Aggravation of vasogenic

cerebral edema by multipledose mannitol. J Neurosurg

1992;77(4):584–9.

65. McManus M, Soriano S. Rebound swelling of astroglial

cells exposed to hypertonic mannitol. Anesthesiology

1998;88(6):1586–91.

66. Oddo M, Levine J, Frangos S, et al. Effect of mannitol

and hypertonic salineon cerebral oxygenation in patients with

severe traumatic brain injury and refractoryintracranial hypertension. J Neurol Neurosurg Psychiatr 2009;80(8):916–20.

67. Aiyagari V, Deibert E, Diringer M. Hypernatremia in the

neurologic intensive careunit: how high is too high? J Crit Care

2006;21(2):163–72.

68. Battison C, Andrews P, Graham C, et al. Randomized,

controlled trial on theeffect of a 20% mannitol solution and a

7.5% saline/6% dextran solution onincreased intracranial pressure after brain injury. Crit Care Med 2005;33(1):196–202.

69. Francony C, Fauvage B, Falcon D, et al. Equimolar

doses of mannitol and hypertonicsaline in the treatment of intracranial pressure. Crit Care Med 2008;36(3):795–800.

70. Zeng H, Wang Q, Deng Y, et al. A comparative study on

the efficacy of 10%hypertonic saline and equal volume of 20%

mannitol in the treatment of experimentallyinduced cerebral

edema in adult rats. BMC Neurosci 2010;11?153.

71. da Silva J, de Lima F, Valenca M, et al. Hypertonic saline

more efficacious thanmannitol in lethal intracranial hypertension

model. Neurol Res 2010;32(2):139–43.

72. Todd M, Cutkomp J, Brian J. Influence of mannitol and

furosemide, alone and incombination, on brain water content

after fluid percussion injury. Anesthesiology2006;105?1176–80.

73. Edwards P, Arango M, Balica L, et al. Final results of

MRC CRASH, a randomized placebo-controlled trial of intravenous corticosteroids in adults with headinjury- outcomes at 6

months. Lancet 2005;365(9475):1957–9.

74. Roberts I, Yates D, Sandercock P, et al. Effect of intravenous corticosteroids on death within 14 days in 10,008 adults

with clinically significant head injury (MRC CRASH trial): randomized placebo-controlled trial. Lancet 2004;364?9442.

75. Schierhout G, Roberts I. Withdrawn: antiepileptic drugs

for preventing seizures following acute traumatic brain injury.

Cochrane Database Syst Rev 2012;(6):CD000173.

76. Musulin S, Mariani C, Papich M. Diazepam pharmacokinetics after nasal drop and atomized nasal administration in

dogs. J Vet Pharmacol Ther 2011;34(1): 17–24.

77. Kassell N, Hitchon P, Gerk M, et al. Alterations in cerebral blood flow,oxygen metabolism, and electrical activity produced by high-dose thiopental.Neurosurgery 1980;7?598–603.

78. Hayes G. Severe seizures associated with traumatic

brain injury managed bycontrolled hypothermia, pharmacologic

coma, and mechanical ventilation in a dog. J Vet Emerg Crit Care

(San Antonio) 2009;19(6):629–34.

79. Giacino J, Whyte J, Bagiella E, et al. Placebo-controlled

trial of amantadine for severe traumatic brain injury. N Engl J

Med 2012;366?819–26.

80. Hall E. The neuroprotective pharmacology of methylprednisolone. J Neurosurg 1992;76(1):13–22.

81. Parker A, Smith C. Functional recovery from spinal cord

trauma following dexamethasone and chlorpromazine therapy in

dogs. Res Vet Sci 1976;21(2):246–7.

82. Levine J, Levine G, Boozer L, et al. Adverse effects and

outcome associatedwith dexamethasone administration in dogs

with acute thoracolumbar intervertebral disk herniation: 161

cases (2000-2006). J Am Vet Med Assoc 2008;232(3):411–7.

83. Bracken M, Shepard M, Collins W. A randomized, controlled trial of methylprednisolone or naloxone in the treatment

of acute spinal-cord injury. Results of the second national acute

spinal cord injury study. N Engl J Med 1990;322(20):1405–11.

84. Bracken M, Shepard M, Hellenbrand K. Methylprednisolone and neurologicalfunction 1 year after spinal cord injury.

Results of the National Acute Spinal Cord Injury Study. J Neurosurg 1985;63(5):704–13.

85. Bracken M, Shepard M, Holford T. Administration of

methylprednisolone for 24 or

48 hours or tirilazad mesylate for 48 hours in the treatment

of acute spinal cord injury. Results of the Third National Acute

Spinal Cord Injury Randomized Controlled Trial. National Acute

Spinal Cord Injury.JAMA 1997;277(20):1597–604.

86. Nesathurai S. Steroids and spinal cord injury: revisiting

the NASCIS 2 and NASCIS 3 trials. J Trauma Acute Care Surg

1998;45(6):1088–93.

87. Rabinowitz R, Eck J, Harper C. Urgent surgical decompression compared to methylprednisolone for the treatment of

acute spinal cord injury. Spine 2008;33(21):2260–8.

88. Coates J, Sorjonen D, Simpson S, et al. Clinicopathologic effects of a 21-aminosteroid compound (U74389G) and high

dose methylprednisolone onspinal cord function after simulated

spinal cord trauma. Vet Surg 1995;24?128–39.

89. Baltzer W, McMichael MA, Hosgood G. Randomized,

blinded, placebocontrolledclinical trial of N-acetylcysteine in

dogs with spinal cord trauma from acute intervertebral disc

disease. Spine 2008;33(13):1397–402.

90. Bains M, Hall E. Antioxidant therapies in traumatic brain

injury and spinal cord injury. Biochim Biophys Acta

2012;1822(5):675–84.

91. Hall E, Wolf D. A pharmacological analysis of the

pathophysiologicalmechanisms of posttraumatic spinal cord

ischemia. J Neurosurg 1986;64(6):951–61.

92. Ates O, Cayli S, Gurses I. Comparative neuroprotective

effect of sodium channel blockers after experimental spinal cord

injury. J Clin Neurosci 2007;14(7):658–65.

93. Kaptanoglu E, Solaroglu I, Surucu H. Blockade of

sodium channels by phenytoin protects ultrastructure and attenuates lipid peroxidation in experimental spinal cord injury. Acta

Neurochir 2005;147(4):405–12.

94. Hains B, Saab C, Lo A. Sodium channel blockade with

phenytoin protects spinal cord axons, enhances axonal conduction, and improves functional recovery after contusion SCI. Exp

Neurol 2004;188(2):365–77.

95. Schwartz G, Fehlings M. Secondary injury mechanisms

of spinal cord trauma:novel therapeutic approach for the management of secondary pathophysiology with the sodium channel blocker riluzole. Prog Brain Res 2002;137?177–90.

96. Park E, Velumian A, Fehlings M. The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with

an emphasis on the implications for white matter degeneration. J

Neurotrauma 2004;21?754–74.

97. Walters M, Kaste M, Lees K, et al. The AMPA antagonist

ZK 200775 in patients with acute ischaemic stroke: a double-blind, multi-centre, placebo-controlled safety and tolerability study. Cerebrovasc Dis 2005;20?304–9.

98. Chan P. White matter injury in spinal cord ischemia:

protection by AMPA/kainite glutamate receptor antagonism—Editoral comment. Stroke 2000;31?1952.

99. Chen HS, Lipton S. The chemical biology of clinically

tolerated NMDA receptor antagonists. J Neurochem

2006;97?1611–26.

100. Tadie M, D’ Arbigny P, Mathe J, et al. Acute spinal cord

injury. Early care and treatment in a multicenter study with

gacylidine. Soc Neurosci 1999;25?1090.

101. Kwon B, Okon E, Hillyer J. A systematic review of

non-invasive pharmacologic neuroprotective treatments for

acute spinal cord injury. J Neurotrauma 2011;28(8):1545–88.

102. Sturges B, LeCouteur R. Intracranial hypertension. In:

Silverstein D, Hopper K,editors. Small animal critical care medicine. 1st edition. St Louis (MO): ElsevierSaunders; 2009. p.

423–9.

103. Brain Trauma Foundation T, National Association of

State EMS Officials T,National Association of EMTs. Guidelines for

prehospital management of traumatic brain injury. Prehosp

Emerg Care 2007;12(1):1–52.

104. Davis D, Dunford J, Poste J, et al. The impact of hypoxia and hyperventilation on outcome after paramedic rapid

sequence intubation of severely head-injured patients. J Trauma

2004;57(1):1–8.

105. Muizelaar J, Marmarou A, Ward J, et al. Adverse effects

of prolonged hyperventilationin patients with severe head injury;

a randomized clinical trial. J Neurosurg 1991;75(5):731–9.

106. Deutschman C, Konstantinides F, Raup S. Physiological and metabolic response to isolated closed-head injury. Part i:

basal metabolic state: correlations of metabolic and physiological parameters with fasting and stressed controls. J Neurosurg

1986;64?89–98.

107. Jeremitsky E, Omert L, Dunham C, et al. The impact of

hyperglycemia on patients with severe brain injury. J Trauma

2005;58(1):47–50.

108. Syring R, Otto C, Drobatz K. Hyperglycemia in dogs

and cats with head trauma:122 cases (1997-1999). J Am Vet

Med Assoc 2001;218?1124–9.

109. Vespa P, McArthur D, Stein N, et al. Tight glycemic

control increases metabolic distress in traumatic brain injury: a

randomized controlled within subjects trial. Crit Care Med

2012;40(6):1923–9.

110. Green D, O’ Phelan K, Bassin S, et al. Intensive versus

conventional insulin therapy in critically ill neurologic patients.

Neurocrit Care 2010;13(3):299–306.

111. Bilotta F, Caramia R, Cernak I, et al. Intensive insulin

therapy after severe traumatic brain injury: randomized clinical

trial. Neurocrit Care 2008;9(2):159–66.

112. Dewey C. Urinary bladder management. In: Dewey

CW, editor. A practical guide to canine and feline neurology. St

Louis (MO): Elsevier Saunders; 2003. p. 419–26.

113. Bubenik L, Hosgood G. Urinary tract infection in dogs

with thoracolumbar intervertebral disc herniation and urinary

bladder dysfunction managed by manual expression, indwelling

catheterization or intermittent catheterization. Vet Surg

2008;37?791–800.

114. Smarick S, Haskins S, Aldrich J, et al. Incidence of

catheter-associated urinary tract infection among dogs in a

small animal intensive care unit. J Am Vet Med Assoc

2004;224(12):1936–40.

115. Ng I, Lim J, Wong H. Effects of head posture on cerebral hemodynamics its influences on intracranial pressure, cerebral perfusion pressure, and cerebral oxygenation. Neurosurgery

2004;54(3):593–7.

116. Sadaka F, Veremakis C. Therapeutic hypothermia for

the management of intracranial hypertension in severe traumatic

brain injury: a systematic review. Brain Inj 2012;26(7–8):899–908.

117. McCarthy P, Scott L, Ganta C, et al. Hypothermic protection in traumatic brain injury. Pathophysiology 2012;735–57.

118. Wijayatilake D, Shepherd S, Sherren P. Updates in the

management of intracranial pressure in traumatic brain injury.

Curr Opin Anaesthesiol 2012;25(5):540–7.

119. Hutchinson P, Corteen E, Czosnyka M, et al. Decompressive craniectomy intraumatic brain injury: the randomized

multicenter RESCUEicp study. Acta Neurochir 2006;96(S):17–20.

120. La Rosa G, Conti A, Cardali S, et al. Does early decompression improve neurological outcome of spinal cord injured

patients? Appraisal of the literature using a meta-analytical

approach. Spinal Cord 2004;42(9):503–12.

121. Croce M, Bee T, Pritchard E, et al. Does optimal timing

for spine fracture fixation exist? Ann Surg 2001;233(6):851–8.

122. Fehlings M, Perrin R. The timing of surgical intervention in the treatment of spinal cord injury: a systematic review of

recent clinical evidence. Spine 2006;31(11): S28–35.

123. Jeffery ND. Vertebral fracture and luxation in small

animals. Vet Clin North Am Small Anim Pract 2010;40(5):809–28.

124. Denis F. Spinal instability as defined by the three-column spine concept in acute spinal trauma. Clin Orthop Relat Res

1984;189?65–76.

125. Hillman R, Kengeri S, Waters D. Reevaluation of predictive factors for complete recovery in dogs with nonambulatory tetraparesis secondary to cervical disk herniation. J Am Anim

Hosp Assoc 2009;45?155–63.

126. Cherrone K, Dewey C, Coates J, et al. A retrospective

comparison of cervical intervertebral disk disease in nonchondrodystrophic large dogs versus small dogs. J Am Anim Hosp

Assoc 2004;40?316–20.

127. Gage E, Hoerlein B. Hemilaminectomy and dorsal

laminectomy for relieving compressions of the spinal cord in the

dog. J Am Vet Med Assoc 1968;152: 351–9.

128. Seim H 3rd, Prata R. Ventral decompression for the

treatment of cervical disk disease in the dog: a review of 54

cases. J Am Anim Hosp Assoc 1982;18: 233–40.

129. Gill P, Lippincott C, Anderson S. Dorsal laminectomy in

the treatment of cervical intervertebral disk disease in small

dogs: a retrospective study of 30 cases.J Am Anim Hosp Assoc

1996;32?77–80.

130. Felts J, Prata R. Cervical disk disease in the dog: intraforaminal and lateral extrusions. J Am Anim Hosp Assoc

1983;19?755–60.

131. Tanaka H, Nakayama M, Takase K. Usefulness of hemilaminectomy for cervical intervertebral disk disease in small

dogs. J Vet Med Sci 2005;67?679–83.

132. McCartney W. Comparison of recovery times and

complication rates between a modified slanted slot and the

standard ventral slot for the treatment of cervical disc disease in

20 dogs. J Small Anim Pract 2007;48?498–501.

133. Levine J, Levine G, Johnson S, et al. Evaluation of the

success of medical management for presumptive thoracolumbar

intervertebral disk herniation in dogs. Vet Surg 2007;36?482–91.

134. Kent M. Intraaxial spinal cord hemorrhage secondary

to atlantoaxial subluxationin a dog. J Am Anim Hosp Assoc

2010;46(2):132–7.

135. Cerda-Gonzalez S, Olby NJ. Fecal incontinence associated with epidural spinalhematoma and intervertebral disk

extrusion in a dog. J Am Vet Med Assoc 2006;228(2):230–5.

136. Caswell JL, Nykamp SG. Intradural vasculitis and hemorrhage in full sibling Welsh springer spaniels. Can Vet J

2003;44(2):137–9.

137. Tidwell AS, Specht A, Blaeser L, et al. Magnetic resonance imaging features ofextradural hematomas associated with

intervertebral disc herniation in a dog.Vet Radiol Ultrasound

2001;43(4):319–24.

138. Jeffery N, Lakatos A, Franklin R. Autologous olfactory

glial cell transplantation is eliable and safe in naturally occurring

spinal cord injury. J Neurotrauma 2005;22(11):1282–93.

139. Nishida H, Nakayama M, Tanaka H. Safety of autologous bone marrow stromal cell transplantation in dogs with

acute spinal cord injury. Vet Surg 2012;41?437–42.

140. Olby N, Levine J, Harris T. Long-term functional outcome of dogs with severe injuries of the thoracolumbar spinal

cord: 87 cases (1996-2001). J Am VetMed Assoc

2003;222(6):762–9.

141. Dewey CW. Myelopathies: disorders of the spinal cord.

In: Dewey CW, editor. A practical guide to canine and feline neurology. 2nd edition. Ames (IA):Wiley-Blackwell; 2008. p. 323–88.

142. Hawthorne J, Blevins W, Wallace L, et al. Cervical vertebral fractures in 56 dogs:a retrospective study. J Am Anim

Hosp Assoc 1999;35?135–46.

143. Eminaga S, Palus V, Cherubini G. Acute spinal cord

injury in the cat: causes,treatment and prognosis. J Feline Med

Surg 2011;13(11):850–62.spontaneous hyperadrenocorticism in

dogs. Part 2: Adrenal function testing and differentiating tests[J].

The Veterinary Journal, 2019, 252?105343.

抗癲癇藥物 推薦劑量

地西泮

(diazepam)

0.5mg/kg IV ,直腸,鼻腔注射

CRI 0.2-1mg/kg/h

苯巴比妥

(phenobarbital)

12-20 mg/kg IV,PO 分次注射,q 4-6 h,持續(xù)24 h

狗:2.5mg/kgIV,PO,最開始 q12h,

直到 谷值為20-30毫克/毫升

貓:2.5mg/kgIV,PO,最開始 q24h

直到 谷值為10-20毫克/毫升

溴化鉀 (potassium bromide) 400-600mg/kg KBr PO/直腸 24-28h 內(nèi) q6-12

CRI:8-24小時內(nèi) 600-1200 mg/kg NaBr IV

左乙拉西坦

Levetiracetam (keppra) 20-30 mg/kg IV,PO q8h

唑尼沙胺

(Zonisamide)

10 mg/kg PO q 12 h x 3 d 之后

5-10 mg/kg q 12 h

以10-40 g/mL 為治療范圍 (以在人身上的做為標(biāo)準(zhǔn))

異丙酚

(propofol)

12-20 mg/kg IV bolus

CRI 0.05-0.4 mg/kg/min

戊巴比妥 (Pentobarbital)

*最常用于誘導(dǎo)巴比妥類昏迷的抗癲癇藥物

2-15 mg/kg IV bolus over 20min

CRI 0.1 -1 mg/kg/h

μ

第107頁

小動物臨床前沿(神經(jīng)學(xué)專刊 - 上冊)· 腦部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 總第 12 期

- 105 -

參考文獻:

1. Simpson S, Syring R, Otto C. Severe blunt trauma in

dogs: 235 cases (1997-2003). J Vet Emerg Crit Care (San Antonio) 2009;19(6):588–602.

2. Marioni-Henry K, Vite CH, Newton AL, et al. Prevalence

of diseases of the spinalcord of cats. J Vet Intern Med

2004;18(6):851–8.

3. Fluehmann G, Doherr MG, Jaggy A. Canine neurological

diseases in a referralhospital population between 1989 and

2000 in Switzerland. J Small Anim Pract2006;47(10):582–7.

4. Sande A, West C. Traumatic brain injury: a review of

pathophysiology and management.J Vet Emerg Crit Care (San

Antonio) 2010;20(2):177–90.

5. Dewey C. Emergency management of the head trauma

patient. Vet Clin NorthAm Small Anim Pract 2000;30?207–25.

6. Hopkins A. Head trauma. Vet Clin North Am Small Anim

Pract 1996;26?875–91.

7. Dewey C, Fletcher D. Head trauma management. In:

Dewey C, editor. A practicalguide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell;2008. p. 221–35.

8. Aries M, Czrosynka M, Budohoski K, et al. Continuous

determination of optimalcerebral perfusion pressure in traumatic brain injury. Crit Care Med 2012;40(8):2456–63.

9. Ling G, Marshall S, Moore D. Diagnosis and management of traumatic braininjury. Continuum 2010;16(6):27–40.

10. Kim J, Gean A. Imaging for the diagnosis and management of traumatic braininjury. Neurotherapeutics

2011;8(1):39–53.

11. Tsang K, Whitfield P. Traumatic brain injury: review of

current management strategies.Br J Oral Maxillofac Surg

2012;50?298–308.

12. Proulx J, Dhupa N. Severe brain injury: part I: pathophysiology. CompendContin Educ Vet 1998;20?897–905.

13. Fletcher DJ, Dewey CW. Spinal trauma management.

In: Dewey CW, editor.A practical guide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell; 2008. p.

405–17.

14. Johnson K, Vite C. Spinal cord injury. In: Silverstein D,

Hopper K, editors. Smallanimal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders;2009. p. 419–23.

15. Park EH, White GA, Tieber LM. Mechanisms of injury

and emergency care ofacute spinal cord injury in dogs and cats.

J Vet Emerg Crit Care (San Antonio)2012;22(2):160–78.

16. Olby N. The pathogenesis and treatment of acute

spinal cord injuries in dogs.Vet Clin North Am Small Anim Pract

2010;40(5):791–807.

17. Fletcher D, Syring R. Traumatic brain injury. In: Silverstein D, Hopper K, editors.Small animal critical care medicine.

1st edition. St Louis (MO): Elsevier Saunders;2009. p. 658–62.

18. Leonard SE, Kirby R. The role of glutamate, calcium

and magnesium in secondarybrain injury. J Vet Emerg Crit Care

2002;12(1):17–32.

19. McMichael M, Moore R. Ischemia and reperfusion

injury pathophysiology, part I.J Vet Emerg Crit Care (San Antonio) 2004;14(4):231–41.

20. Oyinbo C. Secondary injury mechanisms in traumatic

spinal cord injury: anugget of this multiply cascade. Acta Neurobiol Exp 2011;71(2):281–99.

21. Tator C, Fehlings M. Review of the secondary injury

theory of acute spinal cordtrauma with emphasis on vascular

mechanisms. J Neurosurg 1991;75(1):15–26.

22. Dooney N, Dagal A. Anesthetic considerations in acute

spinal cord trauma. Int JCrit Illn Inj Sci 2011;1(1):36–43.

高滲療法 (hyperosmolar therapy)

顱內(nèi)高血壓一直與創(chuàng)傷性休克患者的不良后果

有關(guān) 59。自 20 世紀(jì)初,高滲鹽溶液(HTS) 和葡萄糖溶

液被證明可以降低貓的 CSF 壓力以來,高滲治療一直

是管理顱內(nèi)高血壓的基本操作 60。大腦是由?80% 的水

組成,使其體積對水含量的變化反應(yīng)很大。滲透劑只

有在 BBB 對其不可滲透的情況下才有效,鈉和甘露醇

(mannitol) 對 BBB 有近乎完美的排斥作用,使 HTS

和甘露醇對解決顱內(nèi)高血壓極為有效。TBI 高滲治療

主要影響正常的腦組織,而不是受傷的腦組織 61。 甘

露醇是一種糖醇,不會有明顯的代謝,靜脈輸液后在

尿液中以同等的量排泄掉。它被推薦作為顱內(nèi)高壓的

一線治療藥物,表 5 總結(jié)了甘露醇的作用機制、推薦

劑量及它的副作用 4,63-81。 除非擔(dān)心 ICP 升高,否則不

推薦將甘露醇用于創(chuàng)傷性休克患者的預(yù)防性治療,因

為其有效性與顱內(nèi)高壓的程度有關(guān),而且隨著累積劑

量的增加,其相關(guān)反應(yīng)也會減少(即在真正需要時,其

有效性可能會降低)64,65。甘露醇給藥后應(yīng)始終進行等

滲性冰片和 / 或膠體治療,以避免其利尿作用引起低

血容量,如果可能的話,在重復(fù)給藥的時候最好能測

量血清滲透壓 7

。?

高滲鹽水治療提供了與甘露醇治療類似的滲透

性益處,但它是一種不太有效的利尿劑,表 5 總結(jié)了

高滲鹽水的作用機制、建議劑量、不良反應(yīng)和相對禁

忌癥 63,66。一般建議鈉濃度保持在 160mEq/L 以下,但

也有報道在人身上使用高滲鹽水治療,鈉濃度高達

180mEq/L 也沒有發(fā)生并發(fā)癥 67。

沒有證據(jù)表明甘露醇在治療顱內(nèi)高血壓方面優(yōu)

于HTS,反之亦然。現(xiàn)有的少量研究顯示了相互矛盾

的結(jié)果68–71。對于等容量的病人來說,HTS可能更可

取,但對于等容積性的病人來說,兩者都是合理

的。當(dāng)病人對一種藥物的治療沒有反應(yīng)時,應(yīng)考慮

另一種藥物。?

單獨使用呋塞米(fursemide)或與甘露醇同時

使用來治療顱內(nèi)高血壓并沒有顯示出任何額外的好

處,而且會增加容量耗竭的風(fēng)險72。因此,不推薦使

用該藥。?

皮質(zhì)類固醇?(corticosteroids)

皮質(zhì)類固醇以前被主張用于治療創(chuàng)傷性腦損傷

患者,原因是皮質(zhì)類固醇可以減少腦水腫。來自

CRASH 試驗的突破性證據(jù)表明,使用大劑量的甲基

強的松龍(methylprednisolone) 與傷后 2 周和 6 個

月的死亡率增加有關(guān) 73,74。因此,皮質(zhì)類固醇不再被推

薦用于治療創(chuàng)傷性腦損傷患者。?

抗驚厥劑治療?(anti-convulsant)

創(chuàng)傷后的癲癇發(fā)作分為立即發(fā)作(發(fā)生在受傷后

24 小時內(nèi))、早期(發(fā)生在受傷后 24 小時至 7 天內(nèi))

或晚期(發(fā)生在受傷后 7 天以上)62。癲癇發(fā)作通過增

加腦代謝需求、增加 ICP 和導(dǎo)致釋放過多的神經(jīng)遞質(zhì)

而 增 加 繼 發(fā) 性 腦 損 傷。最 近 的 一 項 Cochrane

meta-analysis 認(rèn)為,預(yù)防性抗癲癇藥物在減少早期

癲癇發(fā)作方面是有效的,但沒有證據(jù)表明它們在預(yù)防

晚期癲癇發(fā)作是有效的 , 因此,建議在人類創(chuàng)傷后 7

天內(nèi)使用預(yù)防性抗癲癇藥物 75, 但獸醫(yī)界關(guān)于這個的

數(shù)據(jù)很少,但如果出現(xiàn)癲癇發(fā)作,應(yīng)積極進行抗癲癇

藥物(AED)治療,以減少繼發(fā)性腦損傷。小動物創(chuàng)傷

后癲癇發(fā)作的發(fā)生率沒有被很好的記錄,但已知小動

物身上也會有癲癇發(fā)作。 目前,在獸醫(yī)領(lǐng)域還沒有關(guān)

于預(yù)防性 AED 治療的明確建議。如果存在癲癇發(fā)作

的潛在因素(例如,頭部穿透性損傷、顱骨凹陷性骨折

等等),根據(jù)來源于人類身上的建議,在受傷后的頭 7

天考慮預(yù)防性 AED 治療是合理的。AED 治療的持續(xù)

時間是有爭議的,如果癲癇發(fā)作,應(yīng)將苯二氮卓類藥

物(bezodiazapines) 作為第一選擇治療,以阻止癲癇

發(fā)作 76。有多種用于持續(xù)控制癲癇發(fā)作的 AED 可供狗

和貓使用,這些藥物列于表 6。在作者所在的機構(gòu),左

乙拉西坦因(levetiracetam) 其起效快、副作用小、毒

性低而被經(jīng)常使用。?

巴比妥類藥物治療

巴比妥類藥物被認(rèn)為是治療難治性(refractory)

的顱內(nèi)高壓的次要療法,因為當(dāng)其他藥物和手術(shù)治療

失敗時,大劑量的巴比妥藥物可以控制 ICP。然而,目

前還沒有證據(jù)表明有任何療效 62。巴比妥類藥物的神

經(jīng)保護作用與它們能夠引起腦血管收縮、降低腦代

謝、減少 ICP、減少興奮性毒性和減少自由基介導(dǎo)的

損傷有關(guān) 77,巴比妥類藥物還具有抗驚厥的特性,與

使用巴比妥類藥物有關(guān)的并發(fā)癥有心血管和呼吸抑

制,且具有潛在臨床意義的低血壓(和相關(guān)的 CPP 的

下降)和換氣不足(hypoventilation)。最廣泛用于治

療創(chuàng)傷性休克的巴比妥類藥物是戊巴比妥 4

。最近有

一份研究記錄了一只有創(chuàng)傷性骨折和難治性癲癇活

動的狗身上表明 - 巴比妥類昏迷(用苯巴比妥或其他

鎮(zhèn)靜劑等藥物誘導(dǎo))與治療性低溫(therapeutic

hypothermia - TH)有關(guān)。對接受巴比妥酸鹽治療的

病人必須密切監(jiān)?測是否有換氣不足的情況,并可能

需要機械通氣(mechanical ventilation)。

新的治療方法

目前人類醫(yī)學(xué)界正在研究針對興奮性毒性和活

性氧產(chǎn)生的新療法,但迄今為止還沒有任何一種療法

被 用 于 獸 醫(yī) 實 踐。最 近 的 一 項 關(guān) 于 金 剛 烷 胺

(amantadine)的隨機對照試驗表明,在 4 周的時間

里,接受治療的病人的功能恢復(fù)明顯加快 79。在不久

的將來,會有更多專門針對繼發(fā)性傷害的療法將會提

供給獸醫(yī)來選擇。?

皮質(zhì)類固醇藥物?

盡管有廣泛的臨床研究,使用皮質(zhì)類固醇治療人

類和動物的急性 SCI 仍然有爭議。認(rèn)可在 SCI 中使用

皮質(zhì)類固醇的機制包括清除自由基、抗炎作用和改善

區(qū)域血流 13,15。大部分關(guān)于皮質(zhì)類固醇治療 SCI 的臨

床和實驗研究都集中在甲基潑尼松龍琥珀酸鈉

(methylprednisolone sodium succinate - MPSS)上。

MPSS 的主要神經(jīng)保護特性似乎是來源于其清除自由

基的能力 , 其他皮質(zhì)類固醇(如潑尼松和地塞米松)就

缺乏這種特性,因此它們在治療繼發(fā)性 SCI 方面不可

能有任何效果。地塞米松對狗的治療的具體評估,無

論是在實驗上還是在臨床上,都沒有發(fā)現(xiàn)對 SCI 有任

何幫助 81,82。一系列的 3 項人類臨床試驗(國家急性脊

髓損傷研究 [NASCIS]I-III)提供了大部分有關(guān)使用

MPSS 治療急性 SCI 的主要證據(jù) 83–85,因為大多數(shù)有

統(tǒng)計學(xué)意義的結(jié)果都是基于事后的亞組分析,所以這

些研究都沒有令人信服地證明類固醇能夠?qū)Ω纳七\

動功能 86。一項在狗身上進行的實驗性研究,把緊急減

壓手術(shù)與 MPSS 治療作對比來治療實驗引導(dǎo)的 SCI,

結(jié)果顯示,在受傷 6 小時后進行手術(shù)減壓(有或沒有

MPSS),比單獨使用 MPSS 治療有更好的神經(jīng)治療效

果 87。另一項在狗身上作實驗的研究顯示,使用 MPSS

的病例沒有改善 88。目前還沒有公開出版的臨床安慰

劑對照試驗來評估 MPSS 治療狗 SCI 的療效,但目前

有一項試驗正在進行 16。鑒于潛在的重大不良副作用,

如胃腸道潰瘍、免疫抑制和低血容量患者的腎臟灌注

影響,不建議常規(guī)使用皮質(zhì)類固醇(包括 MPSS)13。

表 7 總結(jié)了其他的藥物療法,旨在最大限度地減

少急性 SCI 的二次傷害,這些療法已被研究 89–101。

針對急性SCI的藥物策略

非藥物治療策略

系統(tǒng)性治療

氣 道 管 理 和 換 氣 (airway management and

ventilation)

當(dāng)神經(jīng)創(chuàng)傷病人最初來的醫(yī)生面前時,應(yīng)直接檢

查上呼吸道,若有必要時要進行抽吸。如果認(rèn)為氣道

不通暢或患者無法控制其氣道,應(yīng)立即進行氣管內(nèi)插

管或緊急氣管切開術(shù)(如果無法插管)7

。二氧化碳對大

腦和脊髓的血流和血容量有很大的的影響 102。在神經(jīng)

創(chuàng)傷患者中應(yīng)都要去避免換氣不足和過度換氣,并應(yīng)

使用潮氣末二氧化碳(ETCO2)監(jiān)測器或血氣分析來密

切監(jiān)測二氧化碳在體內(nèi)的含量,在所有情況下都應(yīng)以

正常的二氧化碳分壓(PCO2)(靜脈, 40-45mm Hg;

動脈, 35-40mmHg) 為目標(biāo)標(biāo)準(zhǔn) 62。滴定鎮(zhèn)痛藥物、

采用胸骨朝下的臥位和確保氣道暢通都可以幫助生

命體征問題的解決,但如果這些干預(yù)措施不成功,則

需要進行氣管插管和機械通氣。那些有腦疝風(fēng)險的病

人或經(jīng)歷過明顯的神經(jīng)系統(tǒng)失調(diào)的病人可以進行短

時間的過度換氣。然而,短期過度換氣的限度應(yīng)該是

保守的 / 不能過大(ETCO2 = 30-35 mmHg),以防止

過度的腦血管收縮和缺血性腦損傷,一些研究評估了

初始復(fù)蘇期間預(yù)防性過度換氣的結(jié)果,通常都是不佳

的 103-105 。

支持性護理 supportive care

對神經(jīng)系統(tǒng)創(chuàng)傷貓 / 狗的支持性護理應(yīng)包括提供

干燥、清潔的被褥、經(jīng)常翻身、人為輔助的運動練習(xí)、

膀胱護理、眼部護理(例如,經(jīng)常潤滑和檢查角膜潰

爛),以及良好的營養(yǎng)提供。

在神經(jīng)創(chuàng)傷的患者中, 高代謝狀態(tài)已被記錄,建

議早些喂食 106。喂食的方法應(yīng)基于對病人氣道保護能

力的評估。 雖然高血糖與人類創(chuàng)傷性疾病的死亡率和

神經(jīng)系統(tǒng)結(jié)果評分的惡化有關(guān) 107,并且高血糖的程度

與動物創(chuàng)傷性疾病的嚴(yán)重程度有關(guān),但根據(jù)現(xiàn)有在人

類身上的文獻 108, 不建議用高強度的胰島素治療來

控制高血糖 109–111。

膀胱功能障礙在 SCI 患者中很常見,并取決于病

變的位置和嚴(yán)重程度。 表 8 總結(jié)了上、下運動神經(jīng)元

膀胱功能障礙的治療方法 112。 膀胱護理應(yīng)包括經(jīng)常

性的(至少每 12 小時一次)人工擠壓膀胱排尿或?qū)?/p>

與留置導(dǎo)尿相比,勤快地使用無菌技術(shù)進行間歇性導(dǎo)

尿會減低尿路感染的風(fēng)險,與人工擠壓膀胱排尿相

比,使用間歇性導(dǎo)尿不會增加感染風(fēng)險 113,114。

23. Armitage-Chan E, Wetmore L, Chan D. Anesthetic

management of the headtrauma patient. J Vet Emerg Crit Care

(San Antonio) 2007;17(1):5–14.

24. Shores A. Craniocerebral trauma. In: Kirk R, editor. Current veterinary therapy X.X. Philadelphia: WB Saunders; 1983. p.

847–54.

25. Platt S, Radaelli S, McDonnell J. The prognostic value of

the Modified GlasgowComa Scale in head trauma in gods. J Vet

Intern Med 2001;15(6):581–4.

26. Levine GJ, Levine JM, Budke CM, et al. Description and

repeatability of anewly developed spinal cord injury scale for

dogs. Prev Vet Med 2009;89(1–2):121–7.

27. Olby N, De Risio L, Munana K, et al. Development of a

functional scoring systemin dogs with acute spinal cord injuries.

Am J Vet Res 2001;62(10):1624–8.

28. Smith P, Jeffery N. Spinal shock—comparative aspects

and clinical relevance.J Vet Intern Med 2005;19?788–93.

29. Boysen S, Rozanski E, Tidwell A, et al. Evaluation of a

focused assessment with sonography for trauma protocol to

detect free abdominal fluid in dogs involved in motor vehicle

accidents. J Am Vet Med Assoc 2004;225(8):1198–204.

30. Lisciandro GR. Abdominal and thoracic focused assessment with sonographyfor trauma, triage, and monitoring in small

animals. J Vet Emerg Crit Care(San Antonio) 2011;21(2):104–22.

31. Kinns J, Mai W, Seiler G, et al. Radiographic sensitivity

and negative predictive value for acute canine spinal trauma. Vet

Radiol Ultrasound 2006;47(6):563–70.

32. Vitale C, Coates J. Acute spinal injury. Compendium

Standards of Care: Emergencyand Critical Care Medicine

2007;9(7):1–11.

33. Lamb CR, Nicholls A, Targett M, et al. Accuracy of

survey radiographic diagnosis of intervertebral disc protrusion in

dogs. Vet Radiol Ultrasound 2002;43(3):222–8.

34. Brisson BA. Intervertebral disc disease in dogs. Vet Clin

North Am Small Anim Pract 2010;40(5):829–58.

35. Israel SK, Levine JM, Kerwin SC, et al. The relative sensitivity of computed tomography and myelography for identification of thoracolumbar intervertebral disk herniations in dogs. Vet

Radiol Ultrasound 2009;50(3):247–52.

36. Olby N, Dyce J, Houlton J. Correlation of plain radiographic and lumbar myelographic findings with surgical findings

in thoracolumbar disc disease. J SmallAnim Pract

1994;35(7):345–50.

37. Griffin J, Levine J, Kerwin S. Canine thoracolumbar

intervertebral disk disease:pathophysiology, neurologic examination, and emergency medical therapy.Compend Contin Educ

Vet 2009;31(3):E1–13.

38. Lewis D, Hosgood G. Complications associated with

the use of iohexol for myelographyof the cervical vertebral

column in dogs: 66 cases (1988-1990). J AmVet Med Assoc

1992;200(9):1381–4.

39. Barone G, Ziemer L, Shofer F, et al. Risk factors associated with the developmentof seizures after use of iohexol for

myelography in dogs: 182 cases(1998). J Am Vet Med Assoc

2002;220(10):1499–502.

40. Johnson P, Beltran E, Dennis R, et al. Magnetic resonance imaging characteristics of suspected vertebral instability

associated with fracture or subluxation in eleven dogs. Vet

Radiol Ultrasound 2012;53(5):552–9.

41. Rozanski EA, Rondeau MP. Respiratory pharmacotherapy in emergency and critical care medicine. Vet Clin North Am

Small Anim Pract 2002;32(5):1073–86.

42. Mazzaferro E. Oxygen therapy. In: Silverstein D, Hopper

K, editors. Small animal critical caremedicine. 1stedition. StLouis(MO): Elsevier Saunders; 2009.p. 78–81.

43. Hopper K. Basic mechanical ventilation. In: Silverstein

D, Hopper K, editors. Small animal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders; 2009. p. 900–4.

44. Zhuang J, Shackford S, Schmoker J, et al. Colloid infusion after brain injury: an effect on intracranial pressure, cerebral

blood flow, and oxygen delivery. Crit Care Med

1995;23(1):140–8.

45. Wade C, Grady J, Kramer G, et al. Individual patient

cohort analysis of the efficacy of hypertonic saline/dextran in

patients with traumatic brain injury and hypotension. J Trauma

1997;42?561–5.

46. Vassar M, Perry C, Gannaway W, et al. Analysis of

potential risks associated with 7.5% sodium chloride resuscitation of traumatic shock. Arch Surg 1990;124: 1309–15.

47. Vassar M, Perry C, Gannaway W, et al. 7.5% sodium

chloride/dextran for resuscitation of trauma patients undergoing

helicopter transport. Arch Surg 1991;126: 1065–72.

48. Vassar M, Perry C, Holcroft J. Prehospital resuscitation

of hypotensive trauma patients with 7.5% NaCl versus 7.5% NaCl

with added dextran: a controlled trial. J Trauma 1993;34?622–32.

49. Vassar M, Fisher R, O’ Brien P, et al. A multicenter trial

for resuscitation of injured patients with 7.5% sodium chloride.

Arch Surg 1993;128?1003–11.

50. Cooper J, Myles P, McDermott F, et al. Prehospital

hypertonic saline resuscitation of patients with hypotension and

severe traumatic brain injury. JAMA 2004;291?1350–7.

51. Roberts D, Hall R, Kramer A. Sedation for critically ill

adults with severe traumatic brain injury: a systematic review of

randomized controlled trials. CritCare Med 2012;39(12):2743–51.

52. Sperry R, Bailey P, Reichman M, et al. Fentanyl and

sulfentanil increase intracranial pressure in head trauma patients.

Anesthesiology 1992;77?416–20.

53. Lauer K, Connolly L, Schmeling W. Opioid sedation

does not alter intracranial pressure in head injured patients. Can

J Anaesth 1997;44?929–33.

54. Albanese J, Viviand X, Potie F, et al. Sulfentanil, fentanyl,

and alfentanil in head trauma patients: a study on cerebral

hemodynamics. Crit Care Med 1999;27?407–11.

55. de Nadal M, Munar F, Poca M, et al. Cerebral hemodynamic effects of morphine and fentanyl in patients with severe

head injury: absence of correlation to cerebral autoregulation.

Anesthesiology 2000;92?11–9.

56. Hansen B. Acute pain management. Vet Clin North Am

Small Anim Pract 2000;30(4):899–916.

57. Pascoe P. Opioid analgesics. Vet Clin North Am Small

Anim Pract 2000;30(4):757–69.

58. Keegan R, Green S, Bagley R, et al. Effects of medetomidine administration on intracranial pressure and cardiovascular variables of isoflurane-anesthetized dogs. Am J Vet Res

1996;56(2):193–8.

59. Treggiari M, Schultz N, Yanez N, et al. Role of intracranial pressure values and patterns in predicting outcome of traumatic brain injury: a systematic review. Neurocrit Care

2007;6?104–12.

60. Weed L, McKibbon P. Pressure changes in the cerebrospinal fluid following intravenous injection of solutions of various

concentrations. Am J Phys 1919;48?512–30.

61. Ropper A. Hyperosmolar therapy for raised intracranial

pressure. N Engl J Med 2012;367(8):746–52.

62. Brain Trauma Foundation, American Association of

Neurological Surgeons,Congress of Neurological Surgeons.

Guidelines for the management of severetraumatic brain injury. J

Neurotrauma 2007;24(1):S1–106.

63. Fink M. Osmotherapy for intracranial hypertension:

mannitol versus hypertonic saline. Continuum

2012;18(3):640–54.

64. Kaufmann A, Cardoso E. Aggravation of vasogenic

cerebral edema by multipledose mannitol. J Neurosurg

1992;77(4):584–9.

65. McManus M, Soriano S. Rebound swelling of astroglial

cells exposed to hypertonic mannitol. Anesthesiology

1998;88(6):1586–91.

66. Oddo M, Levine J, Frangos S, et al. Effect of mannitol

and hypertonic salineon cerebral oxygenation in patients with

severe traumatic brain injury and refractoryintracranial hypertension. J Neurol Neurosurg Psychiatr 2009;80(8):916–20.

67. Aiyagari V, Deibert E, Diringer M. Hypernatremia in the

neurologic intensive careunit: how high is too high? J Crit Care

2006;21(2):163–72.

68. Battison C, Andrews P, Graham C, et al. Randomized,

controlled trial on theeffect of a 20% mannitol solution and a

7.5% saline/6% dextran solution onincreased intracranial pressure after brain injury. Crit Care Med 2005;33(1):196–202.

69. Francony C, Fauvage B, Falcon D, et al. Equimolar

doses of mannitol and hypertonicsaline in the treatment of intracranial pressure. Crit Care Med 2008;36(3):795–800.

70. Zeng H, Wang Q, Deng Y, et al. A comparative study on

the efficacy of 10%hypertonic saline and equal volume of 20%

mannitol in the treatment of experimentallyinduced cerebral

edema in adult rats. BMC Neurosci 2010;11?153.

71. da Silva J, de Lima F, Valenca M, et al. Hypertonic saline

more efficacious thanmannitol in lethal intracranial hypertension

model. Neurol Res 2010;32(2):139–43.

72. Todd M, Cutkomp J, Brian J. Influence of mannitol and

furosemide, alone and incombination, on brain water content

after fluid percussion injury. Anesthesiology2006;105?1176–80.

73. Edwards P, Arango M, Balica L, et al. Final results of

MRC CRASH, a randomized placebo-controlled trial of intravenous corticosteroids in adults with headinjury- outcomes at 6

months. Lancet 2005;365(9475):1957–9.

74. Roberts I, Yates D, Sandercock P, et al. Effect of intravenous corticosteroids on death within 14 days in 10,008 adults

with clinically significant head injury (MRC CRASH trial): randomized placebo-controlled trial. Lancet 2004;364?9442.

75. Schierhout G, Roberts I. Withdrawn: antiepileptic drugs

for preventing seizures following acute traumatic brain injury.

Cochrane Database Syst Rev 2012;(6):CD000173.

76. Musulin S, Mariani C, Papich M. Diazepam pharmacokinetics after nasal drop and atomized nasal administration in

dogs. J Vet Pharmacol Ther 2011;34(1): 17–24.

77. Kassell N, Hitchon P, Gerk M, et al. Alterations in cerebral blood flow,oxygen metabolism, and electrical activity produced by high-dose thiopental.Neurosurgery 1980;7?598–603.

78. Hayes G. Severe seizures associated with traumatic

brain injury managed bycontrolled hypothermia, pharmacologic

coma, and mechanical ventilation in a dog. J Vet Emerg Crit Care

(San Antonio) 2009;19(6):629–34.

79. Giacino J, Whyte J, Bagiella E, et al. Placebo-controlled

trial of amantadine for severe traumatic brain injury. N Engl J

Med 2012;366?819–26.

80. Hall E. The neuroprotective pharmacology of methylprednisolone. J Neurosurg 1992;76(1):13–22.

81. Parker A, Smith C. Functional recovery from spinal cord

trauma following dexamethasone and chlorpromazine therapy in

dogs. Res Vet Sci 1976;21(2):246–7.

82. Levine J, Levine G, Boozer L, et al. Adverse effects and

outcome associatedwith dexamethasone administration in dogs

with acute thoracolumbar intervertebral disk herniation: 161

cases (2000-2006). J Am Vet Med Assoc 2008;232(3):411–7.

83. Bracken M, Shepard M, Collins W. A randomized, controlled trial of methylprednisolone or naloxone in the treatment

of acute spinal-cord injury. Results of the second national acute

spinal cord injury study. N Engl J Med 1990;322(20):1405–11.

84. Bracken M, Shepard M, Hellenbrand K. Methylprednisolone and neurologicalfunction 1 year after spinal cord injury.

Results of the National Acute Spinal Cord Injury Study. J Neurosurg 1985;63(5):704–13.

85. Bracken M, Shepard M, Holford T. Administration of

methylprednisolone for 24 or

48 hours or tirilazad mesylate for 48 hours in the treatment

of acute spinal cord injury. Results of the Third National Acute

Spinal Cord Injury Randomized Controlled Trial. National Acute

Spinal Cord Injury.JAMA 1997;277(20):1597–604.

86. Nesathurai S. Steroids and spinal cord injury: revisiting

the NASCIS 2 and NASCIS 3 trials. J Trauma Acute Care Surg

1998;45(6):1088–93.

87. Rabinowitz R, Eck J, Harper C. Urgent surgical decompression compared to methylprednisolone for the treatment of

acute spinal cord injury. Spine 2008;33(21):2260–8.

88. Coates J, Sorjonen D, Simpson S, et al. Clinicopathologic effects of a 21-aminosteroid compound (U74389G) and high

dose methylprednisolone onspinal cord function after simulated

spinal cord trauma. Vet Surg 1995;24?128–39.

89. Baltzer W, McMichael MA, Hosgood G. Randomized,

blinded, placebocontrolledclinical trial of N-acetylcysteine in

dogs with spinal cord trauma from acute intervertebral disc

disease. Spine 2008;33(13):1397–402.

90. Bains M, Hall E. Antioxidant therapies in traumatic brain

injury and spinal cord injury. Biochim Biophys Acta

2012;1822(5):675–84.

91. Hall E, Wolf D. A pharmacological analysis of the

pathophysiologicalmechanisms of posttraumatic spinal cord

ischemia. J Neurosurg 1986;64(6):951–61.

92. Ates O, Cayli S, Gurses I. Comparative neuroprotective

effect of sodium channel blockers after experimental spinal cord

injury. J Clin Neurosci 2007;14(7):658–65.

93. Kaptanoglu E, Solaroglu I, Surucu H. Blockade of

sodium channels by phenytoin protects ultrastructure and attenuates lipid peroxidation in experimental spinal cord injury. Acta

Neurochir 2005;147(4):405–12.

94. Hains B, Saab C, Lo A. Sodium channel blockade with

phenytoin protects spinal cord axons, enhances axonal conduction, and improves functional recovery after contusion SCI. Exp

Neurol 2004;188(2):365–77.

95. Schwartz G, Fehlings M. Secondary injury mechanisms

of spinal cord trauma:novel therapeutic approach for the management of secondary pathophysiology with the sodium channel blocker riluzole. Prog Brain Res 2002;137?177–90.

96. Park E, Velumian A, Fehlings M. The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with

an emphasis on the implications for white matter degeneration. J

Neurotrauma 2004;21?754–74.

97. Walters M, Kaste M, Lees K, et al. The AMPA antagonist

ZK 200775 in patients with acute ischaemic stroke: a double-blind, multi-centre, placebo-controlled safety and tolerability study. Cerebrovasc Dis 2005;20?304–9.

98. Chan P. White matter injury in spinal cord ischemia:

protection by AMPA/kainite glutamate receptor antagonism—Editoral comment. Stroke 2000;31?1952.

99. Chen HS, Lipton S. The chemical biology of clinically

tolerated NMDA receptor antagonists. J Neurochem

2006;97?1611–26.

100. Tadie M, D’ Arbigny P, Mathe J, et al. Acute spinal cord

injury. Early care and treatment in a multicenter study with

gacylidine. Soc Neurosci 1999;25?1090.

101. Kwon B, Okon E, Hillyer J. A systematic review of

non-invasive pharmacologic neuroprotective treatments for

acute spinal cord injury. J Neurotrauma 2011;28(8):1545–88.

102. Sturges B, LeCouteur R. Intracranial hypertension. In:

Silverstein D, Hopper K,editors. Small animal critical care medicine. 1st edition. St Louis (MO): ElsevierSaunders; 2009. p.

423–9.

103. Brain Trauma Foundation T, National Association of

State EMS Officials T,National Association of EMTs. Guidelines for

prehospital management of traumatic brain injury. Prehosp

Emerg Care 2007;12(1):1–52.

104. Davis D, Dunford J, Poste J, et al. The impact of hypoxia and hyperventilation on outcome after paramedic rapid

sequence intubation of severely head-injured patients. J Trauma

2004;57(1):1–8.

105. Muizelaar J, Marmarou A, Ward J, et al. Adverse effects

of prolonged hyperventilationin patients with severe head injury;

a randomized clinical trial. J Neurosurg 1991;75(5):731–9.

106. Deutschman C, Konstantinides F, Raup S. Physiological and metabolic response to isolated closed-head injury. Part i:

basal metabolic state: correlations of metabolic and physiological parameters with fasting and stressed controls. J Neurosurg

1986;64?89–98.

107. Jeremitsky E, Omert L, Dunham C, et al. The impact of

hyperglycemia on patients with severe brain injury. J Trauma

2005;58(1):47–50.

108. Syring R, Otto C, Drobatz K. Hyperglycemia in dogs

and cats with head trauma:122 cases (1997-1999). J Am Vet

Med Assoc 2001;218?1124–9.

109. Vespa P, McArthur D, Stein N, et al. Tight glycemic

control increases metabolic distress in traumatic brain injury: a

randomized controlled within subjects trial. Crit Care Med

2012;40(6):1923–9.

110. Green D, O’ Phelan K, Bassin S, et al. Intensive versus

conventional insulin therapy in critically ill neurologic patients.

Neurocrit Care 2010;13(3):299–306.

111. Bilotta F, Caramia R, Cernak I, et al. Intensive insulin

therapy after severe traumatic brain injury: randomized clinical

trial. Neurocrit Care 2008;9(2):159–66.

112. Dewey C. Urinary bladder management. In: Dewey

CW, editor. A practical guide to canine and feline neurology. St

Louis (MO): Elsevier Saunders; 2003. p. 419–26.

113. Bubenik L, Hosgood G. Urinary tract infection in dogs

with thoracolumbar intervertebral disc herniation and urinary

bladder dysfunction managed by manual expression, indwelling

catheterization or intermittent catheterization. Vet Surg

2008;37?791–800.

114. Smarick S, Haskins S, Aldrich J, et al. Incidence of

catheter-associated urinary tract infection among dogs in a

small animal intensive care unit. J Am Vet Med Assoc

2004;224(12):1936–40.

115. Ng I, Lim J, Wong H. Effects of head posture on cerebral hemodynamics its influences on intracranial pressure, cerebral perfusion pressure, and cerebral oxygenation. Neurosurgery

2004;54(3):593–7.

116. Sadaka F, Veremakis C. Therapeutic hypothermia for

the management of intracranial hypertension in severe traumatic

brain injury: a systematic review. Brain Inj 2012;26(7–8):899–908.

117. McCarthy P, Scott L, Ganta C, et al. Hypothermic protection in traumatic brain injury. Pathophysiology 2012;735–57.

118. Wijayatilake D, Shepherd S, Sherren P. Updates in the

management of intracranial pressure in traumatic brain injury.

Curr Opin Anaesthesiol 2012;25(5):540–7.

119. Hutchinson P, Corteen E, Czosnyka M, et al. Decompressive craniectomy intraumatic brain injury: the randomized

multicenter RESCUEicp study. Acta Neurochir 2006;96(S):17–20.

120. La Rosa G, Conti A, Cardali S, et al. Does early decompression improve neurological outcome of spinal cord injured

patients? Appraisal of the literature using a meta-analytical

approach. Spinal Cord 2004;42(9):503–12.

121. Croce M, Bee T, Pritchard E, et al. Does optimal timing

for spine fracture fixation exist? Ann Surg 2001;233(6):851–8.

122. Fehlings M, Perrin R. The timing of surgical intervention in the treatment of spinal cord injury: a systematic review of

recent clinical evidence. Spine 2006;31(11): S28–35.

123. Jeffery ND. Vertebral fracture and luxation in small

animals. Vet Clin North Am Small Anim Pract 2010;40(5):809–28.

124. Denis F. Spinal instability as defined by the three-column spine concept in acute spinal trauma. Clin Orthop Relat Res

1984;189?65–76.

125. Hillman R, Kengeri S, Waters D. Reevaluation of predictive factors for complete recovery in dogs with nonambulatory tetraparesis secondary to cervical disk herniation. J Am Anim

Hosp Assoc 2009;45?155–63.

126. Cherrone K, Dewey C, Coates J, et al. A retrospective

comparison of cervical intervertebral disk disease in nonchondrodystrophic large dogs versus small dogs. J Am Anim Hosp

Assoc 2004;40?316–20.

127. Gage E, Hoerlein B. Hemilaminectomy and dorsal

laminectomy for relieving compressions of the spinal cord in the

dog. J Am Vet Med Assoc 1968;152: 351–9.

128. Seim H 3rd, Prata R. Ventral decompression for the

treatment of cervical disk disease in the dog: a review of 54

cases. J Am Anim Hosp Assoc 1982;18: 233–40.

129. Gill P, Lippincott C, Anderson S. Dorsal laminectomy in

the treatment of cervical intervertebral disk disease in small

dogs: a retrospective study of 30 cases.J Am Anim Hosp Assoc

1996;32?77–80.

130. Felts J, Prata R. Cervical disk disease in the dog: intraforaminal and lateral extrusions. J Am Anim Hosp Assoc

1983;19?755–60.

131. Tanaka H, Nakayama M, Takase K. Usefulness of hemilaminectomy for cervical intervertebral disk disease in small

dogs. J Vet Med Sci 2005;67?679–83.

132. McCartney W. Comparison of recovery times and

complication rates between a modified slanted slot and the

standard ventral slot for the treatment of cervical disc disease in

20 dogs. J Small Anim Pract 2007;48?498–501.

133. Levine J, Levine G, Johnson S, et al. Evaluation of the

success of medical management for presumptive thoracolumbar

intervertebral disk herniation in dogs. Vet Surg 2007;36?482–91.

134. Kent M. Intraaxial spinal cord hemorrhage secondary

to atlantoaxial subluxationin a dog. J Am Anim Hosp Assoc

2010;46(2):132–7.

135. Cerda-Gonzalez S, Olby NJ. Fecal incontinence associated with epidural spinalhematoma and intervertebral disk

extrusion in a dog. J Am Vet Med Assoc 2006;228(2):230–5.

136. Caswell JL, Nykamp SG. Intradural vasculitis and hemorrhage in full sibling Welsh springer spaniels. Can Vet J

2003;44(2):137–9.

137. Tidwell AS, Specht A, Blaeser L, et al. Magnetic resonance imaging features ofextradural hematomas associated with

intervertebral disc herniation in a dog.Vet Radiol Ultrasound

2001;43(4):319–24.

138. Jeffery N, Lakatos A, Franklin R. Autologous olfactory

glial cell transplantation is eliable and safe in naturally occurring

spinal cord injury. J Neurotrauma 2005;22(11):1282–93.

139. Nishida H, Nakayama M, Tanaka H. Safety of autologous bone marrow stromal cell transplantation in dogs with

acute spinal cord injury. Vet Surg 2012;41?437–42.

140. Olby N, Levine J, Harris T. Long-term functional outcome of dogs with severe injuries of the thoracolumbar spinal

cord: 87 cases (1996-2001). J Am VetMed Assoc

2003;222(6):762–9.

141. Dewey CW. Myelopathies: disorders of the spinal cord.

In: Dewey CW, editor. A practical guide to canine and feline neurology. 2nd edition. Ames (IA):Wiley-Blackwell; 2008. p. 323–88.

142. Hawthorne J, Blevins W, Wallace L, et al. Cervical vertebral fractures in 56 dogs:a retrospective study. J Am Anim

Hosp Assoc 1999;35?135–46.

143. Eminaga S, Palus V, Cherubini G. Acute spinal cord

injury in the cat: causes,treatment and prognosis. J Feline Med

Surg 2011;13(11):850–62.spontaneous hyperadrenocorticism in

dogs. Part 2: Adrenal function testing and differentiating tests[J].

The Veterinary Journal, 2019, 252?105343.

第108頁

小動物臨床前沿(神經(jīng)學(xué)專刊 - 上冊)· 腦部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 總第 12 期

- 106 -

參考文獻:

1. Simpson S, Syring R, Otto C. Severe blunt trauma in

dogs: 235 cases (1997-2003). J Vet Emerg Crit Care (San Antonio) 2009;19(6):588–602.

2. Marioni-Henry K, Vite CH, Newton AL, et al. Prevalence

of diseases of the spinalcord of cats. J Vet Intern Med

2004;18(6):851–8.

3. Fluehmann G, Doherr MG, Jaggy A. Canine neurological

diseases in a referralhospital population between 1989 and

2000 in Switzerland. J Small Anim Pract2006;47(10):582–7.

4. Sande A, West C. Traumatic brain injury: a review of

pathophysiology and management.J Vet Emerg Crit Care (San

Antonio) 2010;20(2):177–90.

5. Dewey C. Emergency management of the head trauma

patient. Vet Clin NorthAm Small Anim Pract 2000;30?207–25.

6. Hopkins A. Head trauma. Vet Clin North Am Small Anim

Pract 1996;26?875–91.

7. Dewey C, Fletcher D. Head trauma management. In:

Dewey C, editor. A practicalguide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell;2008. p. 221–35.

8. Aries M, Czrosynka M, Budohoski K, et al. Continuous

determination of optimalcerebral perfusion pressure in traumatic brain injury. Crit Care Med 2012;40(8):2456–63.

9. Ling G, Marshall S, Moore D. Diagnosis and management of traumatic braininjury. Continuum 2010;16(6):27–40.

10. Kim J, Gean A. Imaging for the diagnosis and management of traumatic braininjury. Neurotherapeutics

2011;8(1):39–53.

11. Tsang K, Whitfield P. Traumatic brain injury: review of

current management strategies.Br J Oral Maxillofac Surg

2012;50?298–308.

12. Proulx J, Dhupa N. Severe brain injury: part I: pathophysiology. CompendContin Educ Vet 1998;20?897–905.

13. Fletcher DJ, Dewey CW. Spinal trauma management.

In: Dewey CW, editor.A practical guide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell; 2008. p.

405–17.

14. Johnson K, Vite C. Spinal cord injury. In: Silverstein D,

Hopper K, editors. Smallanimal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders;2009. p. 419–23.

15. Park EH, White GA, Tieber LM. Mechanisms of injury

and emergency care ofacute spinal cord injury in dogs and cats.

J Vet Emerg Crit Care (San Antonio)2012;22(2):160–78.

16. Olby N. The pathogenesis and treatment of acute

spinal cord injuries in dogs.Vet Clin North Am Small Anim Pract

2010;40(5):791–807.

17. Fletcher D, Syring R. Traumatic brain injury. In: Silverstein D, Hopper K, editors.Small animal critical care medicine.

1st edition. St Louis (MO): Elsevier Saunders;2009. p. 658–62.

18. Leonard SE, Kirby R. The role of glutamate, calcium

and magnesium in secondarybrain injury. J Vet Emerg Crit Care

2002;12(1):17–32.

19. McMichael M, Moore R. Ischemia and reperfusion

injury pathophysiology, part I.J Vet Emerg Crit Care (San Antonio) 2004;14(4):231–41.

20. Oyinbo C. Secondary injury mechanisms in traumatic

spinal cord injury: anugget of this multiply cascade. Acta Neurobiol Exp 2011;71(2):281–99.

21. Tator C, Fehlings M. Review of the secondary injury

theory of acute spinal cordtrauma with emphasis on vascular

mechanisms. J Neurosurg 1991;75(1):15–26.

22. Dooney N, Dagal A. Anesthetic considerations in acute

spinal cord trauma. Int JCrit Illn Inj Sci 2011;1(1):36–43.

表7:治療急性SCI二次傷害的藥物制劑

23. Armitage-Chan E, Wetmore L, Chan D. Anesthetic

management of the headtrauma patient. J Vet Emerg Crit Care

(San Antonio) 2007;17(1):5–14.

24. Shores A. Craniocerebral trauma. In: Kirk R, editor. Current veterinary therapy X.X. Philadelphia: WB Saunders; 1983. p.

847–54.

25. Platt S, Radaelli S, McDonnell J. The prognostic value of

the Modified GlasgowComa Scale in head trauma in gods. J Vet

Intern Med 2001;15(6):581–4.

26. Levine GJ, Levine JM, Budke CM, et al. Description and

repeatability of anewly developed spinal cord injury scale for

dogs. Prev Vet Med 2009;89(1–2):121–7.

27. Olby N, De Risio L, Munana K, et al. Development of a

functional scoring systemin dogs with acute spinal cord injuries.

Am J Vet Res 2001;62(10):1624–8.

28. Smith P, Jeffery N. Spinal shock—comparative aspects

and clinical relevance.J Vet Intern Med 2005;19?788–93.

29. Boysen S, Rozanski E, Tidwell A, et al. Evaluation of a

focused assessment with sonography for trauma protocol to

detect free abdominal fluid in dogs involved in motor vehicle

accidents. J Am Vet Med Assoc 2004;225(8):1198–204.

30. Lisciandro GR. Abdominal and thoracic focused assessment with sonographyfor trauma, triage, and monitoring in small

animals. J Vet Emerg Crit Care(San Antonio) 2011;21(2):104–22.

31. Kinns J, Mai W, Seiler G, et al. Radiographic sensitivity

and negative predictive value for acute canine spinal trauma. Vet

Radiol Ultrasound 2006;47(6):563–70.

32. Vitale C, Coates J. Acute spinal injury. Compendium

Standards of Care: Emergencyand Critical Care Medicine

2007;9(7):1–11.

33. Lamb CR, Nicholls A, Targett M, et al. Accuracy of

survey radiographic diagnosis of intervertebral disc protrusion in

dogs. Vet Radiol Ultrasound 2002;43(3):222–8.

34. Brisson BA. Intervertebral disc disease in dogs. Vet Clin

North Am Small Anim Pract 2010;40(5):829–58.

35. Israel SK, Levine JM, Kerwin SC, et al. The relative sensitivity of computed tomography and myelography for identification of thoracolumbar intervertebral disk herniations in dogs. Vet

Radiol Ultrasound 2009;50(3):247–52.

36. Olby N, Dyce J, Houlton J. Correlation of plain radiographic and lumbar myelographic findings with surgical findings

in thoracolumbar disc disease. J SmallAnim Pract

1994;35(7):345–50.

37. Griffin J, Levine J, Kerwin S. Canine thoracolumbar

intervertebral disk disease:pathophysiology, neurologic examination, and emergency medical therapy.Compend Contin Educ

Vet 2009;31(3):E1–13.

38. Lewis D, Hosgood G. Complications associated with

the use of iohexol for myelographyof the cervical vertebral

column in dogs: 66 cases (1988-1990). J AmVet Med Assoc

1992;200(9):1381–4.

39. Barone G, Ziemer L, Shofer F, et al. Risk factors associated with the developmentof seizures after use of iohexol for

myelography in dogs: 182 cases(1998). J Am Vet Med Assoc

2002;220(10):1499–502.

40. Johnson P, Beltran E, Dennis R, et al. Magnetic resonance imaging characteristics of suspected vertebral instability

associated with fracture or subluxation in eleven dogs. Vet

Radiol Ultrasound 2012;53(5):552–9.

41. Rozanski EA, Rondeau MP. Respiratory pharmacotherapy in emergency and critical care medicine. Vet Clin North Am

Small Anim Pract 2002;32(5):1073–86.

42. Mazzaferro E. Oxygen therapy. In: Silverstein D, Hopper

K, editors. Small animal critical caremedicine. 1stedition. StLouis(MO): Elsevier Saunders; 2009.p. 78–81.

43. Hopper K. Basic mechanical ventilation. In: Silverstein

D, Hopper K, editors. Small animal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders; 2009. p. 900–4.

44. Zhuang J, Shackford S, Schmoker J, et al. Colloid infusion after brain injury: an effect on intracranial pressure, cerebral

blood flow, and oxygen delivery. Crit Care Med

1995;23(1):140–8.

45. Wade C, Grady J, Kramer G, et al. Individual patient

cohort analysis of the efficacy of hypertonic saline/dextran in

patients with traumatic brain injury and hypotension. J Trauma

1997;42?561–5.

46. Vassar M, Perry C, Gannaway W, et al. Analysis of

potential risks associated with 7.5% sodium chloride resuscitation of traumatic shock. Arch Surg 1990;124: 1309–15.

47. Vassar M, Perry C, Gannaway W, et al. 7.5% sodium

chloride/dextran for resuscitation of trauma patients undergoing

helicopter transport. Arch Surg 1991;126: 1065–72.

48. Vassar M, Perry C, Holcroft J. Prehospital resuscitation

of hypotensive trauma patients with 7.5% NaCl versus 7.5% NaCl

with added dextran: a controlled trial. J Trauma 1993;34?622–32.

49. Vassar M, Fisher R, O’ Brien P, et al. A multicenter trial

for resuscitation of injured patients with 7.5% sodium chloride.

Arch Surg 1993;128?1003–11.

50. Cooper J, Myles P, McDermott F, et al. Prehospital

hypertonic saline resuscitation of patients with hypotension and

severe traumatic brain injury. JAMA 2004;291?1350–7.

51. Roberts D, Hall R, Kramer A. Sedation for critically ill

adults with severe traumatic brain injury: a systematic review of

randomized controlled trials. CritCare Med 2012;39(12):2743–51.

52. Sperry R, Bailey P, Reichman M, et al. Fentanyl and

sulfentanil increase intracranial pressure in head trauma patients.

Anesthesiology 1992;77?416–20.

53. Lauer K, Connolly L, Schmeling W. Opioid sedation

does not alter intracranial pressure in head injured patients. Can

J Anaesth 1997;44?929–33.

54. Albanese J, Viviand X, Potie F, et al. Sulfentanil, fentanyl,

and alfentanil in head trauma patients: a study on cerebral

hemodynamics. Crit Care Med 1999;27?407–11.

55. de Nadal M, Munar F, Poca M, et al. Cerebral hemodynamic effects of morphine and fentanyl in patients with severe

head injury: absence of correlation to cerebral autoregulation.

Anesthesiology 2000;92?11–9.

56. Hansen B. Acute pain management. Vet Clin North Am

Small Anim Pract 2000;30(4):899–916.

57. Pascoe P. Opioid analgesics. Vet Clin North Am Small

Anim Pract 2000;30(4):757–69.

58. Keegan R, Green S, Bagley R, et al. Effects of medetomidine administration on intracranial pressure and cardiovascular variables of isoflurane-anesthetized dogs. Am J Vet Res

1996;56(2):193–8.

59. Treggiari M, Schultz N, Yanez N, et al. Role of intracranial pressure values and patterns in predicting outcome of traumatic brain injury: a systematic review. Neurocrit Care

2007;6?104–12.

60. Weed L, McKibbon P. Pressure changes in the cerebrospinal fluid following intravenous injection of solutions of various

concentrations. Am J Phys 1919;48?512–30.

61. Ropper A. Hyperosmolar therapy for raised intracranial

pressure. N Engl J Med 2012;367(8):746–52.

62. Brain Trauma Foundation, American Association of

Neurological Surgeons,Congress of Neurological Surgeons.

Guidelines for the management of severetraumatic brain injury. J

Neurotrauma 2007;24(1):S1–106.

63. Fink M. Osmotherapy for intracranial hypertension:

mannitol versus hypertonic saline. Continuum

2012;18(3):640–54.

64. Kaufmann A, Cardoso E. Aggravation of vasogenic

cerebral edema by multipledose mannitol. J Neurosurg

1992;77(4):584–9.

65. McManus M, Soriano S. Rebound swelling of astroglial

cells exposed to hypertonic mannitol. Anesthesiology

1998;88(6):1586–91.

66. Oddo M, Levine J, Frangos S, et al. Effect of mannitol

and hypertonic salineon cerebral oxygenation in patients with

severe traumatic brain injury and refractoryintracranial hypertension. J Neurol Neurosurg Psychiatr 2009;80(8):916–20.

67. Aiyagari V, Deibert E, Diringer M. Hypernatremia in the

neurologic intensive careunit: how high is too high? J Crit Care

2006;21(2):163–72.

68. Battison C, Andrews P, Graham C, et al. Randomized,

controlled trial on theeffect of a 20% mannitol solution and a

7.5% saline/6% dextran solution onincreased intracranial pressure after brain injury. Crit Care Med 2005;33(1):196–202.

69. Francony C, Fauvage B, Falcon D, et al. Equimolar

doses of mannitol and hypertonicsaline in the treatment of intracranial pressure. Crit Care Med 2008;36(3):795–800.

70. Zeng H, Wang Q, Deng Y, et al. A comparative study on

the efficacy of 10%hypertonic saline and equal volume of 20%

mannitol in the treatment of experimentallyinduced cerebral

edema in adult rats. BMC Neurosci 2010;11?153.

71. da Silva J, de Lima F, Valenca M, et al. Hypertonic saline

more efficacious thanmannitol in lethal intracranial hypertension

model. Neurol Res 2010;32(2):139–43.

72. Todd M, Cutkomp J, Brian J. Influence of mannitol and

furosemide, alone and incombination, on brain water content

after fluid percussion injury. Anesthesiology2006;105?1176–80.

73. Edwards P, Arango M, Balica L, et al. Final results of

MRC CRASH, a randomized placebo-controlled trial of intravenous corticosteroids in adults with headinjury- outcomes at 6

months. Lancet 2005;365(9475):1957–9.

74. Roberts I, Yates D, Sandercock P, et al. Effect of intravenous corticosteroids on death within 14 days in 10,008 adults

with clinically significant head injury (MRC CRASH trial): randomized placebo-controlled trial. Lancet 2004;364?9442.

75. Schierhout G, Roberts I. Withdrawn: antiepileptic drugs

for preventing seizures following acute traumatic brain injury.

Cochrane Database Syst Rev 2012;(6):CD000173.

76. Musulin S, Mariani C, Papich M. Diazepam pharmacokinetics after nasal drop and atomized nasal administration in

dogs. J Vet Pharmacol Ther 2011;34(1): 17–24.

77. Kassell N, Hitchon P, Gerk M, et al. Alterations in cerebral blood flow,oxygen metabolism, and electrical activity produced by high-dose thiopental.Neurosurgery 1980;7?598–603.

78. Hayes G. Severe seizures associated with traumatic

brain injury managed bycontrolled hypothermia, pharmacologic

coma, and mechanical ventilation in a dog. J Vet Emerg Crit Care

(San Antonio) 2009;19(6):629–34.

79. Giacino J, Whyte J, Bagiella E, et al. Placebo-controlled

trial of amantadine for severe traumatic brain injury. N Engl J

Med 2012;366?819–26.

80. Hall E. The neuroprotective pharmacology of methylprednisolone. J Neurosurg 1992;76(1):13–22.

81. Parker A, Smith C. Functional recovery from spinal cord

trauma following dexamethasone and chlorpromazine therapy in

dogs. Res Vet Sci 1976;21(2):246–7.

82. Levine J, Levine G, Boozer L, et al. Adverse effects and

outcome associatedwith dexamethasone administration in dogs

with acute thoracolumbar intervertebral disk herniation: 161

cases (2000-2006). J Am Vet Med Assoc 2008;232(3):411–7.

83. Bracken M, Shepard M, Collins W. A randomized, controlled trial of methylprednisolone or naloxone in the treatment

of acute spinal-cord injury. Results of the second national acute

spinal cord injury study. N Engl J Med 1990;322(20):1405–11.

84. Bracken M, Shepard M, Hellenbrand K. Methylprednisolone and neurologicalfunction 1 year after spinal cord injury.

Results of the National Acute Spinal Cord Injury Study. J Neurosurg 1985;63(5):704–13.

85. Bracken M, Shepard M, Holford T. Administration of

methylprednisolone for 24 or

48 hours or tirilazad mesylate for 48 hours in the treatment

of acute spinal cord injury. Results of the Third National Acute

Spinal Cord Injury Randomized Controlled Trial. National Acute

Spinal Cord Injury.JAMA 1997;277(20):1597–604.

86. Nesathurai S. Steroids and spinal cord injury: revisiting

the NASCIS 2 and NASCIS 3 trials. J Trauma Acute Care Surg

1998;45(6):1088–93.

87. Rabinowitz R, Eck J, Harper C. Urgent surgical decompression compared to methylprednisolone for the treatment of

acute spinal cord injury. Spine 2008;33(21):2260–8.

88. Coates J, Sorjonen D, Simpson S, et al. Clinicopathologic effects of a 21-aminosteroid compound (U74389G) and high

dose methylprednisolone onspinal cord function after simulated

spinal cord trauma. Vet Surg 1995;24?128–39.

89. Baltzer W, McMichael MA, Hosgood G. Randomized,

blinded, placebocontrolledclinical trial of N-acetylcysteine in

dogs with spinal cord trauma from acute intervertebral disc

disease. Spine 2008;33(13):1397–402.

90. Bains M, Hall E. Antioxidant therapies in traumatic brain

injury and spinal cord injury. Biochim Biophys Acta

2012;1822(5):675–84.

91. Hall E, Wolf D. A pharmacological analysis of the

pathophysiologicalmechanisms of posttraumatic spinal cord

ischemia. J Neurosurg 1986;64(6):951–61.

92. Ates O, Cayli S, Gurses I. Comparative neuroprotective

effect of sodium channel blockers after experimental spinal cord

injury. J Clin Neurosci 2007;14(7):658–65.

93. Kaptanoglu E, Solaroglu I, Surucu H. Blockade of

sodium channels by phenytoin protects ultrastructure and attenuates lipid peroxidation in experimental spinal cord injury. Acta

Neurochir 2005;147(4):405–12.

94. Hains B, Saab C, Lo A. Sodium channel blockade with

phenytoin protects spinal cord axons, enhances axonal conduction, and improves functional recovery after contusion SCI. Exp

Neurol 2004;188(2):365–77.

95. Schwartz G, Fehlings M. Secondary injury mechanisms

of spinal cord trauma:novel therapeutic approach for the management of secondary pathophysiology with the sodium channel blocker riluzole. Prog Brain Res 2002;137?177–90.

96. Park E, Velumian A, Fehlings M. The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with

an emphasis on the implications for white matter degeneration. J

Neurotrauma 2004;21?754–74.

97. Walters M, Kaste M, Lees K, et al. The AMPA antagonist

ZK 200775 in patients with acute ischaemic stroke: a double-blind, multi-centre, placebo-controlled safety and tolerability study. Cerebrovasc Dis 2005;20?304–9.

98. Chan P. White matter injury in spinal cord ischemia:

protection by AMPA/kainite glutamate receptor antagonism—Editoral comment. Stroke 2000;31?1952.

99. Chen HS, Lipton S. The chemical biology of clinically

tolerated NMDA receptor antagonists. J Neurochem

2006;97?1611–26.

100. Tadie M, D’ Arbigny P, Mathe J, et al. Acute spinal cord

injury. Early care and treatment in a multicenter study with

gacylidine. Soc Neurosci 1999;25?1090.

101. Kwon B, Okon E, Hillyer J. A systematic review of

non-invasive pharmacologic neuroprotective treatments for

acute spinal cord injury. J Neurotrauma 2011;28(8):1545–88.

102. Sturges B, LeCouteur R. Intracranial hypertension. In:

Silverstein D, Hopper K,editors. Small animal critical care medicine. 1st edition. St Louis (MO): ElsevierSaunders; 2009. p.

423–9.

103. Brain Trauma Foundation T, National Association of

State EMS Officials T,National Association of EMTs. Guidelines for

prehospital management of traumatic brain injury. Prehosp

Emerg Care 2007;12(1):1–52.

104. Davis D, Dunford J, Poste J, et al. The impact of hypoxia and hyperventilation on outcome after paramedic rapid

sequence intubation of severely head-injured patients. J Trauma

2004;57(1):1–8.

105. Muizelaar J, Marmarou A, Ward J, et al. Adverse effects

of prolonged hyperventilationin patients with severe head injury;

a randomized clinical trial. J Neurosurg 1991;75(5):731–9.

106. Deutschman C, Konstantinides F, Raup S. Physiological and metabolic response to isolated closed-head injury. Part i:

basal metabolic state: correlations of metabolic and physiological parameters with fasting and stressed controls. J Neurosurg

1986;64?89–98.

107. Jeremitsky E, Omert L, Dunham C, et al. The impact of

hyperglycemia on patients with severe brain injury. J Trauma

2005;58(1):47–50.

108. Syring R, Otto C, Drobatz K. Hyperglycemia in dogs

and cats with head trauma:122 cases (1997-1999). J Am Vet

Med Assoc 2001;218?1124–9.

109. Vespa P, McArthur D, Stein N, et al. Tight glycemic

control increases metabolic distress in traumatic brain injury: a

randomized controlled within subjects trial. Crit Care Med

2012;40(6):1923–9.

110. Green D, O’ Phelan K, Bassin S, et al. Intensive versus

conventional insulin therapy in critically ill neurologic patients.

Neurocrit Care 2010;13(3):299–306.

111. Bilotta F, Caramia R, Cernak I, et al. Intensive insulin

therapy after severe traumatic brain injury: randomized clinical

trial. Neurocrit Care 2008;9(2):159–66.

112. Dewey C. Urinary bladder management. In: Dewey

CW, editor. A practical guide to canine and feline neurology. St

Louis (MO): Elsevier Saunders; 2003. p. 419–26.

113. Bubenik L, Hosgood G. Urinary tract infection in dogs

with thoracolumbar intervertebral disc herniation and urinary

bladder dysfunction managed by manual expression, indwelling

catheterization or intermittent catheterization. Vet Surg

2008;37?791–800.

114. Smarick S, Haskins S, Aldrich J, et al. Incidence of

catheter-associated urinary tract infection among dogs in a

small animal intensive care unit. J Am Vet Med Assoc

2004;224(12):1936–40.

115. Ng I, Lim J, Wong H. Effects of head posture on cerebral hemodynamics its influences on intracranial pressure, cerebral perfusion pressure, and cerebral oxygenation. Neurosurgery

2004;54(3):593–7.

116. Sadaka F, Veremakis C. Therapeutic hypothermia for

the management of intracranial hypertension in severe traumatic

brain injury: a systematic review. Brain Inj 2012;26(7–8):899–908.

117. McCarthy P, Scott L, Ganta C, et al. Hypothermic protection in traumatic brain injury. Pathophysiology 2012;735–57.

118. Wijayatilake D, Shepherd S, Sherren P. Updates in the

management of intracranial pressure in traumatic brain injury.

Curr Opin Anaesthesiol 2012;25(5):540–7.

119. Hutchinson P, Corteen E, Czosnyka M, et al. Decompressive craniectomy intraumatic brain injury: the randomized

multicenter RESCUEicp study. Acta Neurochir 2006;96(S):17–20.

120. La Rosa G, Conti A, Cardali S, et al. Does early decompression improve neurological outcome of spinal cord injured

patients? Appraisal of the literature using a meta-analytical

approach. Spinal Cord 2004;42(9):503–12.

121. Croce M, Bee T, Pritchard E, et al. Does optimal timing

for spine fracture fixation exist? Ann Surg 2001;233(6):851–8.

122. Fehlings M, Perrin R. The timing of surgical intervention in the treatment of spinal cord injury: a systematic review of

recent clinical evidence. Spine 2006;31(11): S28–35.

123. Jeffery ND. Vertebral fracture and luxation in small

animals. Vet Clin North Am Small Anim Pract 2010;40(5):809–28.

124. Denis F. Spinal instability as defined by the three-column spine concept in acute spinal trauma. Clin Orthop Relat Res

1984;189?65–76.

125. Hillman R, Kengeri S, Waters D. Reevaluation of predictive factors for complete recovery in dogs with nonambulatory tetraparesis secondary to cervical disk herniation. J Am Anim

Hosp Assoc 2009;45?155–63.

126. Cherrone K, Dewey C, Coates J, et al. A retrospective

comparison of cervical intervertebral disk disease in nonchondrodystrophic large dogs versus small dogs. J Am Anim Hosp

Assoc 2004;40?316–20.

127. Gage E, Hoerlein B. Hemilaminectomy and dorsal

laminectomy for relieving compressions of the spinal cord in the

dog. J Am Vet Med Assoc 1968;152: 351–9.

128. Seim H 3rd, Prata R. Ventral decompression for the

treatment of cervical disk disease in the dog: a review of 54

cases. J Am Anim Hosp Assoc 1982;18: 233–40.

129. Gill P, Lippincott C, Anderson S. Dorsal laminectomy in

the treatment of cervical intervertebral disk disease in small

dogs: a retrospective study of 30 cases.J Am Anim Hosp Assoc

1996;32?77–80.

130. Felts J, Prata R. Cervical disk disease in the dog: intraforaminal and lateral extrusions. J Am Anim Hosp Assoc

1983;19?755–60.

131. Tanaka H, Nakayama M, Takase K. Usefulness of hemilaminectomy for cervical intervertebral disk disease in small

dogs. J Vet Med Sci 2005;67?679–83.

132. McCartney W. Comparison of recovery times and

complication rates between a modified slanted slot and the

standard ventral slot for the treatment of cervical disc disease in

20 dogs. J Small Anim Pract 2007;48?498–501.

133. Levine J, Levine G, Johnson S, et al. Evaluation of the

success of medical management for presumptive thoracolumbar

intervertebral disk herniation in dogs. Vet Surg 2007;36?482–91.

134. Kent M. Intraaxial spinal cord hemorrhage secondary

to atlantoaxial subluxationin a dog. J Am Anim Hosp Assoc

2010;46(2):132–7.

135. Cerda-Gonzalez S, Olby NJ. Fecal incontinence associated with epidural spinalhematoma and intervertebral disk

extrusion in a dog. J Am Vet Med Assoc 2006;228(2):230–5.

136. Caswell JL, Nykamp SG. Intradural vasculitis and hemorrhage in full sibling Welsh springer spaniels. Can Vet J

2003;44(2):137–9.

137. Tidwell AS, Specht A, Blaeser L, et al. Magnetic resonance imaging features ofextradural hematomas associated with

intervertebral disc herniation in a dog.Vet Radiol Ultrasound

2001;43(4):319–24.

138. Jeffery N, Lakatos A, Franklin R. Autologous olfactory

glial cell transplantation is eliable and safe in naturally occurring

spinal cord injury. J Neurotrauma 2005;22(11):1282–93.

139. Nishida H, Nakayama M, Tanaka H. Safety of autologous bone marrow stromal cell transplantation in dogs with

acute spinal cord injury. Vet Surg 2012;41?437–42.

140. Olby N, Levine J, Harris T. Long-term functional outcome of dogs with severe injuries of the thoracolumbar spinal

cord: 87 cases (1996-2001). J Am VetMed Assoc

2003;222(6):762–9.

141. Dewey CW. Myelopathies: disorders of the spinal cord.

In: Dewey CW, editor. A practical guide to canine and feline neurology. 2nd edition. Ames (IA):Wiley-Blackwell; 2008. p. 323–88.

142. Hawthorne J, Blevins W, Wallace L, et al. Cervical vertebral fractures in 56 dogs:a retrospective study. J Am Anim

Hosp Assoc 1999;35?135–46.

143. Eminaga S, Palus V, Cherubini G. Acute spinal cord

injury in the cat: causes,treatment and prognosis. J Feline Med

Surg 2011;13(11):850–62.spontaneous hyperadrenocorticism in

dogs. Part 2: Adrenal function testing and differentiating tests[J].

The Veterinary Journal, 2019, 252?105343.

針對自由基傷害的藥劑

? 維生素E和硒

o 在SCI前對貓進行預(yù)處理,可改善神經(jīng)系統(tǒng)的癥狀和受傷后的脊髓血流量

? 提拉扎德(21-氨基類固醇) Tirilazad (21-aminosteriod)

o 減少貓咪的脊髓缺血現(xiàn)象

o 沒有關(guān)于對狗的影響的記錄

N- 乙酰半胱氨酸 N-acetylcysteine

o 患有椎間盤突出癥的狗的結(jié)果沒有改善

亞砜和 -氨基己酸 sulfoxide and -aminocaproic acid

o 對狗的癥狀沒有改善

抗氧化劑需要長時間的給藥才能在中樞神經(jīng)系統(tǒng)內(nèi)達到治療濃度,這限制了它們在SCI急性期的應(yīng)用

針對離子紊亂和興奮中毒的藥劑

? 維拉帕米、地爾硫卓、硝苯地平(鈣通道拮抗劑) verapamil, diltiazem,nifedipine (calcium channel antagonists)

o 使用地爾硫卓diltiazem和硝苯地平nifedipine可改善貓受傷后的脊髓血流;使用維拉帕米verapamil則不會。

? 鈉通道阻斷劑 -sodium channel blocker

o 在實驗?zāi)P椭凶⒁獾接懈纳?/p>

? NMDA和非NMDA谷氨酸受體拮抗劑

o 延遲給藥在嚙齒動物模型上改善了組織保護和功能恢復(fù)情況

o 大多數(shù)都有不良的副作用,而且臨床試驗基本上都失敗了

針對炎癥的藥劑

? 米諾環(huán)素(第二代四環(huán)素衍生物) minocycline (2 generation tetracycline derivative)

o 在實驗中減少小膠質(zhì)細(xì)胞microgilia和巨噬細(xì)胞macrophage的激活

o 尚未在試驗中進行評估

? 他克莫司、 環(huán)孢素、霉酚酸酯 tarcrolimus, cyclosporine, mycophenolate mofetil

o 實驗性損傷模型中的神經(jīng)保護作用

聚乙二醇(polyethylene glycol)

? 密封受損神經(jīng)元膜的親水聚合物

? 對深層疼痛感陰性的狗進行評估;使60%的狗恢復(fù)了功能。

? 目前正在進行狗的隨機對照試驗

4-氨基吡啶 4-aminopyridine

? 鉀通道阻斷劑

o 通過阻斷改善傳導(dǎo)(阻斷通常會被完整的髓鞘阻斷的通道)

? 改善貓的體外傳導(dǎo)和前庭反射的情況

39只SCI狗的I期臨床試驗

o 64%的狗在神經(jīng)系統(tǒng)功能方面有暫時性的改善

o 副作用很少,但很顯著

額外的治療方法

? 納洛酮 (鴉片劑受體拮抗劑) Naloxone (opiate receptor antagonist)

o 在人體臨床試驗中未能產(chǎn)生效益

? 促甲狀腺素受體拮抗劑 Thyrotropin -receptor antagonist

o 在犬類臨床試驗中未能產(chǎn)生效益

? 促紅細(xì)胞生成素、孕激素和雌激素、 鎂、阿托伐他汀、褪黑激素

erythropoietin, progesterone, and estrogen, magnesium, atorvastatin, melatonin

ε ε

nd

第109頁

小動物臨床前沿(神經(jīng)學(xué)專刊 - 上冊)· 腦部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 總第 12 期

- 107 -

參考文獻:

1. Simpson S, Syring R, Otto C. Severe blunt trauma in

dogs: 235 cases (1997-2003). J Vet Emerg Crit Care (San Antonio) 2009;19(6):588–602.

2. Marioni-Henry K, Vite CH, Newton AL, et al. Prevalence

of diseases of the spinalcord of cats. J Vet Intern Med

2004;18(6):851–8.

3. Fluehmann G, Doherr MG, Jaggy A. Canine neurological

diseases in a referralhospital population between 1989 and

2000 in Switzerland. J Small Anim Pract2006;47(10):582–7.

4. Sande A, West C. Traumatic brain injury: a review of

pathophysiology and management.J Vet Emerg Crit Care (San

Antonio) 2010;20(2):177–90.

5. Dewey C. Emergency management of the head trauma

patient. Vet Clin NorthAm Small Anim Pract 2000;30?207–25.

6. Hopkins A. Head trauma. Vet Clin North Am Small Anim

Pract 1996;26?875–91.

7. Dewey C, Fletcher D. Head trauma management. In:

Dewey C, editor. A practicalguide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell;2008. p. 221–35.

8. Aries M, Czrosynka M, Budohoski K, et al. Continuous

determination of optimalcerebral perfusion pressure in traumatic brain injury. Crit Care Med 2012;40(8):2456–63.

9. Ling G, Marshall S, Moore D. Diagnosis and management of traumatic braininjury. Continuum 2010;16(6):27–40.

10. Kim J, Gean A. Imaging for the diagnosis and management of traumatic braininjury. Neurotherapeutics

2011;8(1):39–53.

11. Tsang K, Whitfield P. Traumatic brain injury: review of

current management strategies.Br J Oral Maxillofac Surg

2012;50?298–308.

12. Proulx J, Dhupa N. Severe brain injury: part I: pathophysiology. CompendContin Educ Vet 1998;20?897–905.

13. Fletcher DJ, Dewey CW. Spinal trauma management.

In: Dewey CW, editor.A practical guide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell; 2008. p.

405–17.

14. Johnson K, Vite C. Spinal cord injury. In: Silverstein D,

Hopper K, editors. Smallanimal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders;2009. p. 419–23.

15. Park EH, White GA, Tieber LM. Mechanisms of injury

and emergency care ofacute spinal cord injury in dogs and cats.

J Vet Emerg Crit Care (San Antonio)2012;22(2):160–78.

16. Olby N. The pathogenesis and treatment of acute

spinal cord injuries in dogs.Vet Clin North Am Small Anim Pract

2010;40(5):791–807.

17. Fletcher D, Syring R. Traumatic brain injury. In: Silverstein D, Hopper K, editors.Small animal critical care medicine.

1st edition. St Louis (MO): Elsevier Saunders;2009. p. 658–62.

18. Leonard SE, Kirby R. The role of glutamate, calcium

and magnesium in secondarybrain injury. J Vet Emerg Crit Care

2002;12(1):17–32.

19. McMichael M, Moore R. Ischemia and reperfusion

injury pathophysiology, part I.J Vet Emerg Crit Care (San Antonio) 2004;14(4):231–41.

20. Oyinbo C. Secondary injury mechanisms in traumatic

spinal cord injury: anugget of this multiply cascade. Acta Neurobiol Exp 2011;71(2):281–99.

21. Tator C, Fehlings M. Review of the secondary injury

theory of acute spinal cordtrauma with emphasis on vascular

mechanisms. J Neurosurg 1991;75(1):15–26.

22. Dooney N, Dagal A. Anesthetic considerations in acute

spinal cord trauma. Int JCrit Illn Inj Sci 2011;1(1):36–43.

針對TBI的非藥物策略

針對急性SCI的非藥物治療策略

減少腦血容量

將頭部抬高 15° 至 30° ,可以減少腦血容量,從而

降低 ICP 和增加 CPP,且不會對腦氧飽和度造成有害

的降低 115。抬高頭部時應(yīng)使用硬的斜板,以避免頸部

彎曲和頸靜脈閉塞,升高的角度不應(yīng)超過 30° ,因為這

可能導(dǎo)致 CPP 下降,并對腦氧合產(chǎn)生相關(guān)影響 7

。

治療性低體溫

產(chǎn)生神經(jīng)創(chuàng)傷性繼發(fā)性損傷的許多過程都與溫

度相關(guān) 116。以 32℃ 至 34℃ (89.6-93.2o F) 為治療性

低體溫療法的標(biāo)準(zhǔn),通過減少興奮性氨基酸(EAAs)的

釋放,減少促炎癥細(xì)胞因子的產(chǎn)生,這降低基礎(chǔ)代謝

和腦部代謝,防止細(xì)胞凋亡和壞死,并減少腦部水腫

和 BBB 的破壞 117。治療性低溫作為一種次要治療方

法,適用于人類的顱內(nèi)高壓和癲癇。116,117 然而,它還沒

有獲得廣泛的接受作為創(chuàng)傷性腦損傷的首取治療方

法,可能是因為它的實施具有挑戰(zhàn)性,而且有許多潛

在的并發(fā)癥 116,117。很少有獸醫(yī)診所擁有提供 TH 的設(shè)

施,但已經(jīng)被描述在一只患有創(chuàng)傷性腦損傷相關(guān)的長

期發(fā)作活動的狗身上的得到成功應(yīng)用的案例 78。隨著

支持 TH 技術(shù)和接受此治療的患者在獸醫(yī)領(lǐng)域變得更

普遍, 這種療法可能會獲得更多的認(rèn)可。

減壓顱骨切除術(shù)

早期開顱手術(shù)適用于移除軸外血腫。在處理創(chuàng)傷

性腦損傷病人時,減壓性顱骨切除術(shù)的作用更具有爭

議性。如果進行早期開顱手術(shù),它可以在移除腫物時

表8:治療膀胱功能障礙的藥物制劑

進行預(yù)防性治療, 在后來作為次要的,當(dāng)醫(yī)療處理失

敗時進行救援治療 118。正在進行的 RESCUEicp 試驗

的結(jié)果可能會對早期減壓性顱骨切除術(shù)在創(chuàng)傷性腦

損傷患者管理中的作用提供更多的見解 119。

手術(shù)通常適用于有中度至重度障礙、神經(jīng)系統(tǒng)惡

化和 / 或椎體不穩(wěn)定的患者。關(guān)于脊髓創(chuàng)傷手術(shù)干預(yù)

的最佳時機存在爭議。許多創(chuàng)傷性 SCI 患者有椎體外

的損傷,需要初步固定,然而, 對人類創(chuàng)傷性 SCI 患者

的早期手術(shù)治療與預(yù)后改善有關(guān) 120–122。

椎體骨折和脫位的管理

人類和獸醫(yī)患者的脊柱骨折的穩(wěn)定性可以分為三

個部分來評估,該方法把椎體分為背側(cè)、中間和腹側(cè),當(dāng)

兩個或更多的區(qū)間被破壞時,骨折被認(rèn)為是不穩(wěn)定的。

表 9 列出了 3 個區(qū)間中每個區(qū)間所包含的結(jié)構(gòu) 123,124。

手術(shù)中的患者通常都有包括中度至重度神經(jīng)功

能缺損 (例如,運動功能微弱或喪失),影像學(xué)上有椎

體不穩(wěn)定的證據(jù),以及在積極保守治療下神經(jīng)功能仍

然惡化 13。

脊髓減壓、縮小和固定是手術(shù)治療的目的,有許多

手術(shù)技術(shù)可以在減壓后穩(wěn)定 VFLs,所選擇的技術(shù)取決

于椎體內(nèi)的位置、骨折的類型和外科醫(yī)生的偏好 123。

穩(wěn)定技術(shù)包括骨板、螺釘 、Steinmann 針 、Kirschner

線和聚甲基丙烯酸甲酯 (Polymethylmethacrylate -

PMMA )水泥 13。 VFLs 應(yīng)該由獲得委員會認(rèn)證的骨科

醫(yī)生或神經(jīng)外科醫(yī)生來管理和操作,盡管手術(shù)治療通

常是適用的,恢復(fù)功能的時間通常較短, 術(shù)后支持性

護理通常比保守治療所需的強度要低,但并發(fā)癥可能

發(fā)生,手術(shù)操作有可能導(dǎo)致 SCI 的惡化。

植入物的松動,以及植入物的失敗或感染(尤其

是 PMMA), 因此,有時需要進行再次進行手術(shù) 13。

原發(fā)性損傷的保守治療最適合于損傷最小、病況

穩(wěn)定、三個部分的椎體都穩(wěn)定良好的患者。已有人描

述過使用外固定裝置,但這些裝置的應(yīng)用充滿了并發(fā)

癥,包括穩(wěn)定不足夠、 VFL 部位的活動增加,以及擦傷

和潰瘍。因此,保守治療通常包括嚴(yán)格地關(guān)在籠子休

息 6 到 8 周 、加上鎮(zhèn)痛和護理。

外傷性椎間盤突出癥患者不能行走,有進行性神

經(jīng)功能障礙, 對保守治療無反應(yīng),或頸椎病變引起嚴(yán)

重疼痛, 應(yīng)考慮手術(shù)治療 34,125,126。對于 III 型(創(chuàng)傷性)

椎間盤疾病,除非有相關(guān)的壓迫性軸外血腫,否則通

常不需手術(shù)治療。根據(jù)椎間盤突出的部位、側(cè)化程度

和嚴(yán)重程度,可能需要進行背側(cè)椎板切除術(shù)、半椎板

切除術(shù)或腹側(cè)槽手術(shù) 13,34,127–132。

保守療法可用于治療單純的病理疼痛

hyperpathia(神經(jīng)病態(tài)疼痛)或有輕微神經(jīng)功能障礙

的患畜 13,34。建議維持嚴(yán)格的籠內(nèi)休息至少 4-6 周,盡

管最近的一項回顧性評估顯示,在胸腰椎間盤疾病的

治療中,休息的時間對治療的結(jié)果或生活質(zhì)量沒有影

響 133。保守療法不適合于根據(jù)影像學(xué)檢查和 / 或失去

深層疼痛感覺(DPP)的病畜 34。

脊髓挫傷和軸外出血

脊髓挫傷是一種溝內(nèi)出血,它最常見繼發(fā)于其他

原因的原發(fā)損傷,包括 VFLs、椎間盤擠壓和穿透性損

傷 13,134。實質(zhì)性挫傷的治療目的是治療同時發(fā)生的原

發(fā)性損傷(見前面的討論)13。軸外出血可發(fā)生在硬膜

外或硬膜下,并可對脊髓造成直接壓迫,有關(guān)于它繼

發(fā)于椎間盤擠壓的報道 135–137。對于有壓迫性軸外血

腫的病畜,建議采用減壓手術(shù) 13。

細(xì)胞移植療法

在一項 I 期試驗中, 對 9 只因車禍或椎間盤突出

而繼發(fā)椎體骨折或脫位(VFL) 引起的胸腰部急性脊髓

損傷的狗,進行了脊髓內(nèi)嗅覺膠質(zhì)細(xì)胞移植的評估(9

只狗中有 8 只是 DPP 陰性)。只有在這一小部分狗中

出現(xiàn)了明顯的功能改善,8 只狗中有 7 只的運動功能

得到改善 138。 最近,對 7 只由 VFL 引起的嚴(yán)重急性

SCI 的狗進行了自體骨髓基質(zhì)細(xì)胞移植的安全性調(diào)

查 ,發(fā)現(xiàn)這種技術(shù)是可行的和安全的,且沒有發(fā)現(xiàn)并

發(fā)癥。在隨訪期間 (SCI 后 29-62 個月),7 只狗中有 2

只能夠在沒有支持的情況下行走 139。雖然這些技術(shù)目

前還處于發(fā)展的早期階段,但它們可能代表了一種急

性 SCI 患畜的新療法。

23. Armitage-Chan E, Wetmore L, Chan D. Anesthetic

management of the headtrauma patient. J Vet Emerg Crit Care

(San Antonio) 2007;17(1):5–14.

24. Shores A. Craniocerebral trauma. In: Kirk R, editor. Current veterinary therapy X.X. Philadelphia: WB Saunders; 1983. p.

847–54.

25. Platt S, Radaelli S, McDonnell J. The prognostic value of

the Modified GlasgowComa Scale in head trauma in gods. J Vet

Intern Med 2001;15(6):581–4.

26. Levine GJ, Levine JM, Budke CM, et al. Description and

repeatability of anewly developed spinal cord injury scale for

dogs. Prev Vet Med 2009;89(1–2):121–7.

27. Olby N, De Risio L, Munana K, et al. Development of a

functional scoring systemin dogs with acute spinal cord injuries.

Am J Vet Res 2001;62(10):1624–8.

28. Smith P, Jeffery N. Spinal shock—comparative aspects

and clinical relevance.J Vet Intern Med 2005;19?788–93.

29. Boysen S, Rozanski E, Tidwell A, et al. Evaluation of a

focused assessment with sonography for trauma protocol to

detect free abdominal fluid in dogs involved in motor vehicle

accidents. J Am Vet Med Assoc 2004;225(8):1198–204.

30. Lisciandro GR. Abdominal and thoracic focused assessment with sonographyfor trauma, triage, and monitoring in small

animals. J Vet Emerg Crit Care(San Antonio) 2011;21(2):104–22.

31. Kinns J, Mai W, Seiler G, et al. Radiographic sensitivity

and negative predictive value for acute canine spinal trauma. Vet

Radiol Ultrasound 2006;47(6):563–70.

32. Vitale C, Coates J. Acute spinal injury. Compendium

Standards of Care: Emergencyand Critical Care Medicine

2007;9(7):1–11.

33. Lamb CR, Nicholls A, Targett M, et al. Accuracy of

survey radiographic diagnosis of intervertebral disc protrusion in

dogs. Vet Radiol Ultrasound 2002;43(3):222–8.

34. Brisson BA. Intervertebral disc disease in dogs. Vet Clin

North Am Small Anim Pract 2010;40(5):829–58.

35. Israel SK, Levine JM, Kerwin SC, et al. The relative sensitivity of computed tomography and myelography for identification of thoracolumbar intervertebral disk herniations in dogs. Vet

Radiol Ultrasound 2009;50(3):247–52.

36. Olby N, Dyce J, Houlton J. Correlation of plain radiographic and lumbar myelographic findings with surgical findings

in thoracolumbar disc disease. J SmallAnim Pract

1994;35(7):345–50.

37. Griffin J, Levine J, Kerwin S. Canine thoracolumbar

intervertebral disk disease:pathophysiology, neurologic examination, and emergency medical therapy.Compend Contin Educ

Vet 2009;31(3):E1–13.

38. Lewis D, Hosgood G. Complications associated with

the use of iohexol for myelographyof the cervical vertebral

column in dogs: 66 cases (1988-1990). J AmVet Med Assoc

1992;200(9):1381–4.

39. Barone G, Ziemer L, Shofer F, et al. Risk factors associated with the developmentof seizures after use of iohexol for

myelography in dogs: 182 cases(1998). J Am Vet Med Assoc

2002;220(10):1499–502.

40. Johnson P, Beltran E, Dennis R, et al. Magnetic resonance imaging characteristics of suspected vertebral instability

associated with fracture or subluxation in eleven dogs. Vet

Radiol Ultrasound 2012;53(5):552–9.

41. Rozanski EA, Rondeau MP. Respiratory pharmacotherapy in emergency and critical care medicine. Vet Clin North Am

Small Anim Pract 2002;32(5):1073–86.

42. Mazzaferro E. Oxygen therapy. In: Silverstein D, Hopper

K, editors. Small animal critical caremedicine. 1stedition. StLouis(MO): Elsevier Saunders; 2009.p. 78–81.

43. Hopper K. Basic mechanical ventilation. In: Silverstein

D, Hopper K, editors. Small animal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders; 2009. p. 900–4.

44. Zhuang J, Shackford S, Schmoker J, et al. Colloid infusion after brain injury: an effect on intracranial pressure, cerebral

blood flow, and oxygen delivery. Crit Care Med

1995;23(1):140–8.

45. Wade C, Grady J, Kramer G, et al. Individual patient

cohort analysis of the efficacy of hypertonic saline/dextran in

patients with traumatic brain injury and hypotension. J Trauma

1997;42?561–5.

46. Vassar M, Perry C, Gannaway W, et al. Analysis of

potential risks associated with 7.5% sodium chloride resuscitation of traumatic shock. Arch Surg 1990;124: 1309–15.

47. Vassar M, Perry C, Gannaway W, et al. 7.5% sodium

chloride/dextran for resuscitation of trauma patients undergoing

helicopter transport. Arch Surg 1991;126: 1065–72.

48. Vassar M, Perry C, Holcroft J. Prehospital resuscitation

of hypotensive trauma patients with 7.5% NaCl versus 7.5% NaCl

with added dextran: a controlled trial. J Trauma 1993;34?622–32.

49. Vassar M, Fisher R, O’ Brien P, et al. A multicenter trial

for resuscitation of injured patients with 7.5% sodium chloride.

Arch Surg 1993;128?1003–11.

50. Cooper J, Myles P, McDermott F, et al. Prehospital

hypertonic saline resuscitation of patients with hypotension and

severe traumatic brain injury. JAMA 2004;291?1350–7.

51. Roberts D, Hall R, Kramer A. Sedation for critically ill

adults with severe traumatic brain injury: a systematic review of

randomized controlled trials. CritCare Med 2012;39(12):2743–51.

52. Sperry R, Bailey P, Reichman M, et al. Fentanyl and

sulfentanil increase intracranial pressure in head trauma patients.

Anesthesiology 1992;77?416–20.

53. Lauer K, Connolly L, Schmeling W. Opioid sedation

does not alter intracranial pressure in head injured patients. Can

J Anaesth 1997;44?929–33.

54. Albanese J, Viviand X, Potie F, et al. Sulfentanil, fentanyl,

and alfentanil in head trauma patients: a study on cerebral

hemodynamics. Crit Care Med 1999;27?407–11.

55. de Nadal M, Munar F, Poca M, et al. Cerebral hemodynamic effects of morphine and fentanyl in patients with severe

head injury: absence of correlation to cerebral autoregulation.

Anesthesiology 2000;92?11–9.

56. Hansen B. Acute pain management. Vet Clin North Am

Small Anim Pract 2000;30(4):899–916.

57. Pascoe P. Opioid analgesics. Vet Clin North Am Small

Anim Pract 2000;30(4):757–69.

58. Keegan R, Green S, Bagley R, et al. Effects of medetomidine administration on intracranial pressure and cardiovascular variables of isoflurane-anesthetized dogs. Am J Vet Res

1996;56(2):193–8.

59. Treggiari M, Schultz N, Yanez N, et al. Role of intracranial pressure values and patterns in predicting outcome of traumatic brain injury: a systematic review. Neurocrit Care

2007;6?104–12.

60. Weed L, McKibbon P. Pressure changes in the cerebrospinal fluid following intravenous injection of solutions of various

concentrations. Am J Phys 1919;48?512–30.

61. Ropper A. Hyperosmolar therapy for raised intracranial

pressure. N Engl J Med 2012;367(8):746–52.

62. Brain Trauma Foundation, American Association of

Neurological Surgeons,Congress of Neurological Surgeons.

Guidelines for the management of severetraumatic brain injury. J

Neurotrauma 2007;24(1):S1–106.

63. Fink M. Osmotherapy for intracranial hypertension:

mannitol versus hypertonic saline. Continuum

2012;18(3):640–54.

64. Kaufmann A, Cardoso E. Aggravation of vasogenic

cerebral edema by multipledose mannitol. J Neurosurg

1992;77(4):584–9.

65. McManus M, Soriano S. Rebound swelling of astroglial

cells exposed to hypertonic mannitol. Anesthesiology

1998;88(6):1586–91.

66. Oddo M, Levine J, Frangos S, et al. Effect of mannitol

and hypertonic salineon cerebral oxygenation in patients with

severe traumatic brain injury and refractoryintracranial hypertension. J Neurol Neurosurg Psychiatr 2009;80(8):916–20.

67. Aiyagari V, Deibert E, Diringer M. Hypernatremia in the

neurologic intensive careunit: how high is too high? J Crit Care

2006;21(2):163–72.

68. Battison C, Andrews P, Graham C, et al. Randomized,

controlled trial on theeffect of a 20% mannitol solution and a

7.5% saline/6% dextran solution onincreased intracranial pressure after brain injury. Crit Care Med 2005;33(1):196–202.

69. Francony C, Fauvage B, Falcon D, et al. Equimolar

doses of mannitol and hypertonicsaline in the treatment of intracranial pressure. Crit Care Med 2008;36(3):795–800.

70. Zeng H, Wang Q, Deng Y, et al. A comparative study on

the efficacy of 10%hypertonic saline and equal volume of 20%

mannitol in the treatment of experimentallyinduced cerebral

edema in adult rats. BMC Neurosci 2010;11?153.

71. da Silva J, de Lima F, Valenca M, et al. Hypertonic saline

more efficacious thanmannitol in lethal intracranial hypertension

model. Neurol Res 2010;32(2):139–43.

72. Todd M, Cutkomp J, Brian J. Influence of mannitol and

furosemide, alone and incombination, on brain water content

after fluid percussion injury. Anesthesiology2006;105?1176–80.

73. Edwards P, Arango M, Balica L, et al. Final results of

MRC CRASH, a randomized placebo-controlled trial of intravenous corticosteroids in adults with headinjury- outcomes at 6

months. Lancet 2005;365(9475):1957–9.

74. Roberts I, Yates D, Sandercock P, et al. Effect of intravenous corticosteroids on death within 14 days in 10,008 adults

with clinically significant head injury (MRC CRASH trial): randomized placebo-controlled trial. Lancet 2004;364?9442.

75. Schierhout G, Roberts I. Withdrawn: antiepileptic drugs

for preventing seizures following acute traumatic brain injury.

Cochrane Database Syst Rev 2012;(6):CD000173.

76. Musulin S, Mariani C, Papich M. Diazepam pharmacokinetics after nasal drop and atomized nasal administration in

dogs. J Vet Pharmacol Ther 2011;34(1): 17–24.

77. Kassell N, Hitchon P, Gerk M, et al. Alterations in cerebral blood flow,oxygen metabolism, and electrical activity produced by high-dose thiopental.Neurosurgery 1980;7?598–603.

78. Hayes G. Severe seizures associated with traumatic

brain injury managed bycontrolled hypothermia, pharmacologic

coma, and mechanical ventilation in a dog. J Vet Emerg Crit Care

(San Antonio) 2009;19(6):629–34.

79. Giacino J, Whyte J, Bagiella E, et al. Placebo-controlled

trial of amantadine for severe traumatic brain injury. N Engl J

Med 2012;366?819–26.

80. Hall E. The neuroprotective pharmacology of methylprednisolone. J Neurosurg 1992;76(1):13–22.

81. Parker A, Smith C. Functional recovery from spinal cord

trauma following dexamethasone and chlorpromazine therapy in

dogs. Res Vet Sci 1976;21(2):246–7.

82. Levine J, Levine G, Boozer L, et al. Adverse effects and

outcome associatedwith dexamethasone administration in dogs

with acute thoracolumbar intervertebral disk herniation: 161

cases (2000-2006). J Am Vet Med Assoc 2008;232(3):411–7.

83. Bracken M, Shepard M, Collins W. A randomized, controlled trial of methylprednisolone or naloxone in the treatment

of acute spinal-cord injury. Results of the second national acute

spinal cord injury study. N Engl J Med 1990;322(20):1405–11.

84. Bracken M, Shepard M, Hellenbrand K. Methylprednisolone and neurologicalfunction 1 year after spinal cord injury.

Results of the National Acute Spinal Cord Injury Study. J Neurosurg 1985;63(5):704–13.

85. Bracken M, Shepard M, Holford T. Administration of

methylprednisolone for 24 or

48 hours or tirilazad mesylate for 48 hours in the treatment

of acute spinal cord injury. Results of the Third National Acute

Spinal Cord Injury Randomized Controlled Trial. National Acute

Spinal Cord Injury.JAMA 1997;277(20):1597–604.

86. Nesathurai S. Steroids and spinal cord injury: revisiting

the NASCIS 2 and NASCIS 3 trials. J Trauma Acute Care Surg

1998;45(6):1088–93.

87. Rabinowitz R, Eck J, Harper C. Urgent surgical decompression compared to methylprednisolone for the treatment of

acute spinal cord injury. Spine 2008;33(21):2260–8.

88. Coates J, Sorjonen D, Simpson S, et al. Clinicopathologic effects of a 21-aminosteroid compound (U74389G) and high

dose methylprednisolone onspinal cord function after simulated

spinal cord trauma. Vet Surg 1995;24?128–39.

89. Baltzer W, McMichael MA, Hosgood G. Randomized,

blinded, placebocontrolledclinical trial of N-acetylcysteine in

dogs with spinal cord trauma from acute intervertebral disc

disease. Spine 2008;33(13):1397–402.

90. Bains M, Hall E. Antioxidant therapies in traumatic brain

injury and spinal cord injury. Biochim Biophys Acta

2012;1822(5):675–84.

91. Hall E, Wolf D. A pharmacological analysis of the

pathophysiologicalmechanisms of posttraumatic spinal cord

ischemia. J Neurosurg 1986;64(6):951–61.

92. Ates O, Cayli S, Gurses I. Comparative neuroprotective

effect of sodium channel blockers after experimental spinal cord

injury. J Clin Neurosci 2007;14(7):658–65.

93. Kaptanoglu E, Solaroglu I, Surucu H. Blockade of

sodium channels by phenytoin protects ultrastructure and attenuates lipid peroxidation in experimental spinal cord injury. Acta

Neurochir 2005;147(4):405–12.

94. Hains B, Saab C, Lo A. Sodium channel blockade with

phenytoin protects spinal cord axons, enhances axonal conduction, and improves functional recovery after contusion SCI. Exp

Neurol 2004;188(2):365–77.

95. Schwartz G, Fehlings M. Secondary injury mechanisms

of spinal cord trauma:novel therapeutic approach for the management of secondary pathophysiology with the sodium channel blocker riluzole. Prog Brain Res 2002;137?177–90.

96. Park E, Velumian A, Fehlings M. The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with

an emphasis on the implications for white matter degeneration. J

Neurotrauma 2004;21?754–74.

97. Walters M, Kaste M, Lees K, et al. The AMPA antagonist

ZK 200775 in patients with acute ischaemic stroke: a double-blind, multi-centre, placebo-controlled safety and tolerability study. Cerebrovasc Dis 2005;20?304–9.

98. Chan P. White matter injury in spinal cord ischemia:

protection by AMPA/kainite glutamate receptor antagonism—Editoral comment. Stroke 2000;31?1952.

99. Chen HS, Lipton S. The chemical biology of clinically

tolerated NMDA receptor antagonists. J Neurochem

2006;97?1611–26.

100. Tadie M, D’ Arbigny P, Mathe J, et al. Acute spinal cord

injury. Early care and treatment in a multicenter study with

gacylidine. Soc Neurosci 1999;25?1090.

101. Kwon B, Okon E, Hillyer J. A systematic review of

non-invasive pharmacologic neuroprotective treatments for

acute spinal cord injury. J Neurotrauma 2011;28(8):1545–88.

102. Sturges B, LeCouteur R. Intracranial hypertension. In:

Silverstein D, Hopper K,editors. Small animal critical care medicine. 1st edition. St Louis (MO): ElsevierSaunders; 2009. p.

423–9.

103. Brain Trauma Foundation T, National Association of

State EMS Officials T,National Association of EMTs. Guidelines for

prehospital management of traumatic brain injury. Prehosp

Emerg Care 2007;12(1):1–52.

104. Davis D, Dunford J, Poste J, et al. The impact of hypoxia and hyperventilation on outcome after paramedic rapid

sequence intubation of severely head-injured patients. J Trauma

2004;57(1):1–8.

105. Muizelaar J, Marmarou A, Ward J, et al. Adverse effects

of prolonged hyperventilationin patients with severe head injury;

a randomized clinical trial. J Neurosurg 1991;75(5):731–9.

106. Deutschman C, Konstantinides F, Raup S. Physiological and metabolic response to isolated closed-head injury. Part i:

basal metabolic state: correlations of metabolic and physiological parameters with fasting and stressed controls. J Neurosurg

1986;64?89–98.

107. Jeremitsky E, Omert L, Dunham C, et al. The impact of

hyperglycemia on patients with severe brain injury. J Trauma

2005;58(1):47–50.

108. Syring R, Otto C, Drobatz K. Hyperglycemia in dogs

and cats with head trauma:122 cases (1997-1999). J Am Vet

Med Assoc 2001;218?1124–9.

109. Vespa P, McArthur D, Stein N, et al. Tight glycemic

control increases metabolic distress in traumatic brain injury: a

randomized controlled within subjects trial. Crit Care Med

2012;40(6):1923–9.

110. Green D, O’ Phelan K, Bassin S, et al. Intensive versus

conventional insulin therapy in critically ill neurologic patients.

Neurocrit Care 2010;13(3):299–306.

111. Bilotta F, Caramia R, Cernak I, et al. Intensive insulin

therapy after severe traumatic brain injury: randomized clinical

trial. Neurocrit Care 2008;9(2):159–66.

112. Dewey C. Urinary bladder management. In: Dewey

CW, editor. A practical guide to canine and feline neurology. St

Louis (MO): Elsevier Saunders; 2003. p. 419–26.

113. Bubenik L, Hosgood G. Urinary tract infection in dogs

with thoracolumbar intervertebral disc herniation and urinary

bladder dysfunction managed by manual expression, indwelling

catheterization or intermittent catheterization. Vet Surg

2008;37?791–800.

114. Smarick S, Haskins S, Aldrich J, et al. Incidence of

catheter-associated urinary tract infection among dogs in a

small animal intensive care unit. J Am Vet Med Assoc

2004;224(12):1936–40.

115. Ng I, Lim J, Wong H. Effects of head posture on cerebral hemodynamics its influences on intracranial pressure, cerebral perfusion pressure, and cerebral oxygenation. Neurosurgery

2004;54(3):593–7.

116. Sadaka F, Veremakis C. Therapeutic hypothermia for

the management of intracranial hypertension in severe traumatic

brain injury: a systematic review. Brain Inj 2012;26(7–8):899–908.

117. McCarthy P, Scott L, Ganta C, et al. Hypothermic protection in traumatic brain injury. Pathophysiology 2012;735–57.

118. Wijayatilake D, Shepherd S, Sherren P. Updates in the

management of intracranial pressure in traumatic brain injury.

Curr Opin Anaesthesiol 2012;25(5):540–7.

119. Hutchinson P, Corteen E, Czosnyka M, et al. Decompressive craniectomy intraumatic brain injury: the randomized

multicenter RESCUEicp study. Acta Neurochir 2006;96(S):17–20.

120. La Rosa G, Conti A, Cardali S, et al. Does early decompression improve neurological outcome of spinal cord injured

patients? Appraisal of the literature using a meta-analytical

approach. Spinal Cord 2004;42(9):503–12.

121. Croce M, Bee T, Pritchard E, et al. Does optimal timing

for spine fracture fixation exist? Ann Surg 2001;233(6):851–8.

122. Fehlings M, Perrin R. The timing of surgical intervention in the treatment of spinal cord injury: a systematic review of

recent clinical evidence. Spine 2006;31(11): S28–35.

123. Jeffery ND. Vertebral fracture and luxation in small

animals. Vet Clin North Am Small Anim Pract 2010;40(5):809–28.

124. Denis F. Spinal instability as defined by the three-column spine concept in acute spinal trauma. Clin Orthop Relat Res

1984;189?65–76.

125. Hillman R, Kengeri S, Waters D. Reevaluation of predictive factors for complete recovery in dogs with nonambulatory tetraparesis secondary to cervical disk herniation. J Am Anim

Hosp Assoc 2009;45?155–63.

126. Cherrone K, Dewey C, Coates J, et al. A retrospective

comparison of cervical intervertebral disk disease in nonchondrodystrophic large dogs versus small dogs. J Am Anim Hosp

Assoc 2004;40?316–20.

127. Gage E, Hoerlein B. Hemilaminectomy and dorsal

laminectomy for relieving compressions of the spinal cord in the

dog. J Am Vet Med Assoc 1968;152: 351–9.

128. Seim H 3rd, Prata R. Ventral decompression for the

treatment of cervical disk disease in the dog: a review of 54

cases. J Am Anim Hosp Assoc 1982;18: 233–40.

129. Gill P, Lippincott C, Anderson S. Dorsal laminectomy in

the treatment of cervical intervertebral disk disease in small

dogs: a retrospective study of 30 cases.J Am Anim Hosp Assoc

1996;32?77–80.

130. Felts J, Prata R. Cervical disk disease in the dog: intraforaminal and lateral extrusions. J Am Anim Hosp Assoc

1983;19?755–60.

131. Tanaka H, Nakayama M, Takase K. Usefulness of hemilaminectomy for cervical intervertebral disk disease in small

dogs. J Vet Med Sci 2005;67?679–83.

132. McCartney W. Comparison of recovery times and

complication rates between a modified slanted slot and the

standard ventral slot for the treatment of cervical disc disease in

20 dogs. J Small Anim Pract 2007;48?498–501.

133. Levine J, Levine G, Johnson S, et al. Evaluation of the

success of medical management for presumptive thoracolumbar

intervertebral disk herniation in dogs. Vet Surg 2007;36?482–91.

134. Kent M. Intraaxial spinal cord hemorrhage secondary

to atlantoaxial subluxationin a dog. J Am Anim Hosp Assoc

2010;46(2):132–7.

135. Cerda-Gonzalez S, Olby NJ. Fecal incontinence associated with epidural spinalhematoma and intervertebral disk

extrusion in a dog. J Am Vet Med Assoc 2006;228(2):230–5.

136. Caswell JL, Nykamp SG. Intradural vasculitis and hemorrhage in full sibling Welsh springer spaniels. Can Vet J

2003;44(2):137–9.

137. Tidwell AS, Specht A, Blaeser L, et al. Magnetic resonance imaging features ofextradural hematomas associated with

intervertebral disc herniation in a dog.Vet Radiol Ultrasound

2001;43(4):319–24.

138. Jeffery N, Lakatos A, Franklin R. Autologous olfactory

glial cell transplantation is eliable and safe in naturally occurring

spinal cord injury. J Neurotrauma 2005;22(11):1282–93.

139. Nishida H, Nakayama M, Tanaka H. Safety of autologous bone marrow stromal cell transplantation in dogs with

acute spinal cord injury. Vet Surg 2012;41?437–42.

140. Olby N, Levine J, Harris T. Long-term functional outcome of dogs with severe injuries of the thoracolumbar spinal

cord: 87 cases (1996-2001). J Am VetMed Assoc

2003;222(6):762–9.

141. Dewey CW. Myelopathies: disorders of the spinal cord.

In: Dewey CW, editor. A practical guide to canine and feline neurology. 2nd edition. Ames (IA):Wiley-Blackwell; 2008. p. 323–88.

142. Hawthorne J, Blevins W, Wallace L, et al. Cervical vertebral fractures in 56 dogs:a retrospective study. J Am Anim

Hosp Assoc 1999;35?135–46.

143. Eminaga S, Palus V, Cherubini G. Acute spinal cord

injury in the cat: causes,treatment and prognosis. J Feline Med

Surg 2011;13(11):850–62.spontaneous hyperadrenocorticism in

dogs. Part 2: Adrenal function testing and differentiating tests[J].

The Veterinary Journal, 2019, 252?105343.

上運動神經(jīng)元 膀胱

UMN bladder

下運動神經(jīng)元 膀胱

LMN bladder

- 腎上腺素能拮抗劑

( - adrenergic antagonist)

哌唑嗪( Prazosin)

苯氧芐胺( Phenoxybenzamine)

擬副交感神經(jīng)-parasympahtomimetic

氨甲酰甲膽堿-Bethanechol

骨骼肌松弛劑

地西泮 diazepam

- 腎上腺素受體激動劑

( - adrenergic agonist)

苯丙醇胺 phenylpropanolamine

α

α

α

α

第110頁

小動物臨床前沿(神經(jīng)學(xué)???- 上冊)· 腦部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 總第 12 期

- 108 -

參考文獻:

1. Simpson S, Syring R, Otto C. Severe blunt trauma in

dogs: 235 cases (1997-2003). J Vet Emerg Crit Care (San Antonio) 2009;19(6):588–602.

2. Marioni-Henry K, Vite CH, Newton AL, et al. Prevalence

of diseases of the spinalcord of cats. J Vet Intern Med

2004;18(6):851–8.

3. Fluehmann G, Doherr MG, Jaggy A. Canine neurological

diseases in a referralhospital population between 1989 and

2000 in Switzerland. J Small Anim Pract2006;47(10):582–7.

4. Sande A, West C. Traumatic brain injury: a review of

pathophysiology and management.J Vet Emerg Crit Care (San

Antonio) 2010;20(2):177–90.

5. Dewey C. Emergency management of the head trauma

patient. Vet Clin NorthAm Small Anim Pract 2000;30?207–25.

6. Hopkins A. Head trauma. Vet Clin North Am Small Anim

Pract 1996;26?875–91.

7. Dewey C, Fletcher D. Head trauma management. In:

Dewey C, editor. A practicalguide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell;2008. p. 221–35.

8. Aries M, Czrosynka M, Budohoski K, et al. Continuous

determination of optimalcerebral perfusion pressure in traumatic brain injury. Crit Care Med 2012;40(8):2456–63.

9. Ling G, Marshall S, Moore D. Diagnosis and management of traumatic braininjury. Continuum 2010;16(6):27–40.

10. Kim J, Gean A. Imaging for the diagnosis and management of traumatic braininjury. Neurotherapeutics

2011;8(1):39–53.

11. Tsang K, Whitfield P. Traumatic brain injury: review of

current management strategies.Br J Oral Maxillofac Surg

2012;50?298–308.

12. Proulx J, Dhupa N. Severe brain injury: part I: pathophysiology. CompendContin Educ Vet 1998;20?897–905.

13. Fletcher DJ, Dewey CW. Spinal trauma management.

In: Dewey CW, editor.A practical guide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell; 2008. p.

405–17.

14. Johnson K, Vite C. Spinal cord injury. In: Silverstein D,

Hopper K, editors. Smallanimal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders;2009. p. 419–23.

15. Park EH, White GA, Tieber LM. Mechanisms of injury

and emergency care ofacute spinal cord injury in dogs and cats.

J Vet Emerg Crit Care (San Antonio)2012;22(2):160–78.

16. Olby N. The pathogenesis and treatment of acute

spinal cord injuries in dogs.Vet Clin North Am Small Anim Pract

2010;40(5):791–807.

17. Fletcher D, Syring R. Traumatic brain injury. In: Silverstein D, Hopper K, editors.Small animal critical care medicine.

1st edition. St Louis (MO): Elsevier Saunders;2009. p. 658–62.

18. Leonard SE, Kirby R. The role of glutamate, calcium

and magnesium in secondarybrain injury. J Vet Emerg Crit Care

2002;12(1):17–32.

19. McMichael M, Moore R. Ischemia and reperfusion

injury pathophysiology, part I.J Vet Emerg Crit Care (San Antonio) 2004;14(4):231–41.

20. Oyinbo C. Secondary injury mechanisms in traumatic

spinal cord injury: anugget of this multiply cascade. Acta Neurobiol Exp 2011;71(2):281–99.

21. Tator C, Fehlings M. Review of the secondary injury

theory of acute spinal cordtrauma with emphasis on vascular

mechanisms. J Neurosurg 1991;75(1):15–26.

22. Dooney N, Dagal A. Anesthetic considerations in acute

spinal cord trauma. Int JCrit Illn Inj Sci 2011;1(1):36–43.

表9:把椎體分為三部分 ,用于評估VFL穩(wěn)定性

手術(shù)通常適用于有中度至重度障礙、神經(jīng)系統(tǒng)惡

化和 / 或椎體不穩(wěn)定的患者。關(guān)于脊髓創(chuàng)傷手術(shù)干預(yù)

的最佳時機存在爭議。許多創(chuàng)傷性 SCI 患者有椎體外

的損傷,需要初步固定,然而, 對人類創(chuàng)傷性 SCI 患者

的早期手術(shù)治療與預(yù)后改善有關(guān) 120–122。

椎體骨折和脫位的管理

人類和獸醫(yī)患者的脊柱骨折的穩(wěn)定性可以分為三

個部分來評估,該方法把椎體分為背側(cè)、中間和腹側(cè),當(dāng)

兩個或更多的區(qū)間被破壞時,骨折被認(rèn)為是不穩(wěn)定的。

表 9 列出了 3 個區(qū)間中每個區(qū)間所包含的結(jié)構(gòu) 123,124。

手術(shù)中的患者通常都有包括中度至重度神經(jīng)功

能缺損 (例如,運動功能微弱或喪失),影像學(xué)上有椎

體不穩(wěn)定的證據(jù),以及在積極保守治療下神經(jīng)功能仍

然惡化 13。

脊髓減壓、縮小和固定是手術(shù)治療的目的,有許多

手術(shù)技術(shù)可以在減壓后穩(wěn)定 VFLs,所選擇的技術(shù)取決

于椎體內(nèi)的位置、骨折的類型和外科醫(yī)生的偏好 123。

穩(wěn)定技術(shù)包括骨板、螺釘 、Steinmann 針 、Kirschner

線和聚甲基丙烯酸甲酯 (Polymethylmethacrylate -

PMMA )水泥 13。 VFLs 應(yīng)該由獲得委員會認(rèn)證的骨科

醫(yī)生或神經(jīng)外科醫(yī)生來管理和操作,盡管手術(shù)治療通

常是適用的,恢復(fù)功能的時間通常較短, 術(shù)后支持性

護理通常比保守治療所需的強度要低,但并發(fā)癥可能

發(fā)生,手術(shù)操作有可能導(dǎo)致 SCI 的惡化。

植入物的松動,以及植入物的失敗或感染(尤其

是 PMMA), 因此,有時需要進行再次進行手術(shù) 13。

原發(fā)性損傷的保守治療最適合于損傷最小、病況

穩(wěn)定、三個部分的椎體都穩(wěn)定良好的患者。已有人描

述過使用外固定裝置,但這些裝置的應(yīng)用充滿了并發(fā)

癥,包括穩(wěn)定不足夠、 VFL 部位的活動增加,以及擦傷

和潰瘍。因此,保守治療通常包括嚴(yán)格地關(guān)在籠子休

息 6 到 8 周 、加上鎮(zhèn)痛和護理。

外傷性椎間盤突出癥患者不能行走,有進行性神

經(jīng)功能障礙, 對保守治療無反應(yīng),或頸椎病變引起嚴(yán)

重疼痛, 應(yīng)考慮手術(shù)治療 34,125,126。對于 III 型(創(chuàng)傷性)

椎間盤疾病,除非有相關(guān)的壓迫性軸外血腫,否則通

常不需手術(shù)治療。根據(jù)椎間盤突出的部位、側(cè)化程度

和嚴(yán)重程度,可能需要進行背側(cè)椎板切除術(shù)、半椎板

切除術(shù)或腹側(cè)槽手術(shù) 13,34,127–132。

保守療法可用于治療單純的病理疼痛

hyperpathia(神經(jīng)病態(tài)疼痛)或有輕微神經(jīng)功能障礙

的患畜 13,34。建議維持嚴(yán)格的籠內(nèi)休息至少 4-6 周,盡

管最近的一項回顧性評估顯示,在胸腰椎間盤疾病的

治療中,休息的時間對治療的結(jié)果或生活質(zhì)量沒有影

響 133。保守療法不適合于根據(jù)影像學(xué)檢查和 / 或失去

深層疼痛感覺(DPP)的病畜 34。

脊髓挫傷和軸外出血

脊髓挫傷是一種溝內(nèi)出血,它最常見繼發(fā)于其他

原因的原發(fā)損傷,包括 VFLs、椎間盤擠壓和穿透性損

傷 13,134。實質(zhì)性挫傷的治療目的是治療同時發(fā)生的原

發(fā)性損傷(見前面的討論)13。軸外出血可發(fā)生在硬膜

外或硬膜下,并可對脊髓造成直接壓迫,有關(guān)于它繼

發(fā)于椎間盤擠壓的報道 135–137。對于有壓迫性軸外血

腫的病畜,建議采用減壓手術(shù) 13。

細(xì)胞移植療法

在一項 I 期試驗中, 對 9 只因車禍或椎間盤突出

而繼發(fā)椎體骨折或脫位(VFL) 引起的胸腰部急性脊髓

損傷的狗,進行了脊髓內(nèi)嗅覺膠質(zhì)細(xì)胞移植的評估(9

只狗中有 8 只是 DPP 陰性)。只有在這一小部分狗中

出現(xiàn)了明顯的功能改善,8 只狗中有 7 只的運動功能

得到改善 138。 最近,對 7 只由 VFL 引起的嚴(yán)重急性

SCI 的狗進行了自體骨髓基質(zhì)細(xì)胞移植的安全性調(diào)

查 ,發(fā)現(xiàn)這種技術(shù)是可行的和安全的,且沒有發(fā)現(xiàn)并

發(fā)癥。在隨訪期間 (SCI 后 29-62 個月),7 只狗中有 2

只能夠在沒有支持的情況下行走 139。雖然這些技術(shù)目

前還處于發(fā)展的早期階段,但它們可能代表了一種急

性 SCI 患畜的新療法。

23. Armitage-Chan E, Wetmore L, Chan D. Anesthetic

management of the headtrauma patient. J Vet Emerg Crit Care

(San Antonio) 2007;17(1):5–14.

24. Shores A. Craniocerebral trauma. In: Kirk R, editor. Current veterinary therapy X.X. Philadelphia: WB Saunders; 1983. p.

847–54.

25. Platt S, Radaelli S, McDonnell J. The prognostic value of

the Modified GlasgowComa Scale in head trauma in gods. J Vet

Intern Med 2001;15(6):581–4.

26. Levine GJ, Levine JM, Budke CM, et al. Description and

repeatability of anewly developed spinal cord injury scale for

dogs. Prev Vet Med 2009;89(1–2):121–7.

27. Olby N, De Risio L, Munana K, et al. Development of a

functional scoring systemin dogs with acute spinal cord injuries.

Am J Vet Res 2001;62(10):1624–8.

28. Smith P, Jeffery N. Spinal shock—comparative aspects

and clinical relevance.J Vet Intern Med 2005;19?788–93.

29. Boysen S, Rozanski E, Tidwell A, et al. Evaluation of a

focused assessment with sonography for trauma protocol to

detect free abdominal fluid in dogs involved in motor vehicle

accidents. J Am Vet Med Assoc 2004;225(8):1198–204.

30. Lisciandro GR. Abdominal and thoracic focused assessment with sonographyfor trauma, triage, and monitoring in small

animals. J Vet Emerg Crit Care(San Antonio) 2011;21(2):104–22.

31. Kinns J, Mai W, Seiler G, et al. Radiographic sensitivity

and negative predictive value for acute canine spinal trauma. Vet

Radiol Ultrasound 2006;47(6):563–70.

32. Vitale C, Coates J. Acute spinal injury. Compendium

Standards of Care: Emergencyand Critical Care Medicine

2007;9(7):1–11.

33. Lamb CR, Nicholls A, Targett M, et al. Accuracy of

survey radiographic diagnosis of intervertebral disc protrusion in

dogs. Vet Radiol Ultrasound 2002;43(3):222–8.

34. Brisson BA. Intervertebral disc disease in dogs. Vet Clin

North Am Small Anim Pract 2010;40(5):829–58.

35. Israel SK, Levine JM, Kerwin SC, et al. The relative sensitivity of computed tomography and myelography for identification of thoracolumbar intervertebral disk herniations in dogs. Vet

Radiol Ultrasound 2009;50(3):247–52.

36. Olby N, Dyce J, Houlton J. Correlation of plain radiographic and lumbar myelographic findings with surgical findings

in thoracolumbar disc disease. J SmallAnim Pract

1994;35(7):345–50.

37. Griffin J, Levine J, Kerwin S. Canine thoracolumbar

intervertebral disk disease:pathophysiology, neurologic examination, and emergency medical therapy.Compend Contin Educ

Vet 2009;31(3):E1–13.

38. Lewis D, Hosgood G. Complications associated with

the use of iohexol for myelographyof the cervical vertebral

column in dogs: 66 cases (1988-1990). J AmVet Med Assoc

1992;200(9):1381–4.

39. Barone G, Ziemer L, Shofer F, et al. Risk factors associated with the developmentof seizures after use of iohexol for

myelography in dogs: 182 cases(1998). J Am Vet Med Assoc

2002;220(10):1499–502.

40. Johnson P, Beltran E, Dennis R, et al. Magnetic resonance imaging characteristics of suspected vertebral instability

associated with fracture or subluxation in eleven dogs. Vet

Radiol Ultrasound 2012;53(5):552–9.

41. Rozanski EA, Rondeau MP. Respiratory pharmacotherapy in emergency and critical care medicine. Vet Clin North Am

Small Anim Pract 2002;32(5):1073–86.

42. Mazzaferro E. Oxygen therapy. In: Silverstein D, Hopper

K, editors. Small animal critical caremedicine. 1stedition. StLouis(MO): Elsevier Saunders; 2009.p. 78–81.

43. Hopper K. Basic mechanical ventilation. In: Silverstein

D, Hopper K, editors. Small animal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders; 2009. p. 900–4.

44. Zhuang J, Shackford S, Schmoker J, et al. Colloid infusion after brain injury: an effect on intracranial pressure, cerebral

blood flow, and oxygen delivery. Crit Care Med

1995;23(1):140–8.

45. Wade C, Grady J, Kramer G, et al. Individual patient

cohort analysis of the efficacy of hypertonic saline/dextran in

patients with traumatic brain injury and hypotension. J Trauma

1997;42?561–5.

46. Vassar M, Perry C, Gannaway W, et al. Analysis of

potential risks associated with 7.5% sodium chloride resuscitation of traumatic shock. Arch Surg 1990;124: 1309–15.

47. Vassar M, Perry C, Gannaway W, et al. 7.5% sodium

chloride/dextran for resuscitation of trauma patients undergoing

helicopter transport. Arch Surg 1991;126: 1065–72.

48. Vassar M, Perry C, Holcroft J. Prehospital resuscitation

of hypotensive trauma patients with 7.5% NaCl versus 7.5% NaCl

with added dextran: a controlled trial. J Trauma 1993;34?622–32.

49. Vassar M, Fisher R, O’ Brien P, et al. A multicenter trial

for resuscitation of injured patients with 7.5% sodium chloride.

Arch Surg 1993;128?1003–11.

50. Cooper J, Myles P, McDermott F, et al. Prehospital

hypertonic saline resuscitation of patients with hypotension and

severe traumatic brain injury. JAMA 2004;291?1350–7.

51. Roberts D, Hall R, Kramer A. Sedation for critically ill

adults with severe traumatic brain injury: a systematic review of

randomized controlled trials. CritCare Med 2012;39(12):2743–51.

52. Sperry R, Bailey P, Reichman M, et al. Fentanyl and

sulfentanil increase intracranial pressure in head trauma patients.

Anesthesiology 1992;77?416–20.

53. Lauer K, Connolly L, Schmeling W. Opioid sedation

does not alter intracranial pressure in head injured patients. Can

J Anaesth 1997;44?929–33.

54. Albanese J, Viviand X, Potie F, et al. Sulfentanil, fentanyl,

and alfentanil in head trauma patients: a study on cerebral

hemodynamics. Crit Care Med 1999;27?407–11.

55. de Nadal M, Munar F, Poca M, et al. Cerebral hemodynamic effects of morphine and fentanyl in patients with severe

head injury: absence of correlation to cerebral autoregulation.

Anesthesiology 2000;92?11–9.

56. Hansen B. Acute pain management. Vet Clin North Am

Small Anim Pract 2000;30(4):899–916.

57. Pascoe P. Opioid analgesics. Vet Clin North Am Small

Anim Pract 2000;30(4):757–69.

58. Keegan R, Green S, Bagley R, et al. Effects of medetomidine administration on intracranial pressure and cardiovascular variables of isoflurane-anesthetized dogs. Am J Vet Res

1996;56(2):193–8.

59. Treggiari M, Schultz N, Yanez N, et al. Role of intracranial pressure values and patterns in predicting outcome of traumatic brain injury: a systematic review. Neurocrit Care

2007;6?104–12.

60. Weed L, McKibbon P. Pressure changes in the cerebrospinal fluid following intravenous injection of solutions of various

concentrations. Am J Phys 1919;48?512–30.

61. Ropper A. Hyperosmolar therapy for raised intracranial

pressure. N Engl J Med 2012;367(8):746–52.

62. Brain Trauma Foundation, American Association of

Neurological Surgeons,Congress of Neurological Surgeons.

Guidelines for the management of severetraumatic brain injury. J

Neurotrauma 2007;24(1):S1–106.

63. Fink M. Osmotherapy for intracranial hypertension:

mannitol versus hypertonic saline. Continuum

2012;18(3):640–54.

64. Kaufmann A, Cardoso E. Aggravation of vasogenic

cerebral edema by multipledose mannitol. J Neurosurg

1992;77(4):584–9.

65. McManus M, Soriano S. Rebound swelling of astroglial

cells exposed to hypertonic mannitol. Anesthesiology

1998;88(6):1586–91.

66. Oddo M, Levine J, Frangos S, et al. Effect of mannitol

and hypertonic salineon cerebral oxygenation in patients with

severe traumatic brain injury and refractoryintracranial hypertension. J Neurol Neurosurg Psychiatr 2009;80(8):916–20.

67. Aiyagari V, Deibert E, Diringer M. Hypernatremia in the

neurologic intensive careunit: how high is too high? J Crit Care

2006;21(2):163–72.

68. Battison C, Andrews P, Graham C, et al. Randomized,

controlled trial on theeffect of a 20% mannitol solution and a

7.5% saline/6% dextran solution onincreased intracranial pressure after brain injury. Crit Care Med 2005;33(1):196–202.

69. Francony C, Fauvage B, Falcon D, et al. Equimolar

doses of mannitol and hypertonicsaline in the treatment of intracranial pressure. Crit Care Med 2008;36(3):795–800.

70. Zeng H, Wang Q, Deng Y, et al. A comparative study on

the efficacy of 10%hypertonic saline and equal volume of 20%

mannitol in the treatment of experimentallyinduced cerebral

edema in adult rats. BMC Neurosci 2010;11?153.

71. da Silva J, de Lima F, Valenca M, et al. Hypertonic saline

more efficacious thanmannitol in lethal intracranial hypertension

model. Neurol Res 2010;32(2):139–43.

72. Todd M, Cutkomp J, Brian J. Influence of mannitol and

furosemide, alone and incombination, on brain water content

after fluid percussion injury. Anesthesiology2006;105?1176–80.

73. Edwards P, Arango M, Balica L, et al. Final results of

MRC CRASH, a randomized placebo-controlled trial of intravenous corticosteroids in adults with headinjury- outcomes at 6

months. Lancet 2005;365(9475):1957–9.

74. Roberts I, Yates D, Sandercock P, et al. Effect of intravenous corticosteroids on death within 14 days in 10,008 adults

with clinically significant head injury (MRC CRASH trial): randomized placebo-controlled trial. Lancet 2004;364?9442.

75. Schierhout G, Roberts I. Withdrawn: antiepileptic drugs

for preventing seizures following acute traumatic brain injury.

Cochrane Database Syst Rev 2012;(6):CD000173.

76. Musulin S, Mariani C, Papich M. Diazepam pharmacokinetics after nasal drop and atomized nasal administration in

dogs. J Vet Pharmacol Ther 2011;34(1): 17–24.

77. Kassell N, Hitchon P, Gerk M, et al. Alterations in cerebral blood flow,oxygen metabolism, and electrical activity produced by high-dose thiopental.Neurosurgery 1980;7?598–603.

78. Hayes G. Severe seizures associated with traumatic

brain injury managed bycontrolled hypothermia, pharmacologic

coma, and mechanical ventilation in a dog. J Vet Emerg Crit Care

(San Antonio) 2009;19(6):629–34.

79. Giacino J, Whyte J, Bagiella E, et al. Placebo-controlled

trial of amantadine for severe traumatic brain injury. N Engl J

Med 2012;366?819–26.

80. Hall E. The neuroprotective pharmacology of methylprednisolone. J Neurosurg 1992;76(1):13–22.

81. Parker A, Smith C. Functional recovery from spinal cord

trauma following dexamethasone and chlorpromazine therapy in

dogs. Res Vet Sci 1976;21(2):246–7.

82. Levine J, Levine G, Boozer L, et al. Adverse effects and

outcome associatedwith dexamethasone administration in dogs

with acute thoracolumbar intervertebral disk herniation: 161

cases (2000-2006). J Am Vet Med Assoc 2008;232(3):411–7.

83. Bracken M, Shepard M, Collins W. A randomized, controlled trial of methylprednisolone or naloxone in the treatment

of acute spinal-cord injury. Results of the second national acute

spinal cord injury study. N Engl J Med 1990;322(20):1405–11.

84. Bracken M, Shepard M, Hellenbrand K. Methylprednisolone and neurologicalfunction 1 year after spinal cord injury.

Results of the National Acute Spinal Cord Injury Study. J Neurosurg 1985;63(5):704–13.

85. Bracken M, Shepard M, Holford T. Administration of

methylprednisolone for 24 or

48 hours or tirilazad mesylate for 48 hours in the treatment

of acute spinal cord injury. Results of the Third National Acute

Spinal Cord Injury Randomized Controlled Trial. National Acute

Spinal Cord Injury.JAMA 1997;277(20):1597–604.

86. Nesathurai S. Steroids and spinal cord injury: revisiting

the NASCIS 2 and NASCIS 3 trials. J Trauma Acute Care Surg

1998;45(6):1088–93.

87. Rabinowitz R, Eck J, Harper C. Urgent surgical decompression compared to methylprednisolone for the treatment of

acute spinal cord injury. Spine 2008;33(21):2260–8.

88. Coates J, Sorjonen D, Simpson S, et al. Clinicopathologic effects of a 21-aminosteroid compound (U74389G) and high

dose methylprednisolone onspinal cord function after simulated

spinal cord trauma. Vet Surg 1995;24?128–39.

89. Baltzer W, McMichael MA, Hosgood G. Randomized,

blinded, placebocontrolledclinical trial of N-acetylcysteine in

dogs with spinal cord trauma from acute intervertebral disc

disease. Spine 2008;33(13):1397–402.

90. Bains M, Hall E. Antioxidant therapies in traumatic brain

injury and spinal cord injury. Biochim Biophys Acta

2012;1822(5):675–84.

91. Hall E, Wolf D. A pharmacological analysis of the

pathophysiologicalmechanisms of posttraumatic spinal cord

ischemia. J Neurosurg 1986;64(6):951–61.

92. Ates O, Cayli S, Gurses I. Comparative neuroprotective

effect of sodium channel blockers after experimental spinal cord

injury. J Clin Neurosci 2007;14(7):658–65.

93. Kaptanoglu E, Solaroglu I, Surucu H. Blockade of

sodium channels by phenytoin protects ultrastructure and attenuates lipid peroxidation in experimental spinal cord injury. Acta

Neurochir 2005;147(4):405–12.

94. Hains B, Saab C, Lo A. Sodium channel blockade with

phenytoin protects spinal cord axons, enhances axonal conduction, and improves functional recovery after contusion SCI. Exp

Neurol 2004;188(2):365–77.

95. Schwartz G, Fehlings M. Secondary injury mechanisms

of spinal cord trauma:novel therapeutic approach for the management of secondary pathophysiology with the sodium channel blocker riluzole. Prog Brain Res 2002;137?177–90.

96. Park E, Velumian A, Fehlings M. The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with

an emphasis on the implications for white matter degeneration. J

Neurotrauma 2004;21?754–74.

97. Walters M, Kaste M, Lees K, et al. The AMPA antagonist

ZK 200775 in patients with acute ischaemic stroke: a double-blind, multi-centre, placebo-controlled safety and tolerability study. Cerebrovasc Dis 2005;20?304–9.

98. Chan P. White matter injury in spinal cord ischemia:

protection by AMPA/kainite glutamate receptor antagonism—Editoral comment. Stroke 2000;31?1952.

99. Chen HS, Lipton S. The chemical biology of clinically

tolerated NMDA receptor antagonists. J Neurochem

2006;97?1611–26.

100. Tadie M, D’ Arbigny P, Mathe J, et al. Acute spinal cord

injury. Early care and treatment in a multicenter study with

gacylidine. Soc Neurosci 1999;25?1090.

101. Kwon B, Okon E, Hillyer J. A systematic review of

non-invasive pharmacologic neuroprotective treatments for

acute spinal cord injury. J Neurotrauma 2011;28(8):1545–88.

102. Sturges B, LeCouteur R. Intracranial hypertension. In:

Silverstein D, Hopper K,editors. Small animal critical care medicine. 1st edition. St Louis (MO): ElsevierSaunders; 2009. p.

423–9.

103. Brain Trauma Foundation T, National Association of

State EMS Officials T,National Association of EMTs. Guidelines for

prehospital management of traumatic brain injury. Prehosp

Emerg Care 2007;12(1):1–52.

104. Davis D, Dunford J, Poste J, et al. The impact of hypoxia and hyperventilation on outcome after paramedic rapid

sequence intubation of severely head-injured patients. J Trauma

2004;57(1):1–8.

105. Muizelaar J, Marmarou A, Ward J, et al. Adverse effects

of prolonged hyperventilationin patients with severe head injury;

a randomized clinical trial. J Neurosurg 1991;75(5):731–9.

106. Deutschman C, Konstantinides F, Raup S. Physiological and metabolic response to isolated closed-head injury. Part i:

basal metabolic state: correlations of metabolic and physiological parameters with fasting and stressed controls. J Neurosurg

1986;64?89–98.

107. Jeremitsky E, Omert L, Dunham C, et al. The impact of

hyperglycemia on patients with severe brain injury. J Trauma

2005;58(1):47–50.

108. Syring R, Otto C, Drobatz K. Hyperglycemia in dogs

and cats with head trauma:122 cases (1997-1999). J Am Vet

Med Assoc 2001;218?1124–9.

109. Vespa P, McArthur D, Stein N, et al. Tight glycemic

control increases metabolic distress in traumatic brain injury: a

randomized controlled within subjects trial. Crit Care Med

2012;40(6):1923–9.

110. Green D, O’ Phelan K, Bassin S, et al. Intensive versus

conventional insulin therapy in critically ill neurologic patients.

Neurocrit Care 2010;13(3):299–306.

111. Bilotta F, Caramia R, Cernak I, et al. Intensive insulin

therapy after severe traumatic brain injury: randomized clinical

trial. Neurocrit Care 2008;9(2):159–66.

112. Dewey C. Urinary bladder management. In: Dewey

CW, editor. A practical guide to canine and feline neurology. St

Louis (MO): Elsevier Saunders; 2003. p. 419–26.

113. Bubenik L, Hosgood G. Urinary tract infection in dogs

with thoracolumbar intervertebral disc herniation and urinary

bladder dysfunction managed by manual expression, indwelling

catheterization or intermittent catheterization. Vet Surg

2008;37?791–800.

114. Smarick S, Haskins S, Aldrich J, et al. Incidence of

catheter-associated urinary tract infection among dogs in a

small animal intensive care unit. J Am Vet Med Assoc

2004;224(12):1936–40.

115. Ng I, Lim J, Wong H. Effects of head posture on cerebral hemodynamics its influences on intracranial pressure, cerebral perfusion pressure, and cerebral oxygenation. Neurosurgery

2004;54(3):593–7.

116. Sadaka F, Veremakis C. Therapeutic hypothermia for

the management of intracranial hypertension in severe traumatic

brain injury: a systematic review. Brain Inj 2012;26(7–8):899–908.

117. McCarthy P, Scott L, Ganta C, et al. Hypothermic protection in traumatic brain injury. Pathophysiology 2012;735–57.

118. Wijayatilake D, Shepherd S, Sherren P. Updates in the

management of intracranial pressure in traumatic brain injury.

Curr Opin Anaesthesiol 2012;25(5):540–7.

119. Hutchinson P, Corteen E, Czosnyka M, et al. Decompressive craniectomy intraumatic brain injury: the randomized

multicenter RESCUEicp study. Acta Neurochir 2006;96(S):17–20.

120. La Rosa G, Conti A, Cardali S, et al. Does early decompression improve neurological outcome of spinal cord injured

patients? Appraisal of the literature using a meta-analytical

approach. Spinal Cord 2004;42(9):503–12.

121. Croce M, Bee T, Pritchard E, et al. Does optimal timing

for spine fracture fixation exist? Ann Surg 2001;233(6):851–8.

122. Fehlings M, Perrin R. The timing of surgical intervention in the treatment of spinal cord injury: a systematic review of

recent clinical evidence. Spine 2006;31(11): S28–35.

123. Jeffery ND. Vertebral fracture and luxation in small

animals. Vet Clin North Am Small Anim Pract 2010;40(5):809–28.

124. Denis F. Spinal instability as defined by the three-column spine concept in acute spinal trauma. Clin Orthop Relat Res

1984;189?65–76.

125. Hillman R, Kengeri S, Waters D. Reevaluation of predictive factors for complete recovery in dogs with nonambulatory tetraparesis secondary to cervical disk herniation. J Am Anim

Hosp Assoc 2009;45?155–63.

126. Cherrone K, Dewey C, Coates J, et al. A retrospective

comparison of cervical intervertebral disk disease in nonchondrodystrophic large dogs versus small dogs. J Am Anim Hosp

Assoc 2004;40?316–20.

127. Gage E, Hoerlein B. Hemilaminectomy and dorsal

laminectomy for relieving compressions of the spinal cord in the

dog. J Am Vet Med Assoc 1968;152: 351–9.

128. Seim H 3rd, Prata R. Ventral decompression for the

treatment of cervical disk disease in the dog: a review of 54

cases. J Am Anim Hosp Assoc 1982;18: 233–40.

129. Gill P, Lippincott C, Anderson S. Dorsal laminectomy in

the treatment of cervical intervertebral disk disease in small

dogs: a retrospective study of 30 cases.J Am Anim Hosp Assoc

1996;32?77–80.

130. Felts J, Prata R. Cervical disk disease in the dog: intraforaminal and lateral extrusions. J Am Anim Hosp Assoc

1983;19?755–60.

131. Tanaka H, Nakayama M, Takase K. Usefulness of hemilaminectomy for cervical intervertebral disk disease in small

dogs. J Vet Med Sci 2005;67?679–83.

132. McCartney W. Comparison of recovery times and

complication rates between a modified slanted slot and the

standard ventral slot for the treatment of cervical disc disease in

20 dogs. J Small Anim Pract 2007;48?498–501.

133. Levine J, Levine G, Johnson S, et al. Evaluation of the

success of medical management for presumptive thoracolumbar

intervertebral disk herniation in dogs. Vet Surg 2007;36?482–91.

134. Kent M. Intraaxial spinal cord hemorrhage secondary

to atlantoaxial subluxationin a dog. J Am Anim Hosp Assoc

2010;46(2):132–7.

135. Cerda-Gonzalez S, Olby NJ. Fecal incontinence associated with epidural spinalhematoma and intervertebral disk

extrusion in a dog. J Am Vet Med Assoc 2006;228(2):230–5.

136. Caswell JL, Nykamp SG. Intradural vasculitis and hemorrhage in full sibling Welsh springer spaniels. Can Vet J

2003;44(2):137–9.

137. Tidwell AS, Specht A, Blaeser L, et al. Magnetic resonance imaging features ofextradural hematomas associated with

intervertebral disc herniation in a dog.Vet Radiol Ultrasound

2001;43(4):319–24.

138. Jeffery N, Lakatos A, Franklin R. Autologous olfactory

glial cell transplantation is eliable and safe in naturally occurring

spinal cord injury. J Neurotrauma 2005;22(11):1282–93.

139. Nishida H, Nakayama M, Tanaka H. Safety of autologous bone marrow stromal cell transplantation in dogs with

acute spinal cord injury. Vet Surg 2012;41?437–42.

140. Olby N, Levine J, Harris T. Long-term functional outcome of dogs with severe injuries of the thoracolumbar spinal

cord: 87 cases (1996-2001). J Am VetMed Assoc

2003;222(6):762–9.

141. Dewey CW. Myelopathies: disorders of the spinal cord.

In: Dewey CW, editor. A practical guide to canine and feline neurology. 2nd edition. Ames (IA):Wiley-Blackwell; 2008. p. 323–88.

142. Hawthorne J, Blevins W, Wallace L, et al. Cervical vertebral fractures in 56 dogs:a retrospective study. J Am Anim

Hosp Assoc 1999;35?135–46.

143. Eminaga S, Palus V, Cherubini G. Acute spinal cord

injury in the cat: causes,treatment and prognosis. J Feline Med

Surg 2011;13(11):850–62.spontaneous hyperadrenocorticism in

dogs. Part 2: Adrenal function testing and differentiating tests[J].

The Veterinary Journal, 2019, 252?105343.

背側(cè)

Dorsal compartmemt

中間

middle compartment

腹側(cè)

ventral compartment

椎弓 vetebral arch

(脊柱突、下關(guān)節(jié)突, 椎板 laminae, 脊

椎椎根 pedicles)

背部縱向

韌帶

腹部的部分

脊柱體

背部韌帶復(fù)合體

(小面關(guān)節(jié)囊 , 弧間韌帶,棘間韌帶,

棘上韌帶,韌帶)

背部關(guān)節(jié)環(huán) 髓核

橫紋肌間韌帶 背部皮層的

脊柱體

腹側(cè)

纖維環(huán)

腹側(cè)縱行

韌帶

第111頁

小動物臨床前沿(神經(jīng)學(xué)專刊 - 上冊)· 腦部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 總第 12 期

- 109 -

參考文獻:

1. Simpson S, Syring R, Otto C. Severe blunt trauma in

dogs: 235 cases (1997-2003). J Vet Emerg Crit Care (San Antonio) 2009;19(6):588–602.

2. Marioni-Henry K, Vite CH, Newton AL, et al. Prevalence

of diseases of the spinalcord of cats. J Vet Intern Med

2004;18(6):851–8.

3. Fluehmann G, Doherr MG, Jaggy A. Canine neurological

diseases in a referralhospital population between 1989 and

2000 in Switzerland. J Small Anim Pract2006;47(10):582–7.

4. Sande A, West C. Traumatic brain injury: a review of

pathophysiology and management.J Vet Emerg Crit Care (San

Antonio) 2010;20(2):177–90.

5. Dewey C. Emergency management of the head trauma

patient. Vet Clin NorthAm Small Anim Pract 2000;30?207–25.

6. Hopkins A. Head trauma. Vet Clin North Am Small Anim

Pract 1996;26?875–91.

7. Dewey C, Fletcher D. Head trauma management. In:

Dewey C, editor. A practicalguide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell;2008. p. 221–35.

8. Aries M, Czrosynka M, Budohoski K, et al. Continuous

determination of optimalcerebral perfusion pressure in traumatic brain injury. Crit Care Med 2012;40(8):2456–63.

9. Ling G, Marshall S, Moore D. Diagnosis and management of traumatic braininjury. Continuum 2010;16(6):27–40.

10. Kim J, Gean A. Imaging for the diagnosis and management of traumatic braininjury. Neurotherapeutics

2011;8(1):39–53.

11. Tsang K, Whitfield P. Traumatic brain injury: review of

current management strategies.Br J Oral Maxillofac Surg

2012;50?298–308.

12. Proulx J, Dhupa N. Severe brain injury: part I: pathophysiology. CompendContin Educ Vet 1998;20?897–905.

13. Fletcher DJ, Dewey CW. Spinal trauma management.

In: Dewey CW, editor.A practical guide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell; 2008. p.

405–17.

14. Johnson K, Vite C. Spinal cord injury. In: Silverstein D,

Hopper K, editors. Smallanimal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders;2009. p. 419–23.

15. Park EH, White GA, Tieber LM. Mechanisms of injury

and emergency care ofacute spinal cord injury in dogs and cats.

J Vet Emerg Crit Care (San Antonio)2012;22(2):160–78.

16. Olby N. The pathogenesis and treatment of acute

spinal cord injuries in dogs.Vet Clin North Am Small Anim Pract

2010;40(5):791–807.

17. Fletcher D, Syring R. Traumatic brain injury. In: Silverstein D, Hopper K, editors.Small animal critical care medicine.

1st edition. St Louis (MO): Elsevier Saunders;2009. p. 658–62.

18. Leonard SE, Kirby R. The role of glutamate, calcium

and magnesium in secondarybrain injury. J Vet Emerg Crit Care

2002;12(1):17–32.

19. McMichael M, Moore R. Ischemia and reperfusion

injury pathophysiology, part I.J Vet Emerg Crit Care (San Antonio) 2004;14(4):231–41.

20. Oyinbo C. Secondary injury mechanisms in traumatic

spinal cord injury: anugget of this multiply cascade. Acta Neurobiol Exp 2011;71(2):281–99.

21. Tator C, Fehlings M. Review of the secondary injury

theory of acute spinal cordtrauma with emphasis on vascular

mechanisms. J Neurosurg 1991;75(1):15–26.

22. Dooney N, Dagal A. Anesthetic considerations in acute

spinal cord trauma. Int JCrit Illn Inj Sci 2011;1(1):36–43.

預(yù)后

神經(jīng)創(chuàng)傷的恢復(fù)和預(yù)后取決于損傷的嚴(yán)重程度、

損傷的原因、病變的部位以及原發(fā)和繼發(fā)損傷的治療

時機和療效 13。患有神經(jīng)系統(tǒng)創(chuàng)傷的小動物可以出現(xiàn)

明顯的神經(jīng)系統(tǒng)改善,并有巨大的能力來彌補神經(jīng)系

統(tǒng)的缺陷,因此,無論病人的表現(xiàn)如何,都建議要進行

持續(xù)的神經(jīng)系統(tǒng)重新評估。

MGCS 可用于評估 TBI 狗的康復(fù)預(yù)后,因為它已

被證明與 48 小時生存率呈線性關(guān)系 25。 DPP(deep

pain perception) 的存在一直與急性 SCI 的結(jié)果改善

有關(guān)。一項評估狗的嚴(yán)重胸腰椎 SCI 的回顧性研究表

明,只有 12% 的 VFL 狗恢復(fù)了行走能力,而 69% 患

有椎間盤突出癥的狗恢復(fù)了運動功能 140。對胸腰椎間

盤突出癥和完整的疼痛感覺的病例進行手術(shù)治療結(jié)

果是非常好的 ,預(yù)期恢復(fù)的運動功能為 80% 至 95%

(報告范圍為 72% 至 100%)141。

在一項關(guān)于手術(shù)治療頸椎間盤突出癥的研究中,

總體成功率為 99%126。一項對患有頸椎間盤突出癥的

狗的回顧性研究發(fā)現(xiàn),在 90% 的病例中,可以通過保

守治療 (即非手術(shù)治療)VFLs 具有良好的效果 142。那

些需要手術(shù)治療的病例有很高手術(shù)死亡風(fēng)險(36%)-

即在進行手術(shù)后的 30 天內(nèi)死亡,但在那些在手術(shù)后

的 30 天存活下來的病例中, 預(yù)后很好(100%), 這項

研究還顯示,不能行走和傷后 5 天以上才進行治療的

病人預(yù)后較差 142。對貓的預(yù)后研究是有限的,因此大

部分的相關(guān)信息都是從狗身上推斷出來的 143。

最后,神經(jīng)創(chuàng)傷很少獨立于其他系統(tǒng)性損傷而出

現(xiàn)。因此,在評估預(yù)后和指導(dǎo)主人的決策過程中,將病

畜的整個臨床情況考慮在內(nèi)是至關(guān)重要的。

23. Armitage-Chan E, Wetmore L, Chan D. Anesthetic

management of the headtrauma patient. J Vet Emerg Crit Care

(San Antonio) 2007;17(1):5–14.

24. Shores A. Craniocerebral trauma. In: Kirk R, editor. Current veterinary therapy X.X. Philadelphia: WB Saunders; 1983. p.

847–54.

25. Platt S, Radaelli S, McDonnell J. The prognostic value of

the Modified GlasgowComa Scale in head trauma in gods. J Vet

Intern Med 2001;15(6):581–4.

26. Levine GJ, Levine JM, Budke CM, et al. Description and

repeatability of anewly developed spinal cord injury scale for

dogs. Prev Vet Med 2009;89(1–2):121–7.

27. Olby N, De Risio L, Munana K, et al. Development of a

functional scoring systemin dogs with acute spinal cord injuries.

Am J Vet Res 2001;62(10):1624–8.

28. Smith P, Jeffery N. Spinal shock—comparative aspects

and clinical relevance.J Vet Intern Med 2005;19?788–93.

29. Boysen S, Rozanski E, Tidwell A, et al. Evaluation of a

focused assessment with sonography for trauma protocol to

detect free abdominal fluid in dogs involved in motor vehicle

accidents. J Am Vet Med Assoc 2004;225(8):1198–204.

30. Lisciandro GR. Abdominal and thoracic focused assessment with sonographyfor trauma, triage, and monitoring in small

animals. J Vet Emerg Crit Care(San Antonio) 2011;21(2):104–22.

31. Kinns J, Mai W, Seiler G, et al. Radiographic sensitivity

and negative predictive value for acute canine spinal trauma. Vet

Radiol Ultrasound 2006;47(6):563–70.

32. Vitale C, Coates J. Acute spinal injury. Compendium

Standards of Care: Emergencyand Critical Care Medicine

2007;9(7):1–11.

33. Lamb CR, Nicholls A, Targett M, et al. Accuracy of

survey radiographic diagnosis of intervertebral disc protrusion in

dogs. Vet Radiol Ultrasound 2002;43(3):222–8.

34. Brisson BA. Intervertebral disc disease in dogs. Vet Clin

North Am Small Anim Pract 2010;40(5):829–58.

35. Israel SK, Levine JM, Kerwin SC, et al. The relative sensitivity of computed tomography and myelography for identification of thoracolumbar intervertebral disk herniations in dogs. Vet

Radiol Ultrasound 2009;50(3):247–52.

36. Olby N, Dyce J, Houlton J. Correlation of plain radiographic and lumbar myelographic findings with surgical findings

in thoracolumbar disc disease. J SmallAnim Pract

1994;35(7):345–50.

37. Griffin J, Levine J, Kerwin S. Canine thoracolumbar

intervertebral disk disease:pathophysiology, neurologic examination, and emergency medical therapy.Compend Contin Educ

Vet 2009;31(3):E1–13.

38. Lewis D, Hosgood G. Complications associated with

the use of iohexol for myelographyof the cervical vertebral

column in dogs: 66 cases (1988-1990). J AmVet Med Assoc

1992;200(9):1381–4.

39. Barone G, Ziemer L, Shofer F, et al. Risk factors associated with the developmentof seizures after use of iohexol for

myelography in dogs: 182 cases(1998). J Am Vet Med Assoc

2002;220(10):1499–502.

40. Johnson P, Beltran E, Dennis R, et al. Magnetic resonance imaging characteristics of suspected vertebral instability

associated with fracture or subluxation in eleven dogs. Vet

Radiol Ultrasound 2012;53(5):552–9.

41. Rozanski EA, Rondeau MP. Respiratory pharmacotherapy in emergency and critical care medicine. Vet Clin North Am

Small Anim Pract 2002;32(5):1073–86.

42. Mazzaferro E. Oxygen therapy. In: Silverstein D, Hopper

K, editors. Small animal critical caremedicine. 1stedition. StLouis(MO): Elsevier Saunders; 2009.p. 78–81.

43. Hopper K. Basic mechanical ventilation. In: Silverstein

D, Hopper K, editors. Small animal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders; 2009. p. 900–4.

44. Zhuang J, Shackford S, Schmoker J, et al. Colloid infusion after brain injury: an effect on intracranial pressure, cerebral

blood flow, and oxygen delivery. Crit Care Med

1995;23(1):140–8.

45. Wade C, Grady J, Kramer G, et al. Individual patient

cohort analysis of the efficacy of hypertonic saline/dextran in

patients with traumatic brain injury and hypotension. J Trauma

1997;42?561–5.

46. Vassar M, Perry C, Gannaway W, et al. Analysis of

potential risks associated with 7.5% sodium chloride resuscitation of traumatic shock. Arch Surg 1990;124: 1309–15.

47. Vassar M, Perry C, Gannaway W, et al. 7.5% sodium

chloride/dextran for resuscitation of trauma patients undergoing

helicopter transport. Arch Surg 1991;126: 1065–72.

48. Vassar M, Perry C, Holcroft J. Prehospital resuscitation

of hypotensive trauma patients with 7.5% NaCl versus 7.5% NaCl

with added dextran: a controlled trial. J Trauma 1993;34?622–32.

49. Vassar M, Fisher R, O’ Brien P, et al. A multicenter trial

for resuscitation of injured patients with 7.5% sodium chloride.

Arch Surg 1993;128?1003–11.

50. Cooper J, Myles P, McDermott F, et al. Prehospital

hypertonic saline resuscitation of patients with hypotension and

severe traumatic brain injury. JAMA 2004;291?1350–7.

51. Roberts D, Hall R, Kramer A. Sedation for critically ill

adults with severe traumatic brain injury: a systematic review of

randomized controlled trials. CritCare Med 2012;39(12):2743–51.

52. Sperry R, Bailey P, Reichman M, et al. Fentanyl and

sulfentanil increase intracranial pressure in head trauma patients.

Anesthesiology 1992;77?416–20.

53. Lauer K, Connolly L, Schmeling W. Opioid sedation

does not alter intracranial pressure in head injured patients. Can

J Anaesth 1997;44?929–33.

54. Albanese J, Viviand X, Potie F, et al. Sulfentanil, fentanyl,

and alfentanil in head trauma patients: a study on cerebral

hemodynamics. Crit Care Med 1999;27?407–11.

55. de Nadal M, Munar F, Poca M, et al. Cerebral hemodynamic effects of morphine and fentanyl in patients with severe

head injury: absence of correlation to cerebral autoregulation.

Anesthesiology 2000;92?11–9.

56. Hansen B. Acute pain management. Vet Clin North Am

Small Anim Pract 2000;30(4):899–916.

57. Pascoe P. Opioid analgesics. Vet Clin North Am Small

Anim Pract 2000;30(4):757–69.

58. Keegan R, Green S, Bagley R, et al. Effects of medetomidine administration on intracranial pressure and cardiovascular variables of isoflurane-anesthetized dogs. Am J Vet Res

1996;56(2):193–8.

59. Treggiari M, Schultz N, Yanez N, et al. Role of intracranial pressure values and patterns in predicting outcome of traumatic brain injury: a systematic review. Neurocrit Care

2007;6?104–12.

60. Weed L, McKibbon P. Pressure changes in the cerebrospinal fluid following intravenous injection of solutions of various

concentrations. Am J Phys 1919;48?512–30.

61. Ropper A. Hyperosmolar therapy for raised intracranial

pressure. N Engl J Med 2012;367(8):746–52.

62. Brain Trauma Foundation, American Association of

Neurological Surgeons,Congress of Neurological Surgeons.

Guidelines for the management of severetraumatic brain injury. J

Neurotrauma 2007;24(1):S1–106.

63. Fink M. Osmotherapy for intracranial hypertension:

mannitol versus hypertonic saline. Continuum

2012;18(3):640–54.

64. Kaufmann A, Cardoso E. Aggravation of vasogenic

cerebral edema by multipledose mannitol. J Neurosurg

1992;77(4):584–9.

65. McManus M, Soriano S. Rebound swelling of astroglial

cells exposed to hypertonic mannitol. Anesthesiology

1998;88(6):1586–91.

66. Oddo M, Levine J, Frangos S, et al. Effect of mannitol

and hypertonic salineon cerebral oxygenation in patients with

severe traumatic brain injury and refractoryintracranial hypertension. J Neurol Neurosurg Psychiatr 2009;80(8):916–20.

67. Aiyagari V, Deibert E, Diringer M. Hypernatremia in the

neurologic intensive careunit: how high is too high? J Crit Care

2006;21(2):163–72.

68. Battison C, Andrews P, Graham C, et al. Randomized,

controlled trial on theeffect of a 20% mannitol solution and a

7.5% saline/6% dextran solution onincreased intracranial pressure after brain injury. Crit Care Med 2005;33(1):196–202.

69. Francony C, Fauvage B, Falcon D, et al. Equimolar

doses of mannitol and hypertonicsaline in the treatment of intracranial pressure. Crit Care Med 2008;36(3):795–800.

70. Zeng H, Wang Q, Deng Y, et al. A comparative study on

the efficacy of 10%hypertonic saline and equal volume of 20%

mannitol in the treatment of experimentallyinduced cerebral

edema in adult rats. BMC Neurosci 2010;11?153.

71. da Silva J, de Lima F, Valenca M, et al. Hypertonic saline

more efficacious thanmannitol in lethal intracranial hypertension

model. Neurol Res 2010;32(2):139–43.

72. Todd M, Cutkomp J, Brian J. Influence of mannitol and

furosemide, alone and incombination, on brain water content

after fluid percussion injury. Anesthesiology2006;105?1176–80.

73. Edwards P, Arango M, Balica L, et al. Final results of

MRC CRASH, a randomized placebo-controlled trial of intravenous corticosteroids in adults with headinjury- outcomes at 6

months. Lancet 2005;365(9475):1957–9.

74. Roberts I, Yates D, Sandercock P, et al. Effect of intravenous corticosteroids on death within 14 days in 10,008 adults

with clinically significant head injury (MRC CRASH trial): randomized placebo-controlled trial. Lancet 2004;364?9442.

75. Schierhout G, Roberts I. Withdrawn: antiepileptic drugs

for preventing seizures following acute traumatic brain injury.

Cochrane Database Syst Rev 2012;(6):CD000173.

76. Musulin S, Mariani C, Papich M. Diazepam pharmacokinetics after nasal drop and atomized nasal administration in

dogs. J Vet Pharmacol Ther 2011;34(1): 17–24.

77. Kassell N, Hitchon P, Gerk M, et al. Alterations in cerebral blood flow,oxygen metabolism, and electrical activity produced by high-dose thiopental.Neurosurgery 1980;7?598–603.

78. Hayes G. Severe seizures associated with traumatic

brain injury managed bycontrolled hypothermia, pharmacologic

coma, and mechanical ventilation in a dog. J Vet Emerg Crit Care

(San Antonio) 2009;19(6):629–34.

79. Giacino J, Whyte J, Bagiella E, et al. Placebo-controlled

trial of amantadine for severe traumatic brain injury. N Engl J

Med 2012;366?819–26.

80. Hall E. The neuroprotective pharmacology of methylprednisolone. J Neurosurg 1992;76(1):13–22.

81. Parker A, Smith C. Functional recovery from spinal cord

trauma following dexamethasone and chlorpromazine therapy in

dogs. Res Vet Sci 1976;21(2):246–7.

82. Levine J, Levine G, Boozer L, et al. Adverse effects and

outcome associatedwith dexamethasone administration in dogs

with acute thoracolumbar intervertebral disk herniation: 161

cases (2000-2006). J Am Vet Med Assoc 2008;232(3):411–7.

83. Bracken M, Shepard M, Collins W. A randomized, controlled trial of methylprednisolone or naloxone in the treatment

of acute spinal-cord injury. Results of the second national acute

spinal cord injury study. N Engl J Med 1990;322(20):1405–11.

84. Bracken M, Shepard M, Hellenbrand K. Methylprednisolone and neurologicalfunction 1 year after spinal cord injury.

Results of the National Acute Spinal Cord Injury Study. J Neurosurg 1985;63(5):704–13.

85. Bracken M, Shepard M, Holford T. Administration of

methylprednisolone for 24 or

48 hours or tirilazad mesylate for 48 hours in the treatment

of acute spinal cord injury. Results of the Third National Acute

Spinal Cord Injury Randomized Controlled Trial. National Acute

Spinal Cord Injury.JAMA 1997;277(20):1597–604.

86. Nesathurai S. Steroids and spinal cord injury: revisiting

the NASCIS 2 and NASCIS 3 trials. J Trauma Acute Care Surg

1998;45(6):1088–93.

87. Rabinowitz R, Eck J, Harper C. Urgent surgical decompression compared to methylprednisolone for the treatment of

acute spinal cord injury. Spine 2008;33(21):2260–8.

88. Coates J, Sorjonen D, Simpson S, et al. Clinicopathologic effects of a 21-aminosteroid compound (U74389G) and high

dose methylprednisolone onspinal cord function after simulated

spinal cord trauma. Vet Surg 1995;24?128–39.

89. Baltzer W, McMichael MA, Hosgood G. Randomized,

blinded, placebocontrolledclinical trial of N-acetylcysteine in

dogs with spinal cord trauma from acute intervertebral disc

disease. Spine 2008;33(13):1397–402.

90. Bains M, Hall E. Antioxidant therapies in traumatic brain

injury and spinal cord injury. Biochim Biophys Acta

2012;1822(5):675–84.

91. Hall E, Wolf D. A pharmacological analysis of the

pathophysiologicalmechanisms of posttraumatic spinal cord

ischemia. J Neurosurg 1986;64(6):951–61.

92. Ates O, Cayli S, Gurses I. Comparative neuroprotective

effect of sodium channel blockers after experimental spinal cord

injury. J Clin Neurosci 2007;14(7):658–65.

93. Kaptanoglu E, Solaroglu I, Surucu H. Blockade of

sodium channels by phenytoin protects ultrastructure and attenuates lipid peroxidation in experimental spinal cord injury. Acta

Neurochir 2005;147(4):405–12.

94. Hains B, Saab C, Lo A. Sodium channel blockade with

phenytoin protects spinal cord axons, enhances axonal conduction, and improves functional recovery after contusion SCI. Exp

Neurol 2004;188(2):365–77.

95. Schwartz G, Fehlings M. Secondary injury mechanisms

of spinal cord trauma:novel therapeutic approach for the management of secondary pathophysiology with the sodium channel blocker riluzole. Prog Brain Res 2002;137?177–90.

96. Park E, Velumian A, Fehlings M. The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with

an emphasis on the implications for white matter degeneration. J

Neurotrauma 2004;21?754–74.

97. Walters M, Kaste M, Lees K, et al. The AMPA antagonist

ZK 200775 in patients with acute ischaemic stroke: a double-blind, multi-centre, placebo-controlled safety and tolerability study. Cerebrovasc Dis 2005;20?304–9.

98. Chan P. White matter injury in spinal cord ischemia:

protection by AMPA/kainite glutamate receptor antagonism—Editoral comment. Stroke 2000;31?1952.

99. Chen HS, Lipton S. The chemical biology of clinically

tolerated NMDA receptor antagonists. J Neurochem

2006;97?1611–26.

100. Tadie M, D’ Arbigny P, Mathe J, et al. Acute spinal cord

injury. Early care and treatment in a multicenter study with

gacylidine. Soc Neurosci 1999;25?1090.

101. Kwon B, Okon E, Hillyer J. A systematic review of

non-invasive pharmacologic neuroprotective treatments for

acute spinal cord injury. J Neurotrauma 2011;28(8):1545–88.

102. Sturges B, LeCouteur R. Intracranial hypertension. In:

Silverstein D, Hopper K,editors. Small animal critical care medicine. 1st edition. St Louis (MO): ElsevierSaunders; 2009. p.

423–9.

103. Brain Trauma Foundation T, National Association of

State EMS Officials T,National Association of EMTs. Guidelines for

prehospital management of traumatic brain injury. Prehosp

Emerg Care 2007;12(1):1–52.

104. Davis D, Dunford J, Poste J, et al. The impact of hypoxia and hyperventilation on outcome after paramedic rapid

sequence intubation of severely head-injured patients. J Trauma

2004;57(1):1–8.

105. Muizelaar J, Marmarou A, Ward J, et al. Adverse effects

of prolonged hyperventilationin patients with severe head injury;

a randomized clinical trial. J Neurosurg 1991;75(5):731–9.

106. Deutschman C, Konstantinides F, Raup S. Physiological and metabolic response to isolated closed-head injury. Part i:

basal metabolic state: correlations of metabolic and physiological parameters with fasting and stressed controls. J Neurosurg

1986;64?89–98.

107. Jeremitsky E, Omert L, Dunham C, et al. The impact of

hyperglycemia on patients with severe brain injury. J Trauma

2005;58(1):47–50.

108. Syring R, Otto C, Drobatz K. Hyperglycemia in dogs

and cats with head trauma:122 cases (1997-1999). J Am Vet

Med Assoc 2001;218?1124–9.

109. Vespa P, McArthur D, Stein N, et al. Tight glycemic

control increases metabolic distress in traumatic brain injury: a

randomized controlled within subjects trial. Crit Care Med

2012;40(6):1923–9.

110. Green D, O’ Phelan K, Bassin S, et al. Intensive versus

conventional insulin therapy in critically ill neurologic patients.

Neurocrit Care 2010;13(3):299–306.

111. Bilotta F, Caramia R, Cernak I, et al. Intensive insulin

therapy after severe traumatic brain injury: randomized clinical

trial. Neurocrit Care 2008;9(2):159–66.

112. Dewey C. Urinary bladder management. In: Dewey

CW, editor. A practical guide to canine and feline neurology. St

Louis (MO): Elsevier Saunders; 2003. p. 419–26.

113. Bubenik L, Hosgood G. Urinary tract infection in dogs

with thoracolumbar intervertebral disc herniation and urinary

bladder dysfunction managed by manual expression, indwelling

catheterization or intermittent catheterization. Vet Surg

2008;37?791–800.

114. Smarick S, Haskins S, Aldrich J, et al. Incidence of

catheter-associated urinary tract infection among dogs in a

small animal intensive care unit. J Am Vet Med Assoc

2004;224(12):1936–40.

115. Ng I, Lim J, Wong H. Effects of head posture on cerebral hemodynamics its influences on intracranial pressure, cerebral perfusion pressure, and cerebral oxygenation. Neurosurgery

2004;54(3):593–7.

116. Sadaka F, Veremakis C. Therapeutic hypothermia for

the management of intracranial hypertension in severe traumatic

brain injury: a systematic review. Brain Inj 2012;26(7–8):899–908.

117. McCarthy P, Scott L, Ganta C, et al. Hypothermic protection in traumatic brain injury. Pathophysiology 2012;735–57.

118. Wijayatilake D, Shepherd S, Sherren P. Updates in the

management of intracranial pressure in traumatic brain injury.

Curr Opin Anaesthesiol 2012;25(5):540–7.

119. Hutchinson P, Corteen E, Czosnyka M, et al. Decompressive craniectomy intraumatic brain injury: the randomized

multicenter RESCUEicp study. Acta Neurochir 2006;96(S):17–20.

120. La Rosa G, Conti A, Cardali S, et al. Does early decompression improve neurological outcome of spinal cord injured

patients? Appraisal of the literature using a meta-analytical

approach. Spinal Cord 2004;42(9):503–12.

121. Croce M, Bee T, Pritchard E, et al. Does optimal timing

for spine fracture fixation exist? Ann Surg 2001;233(6):851–8.

122. Fehlings M, Perrin R. The timing of surgical intervention in the treatment of spinal cord injury: a systematic review of

recent clinical evidence. Spine 2006;31(11): S28–35.

123. Jeffery ND. Vertebral fracture and luxation in small

animals. Vet Clin North Am Small Anim Pract 2010;40(5):809–28.

124. Denis F. Spinal instability as defined by the three-column spine concept in acute spinal trauma. Clin Orthop Relat Res

1984;189?65–76.

125. Hillman R, Kengeri S, Waters D. Reevaluation of predictive factors for complete recovery in dogs with nonambulatory tetraparesis secondary to cervical disk herniation. J Am Anim

Hosp Assoc 2009;45?155–63.

126. Cherrone K, Dewey C, Coates J, et al. A retrospective

comparison of cervical intervertebral disk disease in nonchondrodystrophic large dogs versus small dogs. J Am Anim Hosp

Assoc 2004;40?316–20.

127. Gage E, Hoerlein B. Hemilaminectomy and dorsal

laminectomy for relieving compressions of the spinal cord in the

dog. J Am Vet Med Assoc 1968;152: 351–9.

128. Seim H 3rd, Prata R. Ventral decompression for the

treatment of cervical disk disease in the dog: a review of 54

cases. J Am Anim Hosp Assoc 1982;18: 233–40.

129. Gill P, Lippincott C, Anderson S. Dorsal laminectomy in

the treatment of cervical intervertebral disk disease in small

dogs: a retrospective study of 30 cases.J Am Anim Hosp Assoc

1996;32?77–80.

130. Felts J, Prata R. Cervical disk disease in the dog: intraforaminal and lateral extrusions. J Am Anim Hosp Assoc

1983;19?755–60.

131. Tanaka H, Nakayama M, Takase K. Usefulness of hemilaminectomy for cervical intervertebral disk disease in small

dogs. J Vet Med Sci 2005;67?679–83.

132. McCartney W. Comparison of recovery times and

complication rates between a modified slanted slot and the

standard ventral slot for the treatment of cervical disc disease in

20 dogs. J Small Anim Pract 2007;48?498–501.

133. Levine J, Levine G, Johnson S, et al. Evaluation of the

success of medical management for presumptive thoracolumbar

intervertebral disk herniation in dogs. Vet Surg 2007;36?482–91.

134. Kent M. Intraaxial spinal cord hemorrhage secondary

to atlantoaxial subluxationin a dog. J Am Anim Hosp Assoc

2010;46(2):132–7.

135. Cerda-Gonzalez S, Olby NJ. Fecal incontinence associated with epidural spinalhematoma and intervertebral disk

extrusion in a dog. J Am Vet Med Assoc 2006;228(2):230–5.

136. Caswell JL, Nykamp SG. Intradural vasculitis and hemorrhage in full sibling Welsh springer spaniels. Can Vet J

2003;44(2):137–9.

137. Tidwell AS, Specht A, Blaeser L, et al. Magnetic resonance imaging features ofextradural hematomas associated with

intervertebral disc herniation in a dog.Vet Radiol Ultrasound

2001;43(4):319–24.

138. Jeffery N, Lakatos A, Franklin R. Autologous olfactory

glial cell transplantation is eliable and safe in naturally occurring

spinal cord injury. J Neurotrauma 2005;22(11):1282–93.

139. Nishida H, Nakayama M, Tanaka H. Safety of autologous bone marrow stromal cell transplantation in dogs with

acute spinal cord injury. Vet Surg 2012;41?437–42.

140. Olby N, Levine J, Harris T. Long-term functional outcome of dogs with severe injuries of the thoracolumbar spinal

cord: 87 cases (1996-2001). J Am VetMed Assoc

2003;222(6):762–9.

141. Dewey CW. Myelopathies: disorders of the spinal cord.

In: Dewey CW, editor. A practical guide to canine and feline neurology. 2nd edition. Ames (IA):Wiley-Blackwell; 2008. p. 323–88.

142. Hawthorne J, Blevins W, Wallace L, et al. Cervical vertebral fractures in 56 dogs:a retrospective study. J Am Anim

Hosp Assoc 1999;35?135–46.

143. Eminaga S, Palus V, Cherubini G. Acute spinal cord

injury in the cat: causes,treatment and prognosis. J Feline Med

Surg 2011;13(11):850–62.spontaneous hyperadrenocorticism in

dogs. Part 2: Adrenal function testing and differentiating tests[J].

The Veterinary Journal, 2019, 252?105343.

第112頁

小動物臨床前沿(神經(jīng)學(xué)???- 上冊)· 腦部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 總第 12 期

- 110 -

參考文獻:

1. Simpson S, Syring R, Otto C. Severe blunt trauma in

dogs: 235 cases (1997-2003). J Vet Emerg Crit Care (San Antonio) 2009;19(6):588–602.

2. Marioni-Henry K, Vite CH, Newton AL, et al. Prevalence

of diseases of the spinalcord of cats. J Vet Intern Med

2004;18(6):851–8.

3. Fluehmann G, Doherr MG, Jaggy A. Canine neurological

diseases in a referralhospital population between 1989 and

2000 in Switzerland. J Small Anim Pract2006;47(10):582–7.

4. Sande A, West C. Traumatic brain injury: a review of

pathophysiology and management.J Vet Emerg Crit Care (San

Antonio) 2010;20(2):177–90.

5. Dewey C. Emergency management of the head trauma

patient. Vet Clin NorthAm Small Anim Pract 2000;30?207–25.

6. Hopkins A. Head trauma. Vet Clin North Am Small Anim

Pract 1996;26?875–91.

7. Dewey C, Fletcher D. Head trauma management. In:

Dewey C, editor. A practicalguide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell;2008. p. 221–35.

8. Aries M, Czrosynka M, Budohoski K, et al. Continuous

determination of optimalcerebral perfusion pressure in traumatic brain injury. Crit Care Med 2012;40(8):2456–63.

9. Ling G, Marshall S, Moore D. Diagnosis and management of traumatic braininjury. Continuum 2010;16(6):27–40.

10. Kim J, Gean A. Imaging for the diagnosis and management of traumatic braininjury. Neurotherapeutics

2011;8(1):39–53.

11. Tsang K, Whitfield P. Traumatic brain injury: review of

current management strategies.Br J Oral Maxillofac Surg

2012;50?298–308.

12. Proulx J, Dhupa N. Severe brain injury: part I: pathophysiology. CompendContin Educ Vet 1998;20?897–905.

13. Fletcher DJ, Dewey CW. Spinal trauma management.

In: Dewey CW, editor.A practical guide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell; 2008. p.

405–17.

14. Johnson K, Vite C. Spinal cord injury. In: Silverstein D,

Hopper K, editors. Smallanimal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders;2009. p. 419–23.

15. Park EH, White GA, Tieber LM. Mechanisms of injury

and emergency care ofacute spinal cord injury in dogs and cats.

J Vet Emerg Crit Care (San Antonio)2012;22(2):160–78.

16. Olby N. The pathogenesis and treatment of acute

spinal cord injuries in dogs.Vet Clin North Am Small Anim Pract

2010;40(5):791–807.

17. Fletcher D, Syring R. Traumatic brain injury. In: Silverstein D, Hopper K, editors.Small animal critical care medicine.

1st edition. St Louis (MO): Elsevier Saunders;2009. p. 658–62.

18. Leonard SE, Kirby R. The role of glutamate, calcium

and magnesium in secondarybrain injury. J Vet Emerg Crit Care

2002;12(1):17–32.

19. McMichael M, Moore R. Ischemia and reperfusion

injury pathophysiology, part I.J Vet Emerg Crit Care (San Antonio) 2004;14(4):231–41.

20. Oyinbo C. Secondary injury mechanisms in traumatic

spinal cord injury: anugget of this multiply cascade. Acta Neurobiol Exp 2011;71(2):281–99.

21. Tator C, Fehlings M. Review of the secondary injury

theory of acute spinal cordtrauma with emphasis on vascular

mechanisms. J Neurosurg 1991;75(1):15–26.

22. Dooney N, Dagal A. Anesthetic considerations in acute

spinal cord trauma. Int JCrit Illn Inj Sci 2011;1(1):36–43.

23. Armitage-Chan E, Wetmore L, Chan D. Anesthetic

management of the headtrauma patient. J Vet Emerg Crit Care

(San Antonio) 2007;17(1):5–14.

24. Shores A. Craniocerebral trauma. In: Kirk R, editor. Current veterinary therapy X.X. Philadelphia: WB Saunders; 1983. p.

847–54.

25. Platt S, Radaelli S, McDonnell J. The prognostic value of

the Modified GlasgowComa Scale in head trauma in gods. J Vet

Intern Med 2001;15(6):581–4.

26. Levine GJ, Levine JM, Budke CM, et al. Description and

repeatability of anewly developed spinal cord injury scale for

dogs. Prev Vet Med 2009;89(1–2):121–7.

27. Olby N, De Risio L, Munana K, et al. Development of a

functional scoring systemin dogs with acute spinal cord injuries.

Am J Vet Res 2001;62(10):1624–8.

28. Smith P, Jeffery N. Spinal shock—comparative aspects

and clinical relevance.J Vet Intern Med 2005;19?788–93.

29. Boysen S, Rozanski E, Tidwell A, et al. Evaluation of a

focused assessment with sonography for trauma protocol to

detect free abdominal fluid in dogs involved in motor vehicle

accidents. J Am Vet Med Assoc 2004;225(8):1198–204.

30. Lisciandro GR. Abdominal and thoracic focused assessment with sonographyfor trauma, triage, and monitoring in small

animals. J Vet Emerg Crit Care(San Antonio) 2011;21(2):104–22.

31. Kinns J, Mai W, Seiler G, et al. Radiographic sensitivity

and negative predictive value for acute canine spinal trauma. Vet

Radiol Ultrasound 2006;47(6):563–70.

32. Vitale C, Coates J. Acute spinal injury. Compendium

Standards of Care: Emergencyand Critical Care Medicine

2007;9(7):1–11.

33. Lamb CR, Nicholls A, Targett M, et al. Accuracy of

survey radiographic diagnosis of intervertebral disc protrusion in

dogs. Vet Radiol Ultrasound 2002;43(3):222–8.

34. Brisson BA. Intervertebral disc disease in dogs. Vet Clin

North Am Small Anim Pract 2010;40(5):829–58.

35. Israel SK, Levine JM, Kerwin SC, et al. The relative sensitivity of computed tomography and myelography for identification of thoracolumbar intervertebral disk herniations in dogs. Vet

Radiol Ultrasound 2009;50(3):247–52.

36. Olby N, Dyce J, Houlton J. Correlation of plain radiographic and lumbar myelographic findings with surgical findings

in thoracolumbar disc disease. J SmallAnim Pract

1994;35(7):345–50.

37. Griffin J, Levine J, Kerwin S. Canine thoracolumbar

intervertebral disk disease:pathophysiology, neurologic examination, and emergency medical therapy.Compend Contin Educ

Vet 2009;31(3):E1–13.

38. Lewis D, Hosgood G. Complications associated with

the use of iohexol for myelographyof the cervical vertebral

column in dogs: 66 cases (1988-1990). J AmVet Med Assoc

1992;200(9):1381–4.

39. Barone G, Ziemer L, Shofer F, et al. Risk factors associated with the developmentof seizures after use of iohexol for

myelography in dogs: 182 cases(1998). J Am Vet Med Assoc

2002;220(10):1499–502.

40. Johnson P, Beltran E, Dennis R, et al. Magnetic resonance imaging characteristics of suspected vertebral instability

associated with fracture or subluxation in eleven dogs. Vet

Radiol Ultrasound 2012;53(5):552–9.

41. Rozanski EA, Rondeau MP. Respiratory pharmacotherapy in emergency and critical care medicine. Vet Clin North Am

Small Anim Pract 2002;32(5):1073–86.

42. Mazzaferro E. Oxygen therapy. In: Silverstein D, Hopper

K, editors. Small animal critical caremedicine. 1stedition. StLouis(MO): Elsevier Saunders; 2009.p. 78–81.

43. Hopper K. Basic mechanical ventilation. In: Silverstein

D, Hopper K, editors. Small animal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders; 2009. p. 900–4.

44. Zhuang J, Shackford S, Schmoker J, et al. Colloid infusion after brain injury: an effect on intracranial pressure, cerebral

blood flow, and oxygen delivery. Crit Care Med

1995;23(1):140–8.

45. Wade C, Grady J, Kramer G, et al. Individual patient

cohort analysis of the efficacy of hypertonic saline/dextran in

patients with traumatic brain injury and hypotension. J Trauma

1997;42?561–5.

46. Vassar M, Perry C, Gannaway W, et al. Analysis of

potential risks associated with 7.5% sodium chloride resuscitation of traumatic shock. Arch Surg 1990;124: 1309–15.

47. Vassar M, Perry C, Gannaway W, et al. 7.5% sodium

chloride/dextran for resuscitation of trauma patients undergoing

helicopter transport. Arch Surg 1991;126: 1065–72.

48. Vassar M, Perry C, Holcroft J. Prehospital resuscitation

of hypotensive trauma patients with 7.5% NaCl versus 7.5% NaCl

with added dextran: a controlled trial. J Trauma 1993;34?622–32.

49. Vassar M, Fisher R, O’ Brien P, et al. A multicenter trial

for resuscitation of injured patients with 7.5% sodium chloride.

Arch Surg 1993;128?1003–11.

50. Cooper J, Myles P, McDermott F, et al. Prehospital

hypertonic saline resuscitation of patients with hypotension and

severe traumatic brain injury. JAMA 2004;291?1350–7.

51. Roberts D, Hall R, Kramer A. Sedation for critically ill

adults with severe traumatic brain injury: a systematic review of

randomized controlled trials. CritCare Med 2012;39(12):2743–51.

52. Sperry R, Bailey P, Reichman M, et al. Fentanyl and

sulfentanil increase intracranial pressure in head trauma patients.

Anesthesiology 1992;77?416–20.

53. Lauer K, Connolly L, Schmeling W. Opioid sedation

does not alter intracranial pressure in head injured patients. Can

J Anaesth 1997;44?929–33.

54. Albanese J, Viviand X, Potie F, et al. Sulfentanil, fentanyl,

and alfentanil in head trauma patients: a study on cerebral

hemodynamics. Crit Care Med 1999;27?407–11.

55. de Nadal M, Munar F, Poca M, et al. Cerebral hemodynamic effects of morphine and fentanyl in patients with severe

head injury: absence of correlation to cerebral autoregulation.

Anesthesiology 2000;92?11–9.

56. Hansen B. Acute pain management. Vet Clin North Am

Small Anim Pract 2000;30(4):899–916.

57. Pascoe P. Opioid analgesics. Vet Clin North Am Small

Anim Pract 2000;30(4):757–69.

58. Keegan R, Green S, Bagley R, et al. Effects of medetomidine administration on intracranial pressure and cardiovascular variables of isoflurane-anesthetized dogs. Am J Vet Res

1996;56(2):193–8.

59. Treggiari M, Schultz N, Yanez N, et al. Role of intracranial pressure values and patterns in predicting outcome of traumatic brain injury: a systematic review. Neurocrit Care

2007;6?104–12.

60. Weed L, McKibbon P. Pressure changes in the cerebrospinal fluid following intravenous injection of solutions of various

concentrations. Am J Phys 1919;48?512–30.

61. Ropper A. Hyperosmolar therapy for raised intracranial

pressure. N Engl J Med 2012;367(8):746–52.

62. Brain Trauma Foundation, American Association of

Neurological Surgeons,Congress of Neurological Surgeons.

Guidelines for the management of severetraumatic brain injury. J

Neurotrauma 2007;24(1):S1–106.

63. Fink M. Osmotherapy for intracranial hypertension:

mannitol versus hypertonic saline. Continuum

2012;18(3):640–54.

64. Kaufmann A, Cardoso E. Aggravation of vasogenic

cerebral edema by multipledose mannitol. J Neurosurg

1992;77(4):584–9.

65. McManus M, Soriano S. Rebound swelling of astroglial

cells exposed to hypertonic mannitol. Anesthesiology

1998;88(6):1586–91.

66. Oddo M, Levine J, Frangos S, et al. Effect of mannitol

and hypertonic salineon cerebral oxygenation in patients with

severe traumatic brain injury and refractoryintracranial hypertension. J Neurol Neurosurg Psychiatr 2009;80(8):916–20.

67. Aiyagari V, Deibert E, Diringer M. Hypernatremia in the

neurologic intensive careunit: how high is too high? J Crit Care

2006;21(2):163–72.

68. Battison C, Andrews P, Graham C, et al. Randomized,

controlled trial on theeffect of a 20% mannitol solution and a

7.5% saline/6% dextran solution onincreased intracranial pressure after brain injury. Crit Care Med 2005;33(1):196–202.

69. Francony C, Fauvage B, Falcon D, et al. Equimolar

doses of mannitol and hypertonicsaline in the treatment of intracranial pressure. Crit Care Med 2008;36(3):795–800.

70. Zeng H, Wang Q, Deng Y, et al. A comparative study on

the efficacy of 10%hypertonic saline and equal volume of 20%

mannitol in the treatment of experimentallyinduced cerebral

edema in adult rats. BMC Neurosci 2010;11?153.

71. da Silva J, de Lima F, Valenca M, et al. Hypertonic saline

more efficacious thanmannitol in lethal intracranial hypertension

model. Neurol Res 2010;32(2):139–43.

72. Todd M, Cutkomp J, Brian J. Influence of mannitol and

furosemide, alone and incombination, on brain water content

after fluid percussion injury. Anesthesiology2006;105?1176–80.

73. Edwards P, Arango M, Balica L, et al. Final results of

MRC CRASH, a randomized placebo-controlled trial of intravenous corticosteroids in adults with headinjury- outcomes at 6

months. Lancet 2005;365(9475):1957–9.

74. Roberts I, Yates D, Sandercock P, et al. Effect of intravenous corticosteroids on death within 14 days in 10,008 adults

with clinically significant head injury (MRC CRASH trial): randomized placebo-controlled trial. Lancet 2004;364?9442.

75. Schierhout G, Roberts I. Withdrawn: antiepileptic drugs

for preventing seizures following acute traumatic brain injury.

Cochrane Database Syst Rev 2012;(6):CD000173.

76. Musulin S, Mariani C, Papich M. Diazepam pharmacokinetics after nasal drop and atomized nasal administration in

dogs. J Vet Pharmacol Ther 2011;34(1): 17–24.

77. Kassell N, Hitchon P, Gerk M, et al. Alterations in cerebral blood flow,oxygen metabolism, and electrical activity produced by high-dose thiopental.Neurosurgery 1980;7?598–603.

78. Hayes G. Severe seizures associated with traumatic

brain injury managed bycontrolled hypothermia, pharmacologic

coma, and mechanical ventilation in a dog. J Vet Emerg Crit Care

(San Antonio) 2009;19(6):629–34.

79. Giacino J, Whyte J, Bagiella E, et al. Placebo-controlled

trial of amantadine for severe traumatic brain injury. N Engl J

Med 2012;366?819–26.

80. Hall E. The neuroprotective pharmacology of methylprednisolone. J Neurosurg 1992;76(1):13–22.

81. Parker A, Smith C. Functional recovery from spinal cord

trauma following dexamethasone and chlorpromazine therapy in

dogs. Res Vet Sci 1976;21(2):246–7.

82. Levine J, Levine G, Boozer L, et al. Adverse effects and

outcome associatedwith dexamethasone administration in dogs

with acute thoracolumbar intervertebral disk herniation: 161

cases (2000-2006). J Am Vet Med Assoc 2008;232(3):411–7.

83. Bracken M, Shepard M, Collins W. A randomized, controlled trial of methylprednisolone or naloxone in the treatment

of acute spinal-cord injury. Results of the second national acute

spinal cord injury study. N Engl J Med 1990;322(20):1405–11.

84. Bracken M, Shepard M, Hellenbrand K. Methylprednisolone and neurologicalfunction 1 year after spinal cord injury.

Results of the National Acute Spinal Cord Injury Study. J Neurosurg 1985;63(5):704–13.

85. Bracken M, Shepard M, Holford T. Administration of

methylprednisolone for 24 or

48 hours or tirilazad mesylate for 48 hours in the treatment

of acute spinal cord injury. Results of the Third National Acute

Spinal Cord Injury Randomized Controlled Trial. National Acute

Spinal Cord Injury.JAMA 1997;277(20):1597–604.

86. Nesathurai S. Steroids and spinal cord injury: revisiting

the NASCIS 2 and NASCIS 3 trials. J Trauma Acute Care Surg

1998;45(6):1088–93.

87. Rabinowitz R, Eck J, Harper C. Urgent surgical decompression compared to methylprednisolone for the treatment of

acute spinal cord injury. Spine 2008;33(21):2260–8.

88. Coates J, Sorjonen D, Simpson S, et al. Clinicopathologic effects of a 21-aminosteroid compound (U74389G) and high

dose methylprednisolone onspinal cord function after simulated

spinal cord trauma. Vet Surg 1995;24?128–39.

89. Baltzer W, McMichael MA, Hosgood G. Randomized,

blinded, placebocontrolledclinical trial of N-acetylcysteine in

dogs with spinal cord trauma from acute intervertebral disc

disease. Spine 2008;33(13):1397–402.

90. Bains M, Hall E. Antioxidant therapies in traumatic brain

injury and spinal cord injury. Biochim Biophys Acta

2012;1822(5):675–84.

91. Hall E, Wolf D. A pharmacological analysis of the

pathophysiologicalmechanisms of posttraumatic spinal cord

ischemia. J Neurosurg 1986;64(6):951–61.

92. Ates O, Cayli S, Gurses I. Comparative neuroprotective

effect of sodium channel blockers after experimental spinal cord

injury. J Clin Neurosci 2007;14(7):658–65.

93. Kaptanoglu E, Solaroglu I, Surucu H. Blockade of

sodium channels by phenytoin protects ultrastructure and attenuates lipid peroxidation in experimental spinal cord injury. Acta

Neurochir 2005;147(4):405–12.

94. Hains B, Saab C, Lo A. Sodium channel blockade with

phenytoin protects spinal cord axons, enhances axonal conduction, and improves functional recovery after contusion SCI. Exp

Neurol 2004;188(2):365–77.

95. Schwartz G, Fehlings M. Secondary injury mechanisms

of spinal cord trauma:novel therapeutic approach for the management of secondary pathophysiology with the sodium channel blocker riluzole. Prog Brain Res 2002;137?177–90.

96. Park E, Velumian A, Fehlings M. The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with

an emphasis on the implications for white matter degeneration. J

Neurotrauma 2004;21?754–74.

97. Walters M, Kaste M, Lees K, et al. The AMPA antagonist

ZK 200775 in patients with acute ischaemic stroke: a double-blind, multi-centre, placebo-controlled safety and tolerability study. Cerebrovasc Dis 2005;20?304–9.

98. Chan P. White matter injury in spinal cord ischemia:

protection by AMPA/kainite glutamate receptor antagonism—Editoral comment. Stroke 2000;31?1952.

99. Chen HS, Lipton S. The chemical biology of clinically

tolerated NMDA receptor antagonists. J Neurochem

2006;97?1611–26.

100. Tadie M, D’ Arbigny P, Mathe J, et al. Acute spinal cord

injury. Early care and treatment in a multicenter study with

gacylidine. Soc Neurosci 1999;25?1090.

101. Kwon B, Okon E, Hillyer J. A systematic review of

non-invasive pharmacologic neuroprotective treatments for

acute spinal cord injury. J Neurotrauma 2011;28(8):1545–88.

102. Sturges B, LeCouteur R. Intracranial hypertension. In:

Silverstein D, Hopper K,editors. Small animal critical care medicine. 1st edition. St Louis (MO): ElsevierSaunders; 2009. p.

423–9.

103. Brain Trauma Foundation T, National Association of

State EMS Officials T,National Association of EMTs. Guidelines for

prehospital management of traumatic brain injury. Prehosp

Emerg Care 2007;12(1):1–52.

104. Davis D, Dunford J, Poste J, et al. The impact of hypoxia and hyperventilation on outcome after paramedic rapid

sequence intubation of severely head-injured patients. J Trauma

2004;57(1):1–8.

105. Muizelaar J, Marmarou A, Ward J, et al. Adverse effects

of prolonged hyperventilationin patients with severe head injury;

a randomized clinical trial. J Neurosurg 1991;75(5):731–9.

106. Deutschman C, Konstantinides F, Raup S. Physiological and metabolic response to isolated closed-head injury. Part i:

basal metabolic state: correlations of metabolic and physiological parameters with fasting and stressed controls. J Neurosurg

1986;64?89–98.

107. Jeremitsky E, Omert L, Dunham C, et al. The impact of

hyperglycemia on patients with severe brain injury. J Trauma

2005;58(1):47–50.

108. Syring R, Otto C, Drobatz K. Hyperglycemia in dogs

and cats with head trauma:122 cases (1997-1999). J Am Vet

Med Assoc 2001;218?1124–9.

109. Vespa P, McArthur D, Stein N, et al. Tight glycemic

control increases metabolic distress in traumatic brain injury: a

randomized controlled within subjects trial. Crit Care Med

2012;40(6):1923–9.

110. Green D, O’ Phelan K, Bassin S, et al. Intensive versus

conventional insulin therapy in critically ill neurologic patients.

Neurocrit Care 2010;13(3):299–306.

111. Bilotta F, Caramia R, Cernak I, et al. Intensive insulin

therapy after severe traumatic brain injury: randomized clinical

trial. Neurocrit Care 2008;9(2):159–66.

112. Dewey C. Urinary bladder management. In: Dewey

CW, editor. A practical guide to canine and feline neurology. St

Louis (MO): Elsevier Saunders; 2003. p. 419–26.

113. Bubenik L, Hosgood G. Urinary tract infection in dogs

with thoracolumbar intervertebral disc herniation and urinary

bladder dysfunction managed by manual expression, indwelling

catheterization or intermittent catheterization. Vet Surg

2008;37?791–800.

114. Smarick S, Haskins S, Aldrich J, et al. Incidence of

catheter-associated urinary tract infection among dogs in a

small animal intensive care unit. J Am Vet Med Assoc

2004;224(12):1936–40.

115. Ng I, Lim J, Wong H. Effects of head posture on cerebral hemodynamics its influences on intracranial pressure, cerebral perfusion pressure, and cerebral oxygenation. Neurosurgery

2004;54(3):593–7.

116. Sadaka F, Veremakis C. Therapeutic hypothermia for

the management of intracranial hypertension in severe traumatic

brain injury: a systematic review. Brain Inj 2012;26(7–8):899–908.

117. McCarthy P, Scott L, Ganta C, et al. Hypothermic protection in traumatic brain injury. Pathophysiology 2012;735–57.

118. Wijayatilake D, Shepherd S, Sherren P. Updates in the

management of intracranial pressure in traumatic brain injury.

Curr Opin Anaesthesiol 2012;25(5):540–7.

119. Hutchinson P, Corteen E, Czosnyka M, et al. Decompressive craniectomy intraumatic brain injury: the randomized

multicenter RESCUEicp study. Acta Neurochir 2006;96(S):17–20.

120. La Rosa G, Conti A, Cardali S, et al. Does early decompression improve neurological outcome of spinal cord injured

patients? Appraisal of the literature using a meta-analytical

approach. Spinal Cord 2004;42(9):503–12.

121. Croce M, Bee T, Pritchard E, et al. Does optimal timing

for spine fracture fixation exist? Ann Surg 2001;233(6):851–8.

122. Fehlings M, Perrin R. The timing of surgical intervention in the treatment of spinal cord injury: a systematic review of

recent clinical evidence. Spine 2006;31(11): S28–35.

123. Jeffery ND. Vertebral fracture and luxation in small

animals. Vet Clin North Am Small Anim Pract 2010;40(5):809–28.

124. Denis F. Spinal instability as defined by the three-column spine concept in acute spinal trauma. Clin Orthop Relat Res

1984;189?65–76.

125. Hillman R, Kengeri S, Waters D. Reevaluation of predictive factors for complete recovery in dogs with nonambulatory tetraparesis secondary to cervical disk herniation. J Am Anim

Hosp Assoc 2009;45?155–63.

126. Cherrone K, Dewey C, Coates J, et al. A retrospective

comparison of cervical intervertebral disk disease in nonchondrodystrophic large dogs versus small dogs. J Am Anim Hosp

Assoc 2004;40?316–20.

127. Gage E, Hoerlein B. Hemilaminectomy and dorsal

laminectomy for relieving compressions of the spinal cord in the

dog. J Am Vet Med Assoc 1968;152: 351–9.

128. Seim H 3rd, Prata R. Ventral decompression for the

treatment of cervical disk disease in the dog: a review of 54

cases. J Am Anim Hosp Assoc 1982;18: 233–40.

129. Gill P, Lippincott C, Anderson S. Dorsal laminectomy in

the treatment of cervical intervertebral disk disease in small

dogs: a retrospective study of 30 cases.J Am Anim Hosp Assoc

1996;32?77–80.

130. Felts J, Prata R. Cervical disk disease in the dog: intraforaminal and lateral extrusions. J Am Anim Hosp Assoc

1983;19?755–60.

131. Tanaka H, Nakayama M, Takase K. Usefulness of hemilaminectomy for cervical intervertebral disk disease in small

dogs. J Vet Med Sci 2005;67?679–83.

132. McCartney W. Comparison of recovery times and

complication rates between a modified slanted slot and the

standard ventral slot for the treatment of cervical disc disease in

20 dogs. J Small Anim Pract 2007;48?498–501.

133. Levine J, Levine G, Johnson S, et al. Evaluation of the

success of medical management for presumptive thoracolumbar

intervertebral disk herniation in dogs. Vet Surg 2007;36?482–91.

134. Kent M. Intraaxial spinal cord hemorrhage secondary

to atlantoaxial subluxationin a dog. J Am Anim Hosp Assoc

2010;46(2):132–7.

135. Cerda-Gonzalez S, Olby NJ. Fecal incontinence associated with epidural spinalhematoma and intervertebral disk

extrusion in a dog. J Am Vet Med Assoc 2006;228(2):230–5.

136. Caswell JL, Nykamp SG. Intradural vasculitis and hemorrhage in full sibling Welsh springer spaniels. Can Vet J

2003;44(2):137–9.

137. Tidwell AS, Specht A, Blaeser L, et al. Magnetic resonance imaging features ofextradural hematomas associated with

intervertebral disc herniation in a dog.Vet Radiol Ultrasound

2001;43(4):319–24.

138. Jeffery N, Lakatos A, Franklin R. Autologous olfactory

glial cell transplantation is eliable and safe in naturally occurring

spinal cord injury. J Neurotrauma 2005;22(11):1282–93.

139. Nishida H, Nakayama M, Tanaka H. Safety of autologous bone marrow stromal cell transplantation in dogs with

acute spinal cord injury. Vet Surg 2012;41?437–42.

140. Olby N, Levine J, Harris T. Long-term functional outcome of dogs with severe injuries of the thoracolumbar spinal

cord: 87 cases (1996-2001). J Am VetMed Assoc

2003;222(6):762–9.

141. Dewey CW. Myelopathies: disorders of the spinal cord.

In: Dewey CW, editor. A practical guide to canine and feline neurology. 2nd edition. Ames (IA):Wiley-Blackwell; 2008. p. 323–88.

142. Hawthorne J, Blevins W, Wallace L, et al. Cervical vertebral fractures in 56 dogs:a retrospective study. J Am Anim

Hosp Assoc 1999;35?135–46.

143. Eminaga S, Palus V, Cherubini G. Acute spinal cord

injury in the cat: causes,treatment and prognosis. J Feline Med

Surg 2011;13(11):850–62.spontaneous hyperadrenocorticism in

dogs. Part 2: Adrenal function testing and differentiating tests[J].

The Veterinary Journal, 2019, 252?105343.

第113頁

小動物臨床前沿(神經(jīng)學(xué)???- 上冊)· 腦部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 總第 12 期

- 111 -

參考文獻:

1. Simpson S, Syring R, Otto C. Severe blunt trauma in

dogs: 235 cases (1997-2003). J Vet Emerg Crit Care (San Antonio) 2009;19(6):588–602.

2. Marioni-Henry K, Vite CH, Newton AL, et al. Prevalence

of diseases of the spinalcord of cats. J Vet Intern Med

2004;18(6):851–8.

3. Fluehmann G, Doherr MG, Jaggy A. Canine neurological

diseases in a referralhospital population between 1989 and

2000 in Switzerland. J Small Anim Pract2006;47(10):582–7.

4. Sande A, West C. Traumatic brain injury: a review of

pathophysiology and management.J Vet Emerg Crit Care (San

Antonio) 2010;20(2):177–90.

5. Dewey C. Emergency management of the head trauma

patient. Vet Clin NorthAm Small Anim Pract 2000;30?207–25.

6. Hopkins A. Head trauma. Vet Clin North Am Small Anim

Pract 1996;26?875–91.

7. Dewey C, Fletcher D. Head trauma management. In:

Dewey C, editor. A practicalguide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell;2008. p. 221–35.

8. Aries M, Czrosynka M, Budohoski K, et al. Continuous

determination of optimalcerebral perfusion pressure in traumatic brain injury. Crit Care Med 2012;40(8):2456–63.

9. Ling G, Marshall S, Moore D. Diagnosis and management of traumatic braininjury. Continuum 2010;16(6):27–40.

10. Kim J, Gean A. Imaging for the diagnosis and management of traumatic braininjury. Neurotherapeutics

2011;8(1):39–53.

11. Tsang K, Whitfield P. Traumatic brain injury: review of

current management strategies.Br J Oral Maxillofac Surg

2012;50?298–308.

12. Proulx J, Dhupa N. Severe brain injury: part I: pathophysiology. CompendContin Educ Vet 1998;20?897–905.

13. Fletcher DJ, Dewey CW. Spinal trauma management.

In: Dewey CW, editor.A practical guide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell; 2008. p.

405–17.

14. Johnson K, Vite C. Spinal cord injury. In: Silverstein D,

Hopper K, editors. Smallanimal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders;2009. p. 419–23.

15. Park EH, White GA, Tieber LM. Mechanisms of injury

and emergency care ofacute spinal cord injury in dogs and cats.

J Vet Emerg Crit Care (San Antonio)2012;22(2):160–78.

16. Olby N. The pathogenesis and treatment of acute

spinal cord injuries in dogs.Vet Clin North Am Small Anim Pract

2010;40(5):791–807.

17. Fletcher D, Syring R. Traumatic brain injury. In: Silverstein D, Hopper K, editors.Small animal critical care medicine.

1st edition. St Louis (MO): Elsevier Saunders;2009. p. 658–62.

18. Leonard SE, Kirby R. The role of glutamate, calcium

and magnesium in secondarybrain injury. J Vet Emerg Crit Care

2002;12(1):17–32.

19. McMichael M, Moore R. Ischemia and reperfusion

injury pathophysiology, part I.J Vet Emerg Crit Care (San Antonio) 2004;14(4):231–41.

20. Oyinbo C. Secondary injury mechanisms in traumatic

spinal cord injury: anugget of this multiply cascade. Acta Neurobiol Exp 2011;71(2):281–99.

21. Tator C, Fehlings M. Review of the secondary injury

theory of acute spinal cordtrauma with emphasis on vascular

mechanisms. J Neurosurg 1991;75(1):15–26.

22. Dooney N, Dagal A. Anesthetic considerations in acute

spinal cord trauma. Int JCrit Illn Inj Sci 2011;1(1):36–43.

23. Armitage-Chan E, Wetmore L, Chan D. Anesthetic

management of the headtrauma patient. J Vet Emerg Crit Care

(San Antonio) 2007;17(1):5–14.

24. Shores A. Craniocerebral trauma. In: Kirk R, editor. Current veterinary therapy X.X. Philadelphia: WB Saunders; 1983. p.

847–54.

25. Platt S, Radaelli S, McDonnell J. The prognostic value of

the Modified GlasgowComa Scale in head trauma in gods. J Vet

Intern Med 2001;15(6):581–4.

26. Levine GJ, Levine JM, Budke CM, et al. Description and

repeatability of anewly developed spinal cord injury scale for

dogs. Prev Vet Med 2009;89(1–2):121–7.

27. Olby N, De Risio L, Munana K, et al. Development of a

functional scoring systemin dogs with acute spinal cord injuries.

Am J Vet Res 2001;62(10):1624–8.

28. Smith P, Jeffery N. Spinal shock—comparative aspects

and clinical relevance.J Vet Intern Med 2005;19?788–93.

29. Boysen S, Rozanski E, Tidwell A, et al. Evaluation of a

focused assessment with sonography for trauma protocol to

detect free abdominal fluid in dogs involved in motor vehicle

accidents. J Am Vet Med Assoc 2004;225(8):1198–204.

30. Lisciandro GR. Abdominal and thoracic focused assessment with sonographyfor trauma, triage, and monitoring in small

animals. J Vet Emerg Crit Care(San Antonio) 2011;21(2):104–22.

31. Kinns J, Mai W, Seiler G, et al. Radiographic sensitivity

and negative predictive value for acute canine spinal trauma. Vet

Radiol Ultrasound 2006;47(6):563–70.

32. Vitale C, Coates J. Acute spinal injury. Compendium

Standards of Care: Emergencyand Critical Care Medicine

2007;9(7):1–11.

33. Lamb CR, Nicholls A, Targett M, et al. Accuracy of

survey radiographic diagnosis of intervertebral disc protrusion in

dogs. Vet Radiol Ultrasound 2002;43(3):222–8.

34. Brisson BA. Intervertebral disc disease in dogs. Vet Clin

North Am Small Anim Pract 2010;40(5):829–58.

35. Israel SK, Levine JM, Kerwin SC, et al. The relative sensitivity of computed tomography and myelography for identification of thoracolumbar intervertebral disk herniations in dogs. Vet

Radiol Ultrasound 2009;50(3):247–52.

36. Olby N, Dyce J, Houlton J. Correlation of plain radiographic and lumbar myelographic findings with surgical findings

in thoracolumbar disc disease. J SmallAnim Pract

1994;35(7):345–50.

37. Griffin J, Levine J, Kerwin S. Canine thoracolumbar

intervertebral disk disease:pathophysiology, neurologic examination, and emergency medical therapy.Compend Contin Educ

Vet 2009;31(3):E1–13.

38. Lewis D, Hosgood G. Complications associated with

the use of iohexol for myelographyof the cervical vertebral

column in dogs: 66 cases (1988-1990). J AmVet Med Assoc

1992;200(9):1381–4.

39. Barone G, Ziemer L, Shofer F, et al. Risk factors associated with the developmentof seizures after use of iohexol for

myelography in dogs: 182 cases(1998). J Am Vet Med Assoc

2002;220(10):1499–502.

40. Johnson P, Beltran E, Dennis R, et al. Magnetic resonance imaging characteristics of suspected vertebral instability

associated with fracture or subluxation in eleven dogs. Vet

Radiol Ultrasound 2012;53(5):552–9.

41. Rozanski EA, Rondeau MP. Respiratory pharmacotherapy in emergency and critical care medicine. Vet Clin North Am

Small Anim Pract 2002;32(5):1073–86.

42. Mazzaferro E. Oxygen therapy. In: Silverstein D, Hopper

K, editors. Small animal critical caremedicine. 1stedition. StLouis(MO): Elsevier Saunders; 2009.p. 78–81.

43. Hopper K. Basic mechanical ventilation. In: Silverstein

D, Hopper K, editors. Small animal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders; 2009. p. 900–4.

44. Zhuang J, Shackford S, Schmoker J, et al. Colloid infusion after brain injury: an effect on intracranial pressure, cerebral

blood flow, and oxygen delivery. Crit Care Med

1995;23(1):140–8.

45. Wade C, Grady J, Kramer G, et al. Individual patient

cohort analysis of the efficacy of hypertonic saline/dextran in

patients with traumatic brain injury and hypotension. J Trauma

1997;42?561–5.

46. Vassar M, Perry C, Gannaway W, et al. Analysis of

potential risks associated with 7.5% sodium chloride resuscitation of traumatic shock. Arch Surg 1990;124: 1309–15.

47. Vassar M, Perry C, Gannaway W, et al. 7.5% sodium

chloride/dextran for resuscitation of trauma patients undergoing

helicopter transport. Arch Surg 1991;126: 1065–72.

48. Vassar M, Perry C, Holcroft J. Prehospital resuscitation

of hypotensive trauma patients with 7.5% NaCl versus 7.5% NaCl

with added dextran: a controlled trial. J Trauma 1993;34?622–32.

49. Vassar M, Fisher R, O’ Brien P, et al. A multicenter trial

for resuscitation of injured patients with 7.5% sodium chloride.

Arch Surg 1993;128?1003–11.

50. Cooper J, Myles P, McDermott F, et al. Prehospital

hypertonic saline resuscitation of patients with hypotension and

severe traumatic brain injury. JAMA 2004;291?1350–7.

51. Roberts D, Hall R, Kramer A. Sedation for critically ill

adults with severe traumatic brain injury: a systematic review of

randomized controlled trials. CritCare Med 2012;39(12):2743–51.

52. Sperry R, Bailey P, Reichman M, et al. Fentanyl and

sulfentanil increase intracranial pressure in head trauma patients.

Anesthesiology 1992;77?416–20.

53. Lauer K, Connolly L, Schmeling W. Opioid sedation

does not alter intracranial pressure in head injured patients. Can

J Anaesth 1997;44?929–33.

54. Albanese J, Viviand X, Potie F, et al. Sulfentanil, fentanyl,

and alfentanil in head trauma patients: a study on cerebral

hemodynamics. Crit Care Med 1999;27?407–11.

55. de Nadal M, Munar F, Poca M, et al. Cerebral hemodynamic effects of morphine and fentanyl in patients with severe

head injury: absence of correlation to cerebral autoregulation.

Anesthesiology 2000;92?11–9.

56. Hansen B. Acute pain management. Vet Clin North Am

Small Anim Pract 2000;30(4):899–916.

57. Pascoe P. Opioid analgesics. Vet Clin North Am Small

Anim Pract 2000;30(4):757–69.

58. Keegan R, Green S, Bagley R, et al. Effects of medetomidine administration on intracranial pressure and cardiovascular variables of isoflurane-anesthetized dogs. Am J Vet Res

1996;56(2):193–8.

59. Treggiari M, Schultz N, Yanez N, et al. Role of intracranial pressure values and patterns in predicting outcome of traumatic brain injury: a systematic review. Neurocrit Care

2007;6?104–12.

60. Weed L, McKibbon P. Pressure changes in the cerebrospinal fluid following intravenous injection of solutions of various

concentrations. Am J Phys 1919;48?512–30.

61. Ropper A. Hyperosmolar therapy for raised intracranial

pressure. N Engl J Med 2012;367(8):746–52.

62. Brain Trauma Foundation, American Association of

Neurological Surgeons,Congress of Neurological Surgeons.

Guidelines for the management of severetraumatic brain injury. J

Neurotrauma 2007;24(1):S1–106.

63. Fink M. Osmotherapy for intracranial hypertension:

mannitol versus hypertonic saline. Continuum

2012;18(3):640–54.

64. Kaufmann A, Cardoso E. Aggravation of vasogenic

cerebral edema by multipledose mannitol. J Neurosurg

1992;77(4):584–9.

65. McManus M, Soriano S. Rebound swelling of astroglial

cells exposed to hypertonic mannitol. Anesthesiology

1998;88(6):1586–91.

66. Oddo M, Levine J, Frangos S, et al. Effect of mannitol

and hypertonic salineon cerebral oxygenation in patients with

severe traumatic brain injury and refractoryintracranial hypertension. J Neurol Neurosurg Psychiatr 2009;80(8):916–20.

67. Aiyagari V, Deibert E, Diringer M. Hypernatremia in the

neurologic intensive careunit: how high is too high? J Crit Care

2006;21(2):163–72.

68. Battison C, Andrews P, Graham C, et al. Randomized,

controlled trial on theeffect of a 20% mannitol solution and a

7.5% saline/6% dextran solution onincreased intracranial pressure after brain injury. Crit Care Med 2005;33(1):196–202.

69. Francony C, Fauvage B, Falcon D, et al. Equimolar

doses of mannitol and hypertonicsaline in the treatment of intracranial pressure. Crit Care Med 2008;36(3):795–800.

70. Zeng H, Wang Q, Deng Y, et al. A comparative study on

the efficacy of 10%hypertonic saline and equal volume of 20%

mannitol in the treatment of experimentallyinduced cerebral

edema in adult rats. BMC Neurosci 2010;11?153.

71. da Silva J, de Lima F, Valenca M, et al. Hypertonic saline

more efficacious thanmannitol in lethal intracranial hypertension

model. Neurol Res 2010;32(2):139–43.

72. Todd M, Cutkomp J, Brian J. Influence of mannitol and

furosemide, alone and incombination, on brain water content

after fluid percussion injury. Anesthesiology2006;105?1176–80.

73. Edwards P, Arango M, Balica L, et al. Final results of

MRC CRASH, a randomized placebo-controlled trial of intravenous corticosteroids in adults with headinjury- outcomes at 6

months. Lancet 2005;365(9475):1957–9.

74. Roberts I, Yates D, Sandercock P, et al. Effect of intravenous corticosteroids on death within 14 days in 10,008 adults

with clinically significant head injury (MRC CRASH trial): randomized placebo-controlled trial. Lancet 2004;364?9442.

75. Schierhout G, Roberts I. Withdrawn: antiepileptic drugs

for preventing seizures following acute traumatic brain injury.

Cochrane Database Syst Rev 2012;(6):CD000173.

76. Musulin S, Mariani C, Papich M. Diazepam pharmacokinetics after nasal drop and atomized nasal administration in

dogs. J Vet Pharmacol Ther 2011;34(1): 17–24.

77. Kassell N, Hitchon P, Gerk M, et al. Alterations in cerebral blood flow,oxygen metabolism, and electrical activity produced by high-dose thiopental.Neurosurgery 1980;7?598–603.

78. Hayes G. Severe seizures associated with traumatic

brain injury managed bycontrolled hypothermia, pharmacologic

coma, and mechanical ventilation in a dog. J Vet Emerg Crit Care

(San Antonio) 2009;19(6):629–34.

79. Giacino J, Whyte J, Bagiella E, et al. Placebo-controlled

trial of amantadine for severe traumatic brain injury. N Engl J

Med 2012;366?819–26.

80. Hall E. The neuroprotective pharmacology of methylprednisolone. J Neurosurg 1992;76(1):13–22.

81. Parker A, Smith C. Functional recovery from spinal cord

trauma following dexamethasone and chlorpromazine therapy in

dogs. Res Vet Sci 1976;21(2):246–7.

82. Levine J, Levine G, Boozer L, et al. Adverse effects and

outcome associatedwith dexamethasone administration in dogs

with acute thoracolumbar intervertebral disk herniation: 161

cases (2000-2006). J Am Vet Med Assoc 2008;232(3):411–7.

83. Bracken M, Shepard M, Collins W. A randomized, controlled trial of methylprednisolone or naloxone in the treatment

of acute spinal-cord injury. Results of the second national acute

spinal cord injury study. N Engl J Med 1990;322(20):1405–11.

84. Bracken M, Shepard M, Hellenbrand K. Methylprednisolone and neurologicalfunction 1 year after spinal cord injury.

Results of the National Acute Spinal Cord Injury Study. J Neurosurg 1985;63(5):704–13.

85. Bracken M, Shepard M, Holford T. Administration of

methylprednisolone for 24 or

48 hours or tirilazad mesylate for 48 hours in the treatment

of acute spinal cord injury. Results of the Third National Acute

Spinal Cord Injury Randomized Controlled Trial. National Acute

Spinal Cord Injury.JAMA 1997;277(20):1597–604.

86. Nesathurai S. Steroids and spinal cord injury: revisiting

the NASCIS 2 and NASCIS 3 trials. J Trauma Acute Care Surg

1998;45(6):1088–93.

87. Rabinowitz R, Eck J, Harper C. Urgent surgical decompression compared to methylprednisolone for the treatment of

acute spinal cord injury. Spine 2008;33(21):2260–8.

88. Coates J, Sorjonen D, Simpson S, et al. Clinicopathologic effects of a 21-aminosteroid compound (U74389G) and high

dose methylprednisolone onspinal cord function after simulated

spinal cord trauma. Vet Surg 1995;24?128–39.

89. Baltzer W, McMichael MA, Hosgood G. Randomized,

blinded, placebocontrolledclinical trial of N-acetylcysteine in

dogs with spinal cord trauma from acute intervertebral disc

disease. Spine 2008;33(13):1397–402.

90. Bains M, Hall E. Antioxidant therapies in traumatic brain

injury and spinal cord injury. Biochim Biophys Acta

2012;1822(5):675–84.

91. Hall E, Wolf D. A pharmacological analysis of the

pathophysiologicalmechanisms of posttraumatic spinal cord

ischemia. J Neurosurg 1986;64(6):951–61.

92. Ates O, Cayli S, Gurses I. Comparative neuroprotective

effect of sodium channel blockers after experimental spinal cord

injury. J Clin Neurosci 2007;14(7):658–65.

93. Kaptanoglu E, Solaroglu I, Surucu H. Blockade of

sodium channels by phenytoin protects ultrastructure and attenuates lipid peroxidation in experimental spinal cord injury. Acta

Neurochir 2005;147(4):405–12.

94. Hains B, Saab C, Lo A. Sodium channel blockade with

phenytoin protects spinal cord axons, enhances axonal conduction, and improves functional recovery after contusion SCI. Exp

Neurol 2004;188(2):365–77.

95. Schwartz G, Fehlings M. Secondary injury mechanisms

of spinal cord trauma:novel therapeutic approach for the management of secondary pathophysiology with the sodium channel blocker riluzole. Prog Brain Res 2002;137?177–90.

96. Park E, Velumian A, Fehlings M. The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with

an emphasis on the implications for white matter degeneration. J

Neurotrauma 2004;21?754–74.

97. Walters M, Kaste M, Lees K, et al. The AMPA antagonist

ZK 200775 in patients with acute ischaemic stroke: a double-blind, multi-centre, placebo-controlled safety and tolerability study. Cerebrovasc Dis 2005;20?304–9.

98. Chan P. White matter injury in spinal cord ischemia:

protection by AMPA/kainite glutamate receptor antagonism—Editoral comment. Stroke 2000;31?1952.

99. Chen HS, Lipton S. The chemical biology of clinically

tolerated NMDA receptor antagonists. J Neurochem

2006;97?1611–26.

100. Tadie M, D’ Arbigny P, Mathe J, et al. Acute spinal cord

injury. Early care and treatment in a multicenter study with

gacylidine. Soc Neurosci 1999;25?1090.

101. Kwon B, Okon E, Hillyer J. A systematic review of

non-invasive pharmacologic neuroprotective treatments for

acute spinal cord injury. J Neurotrauma 2011;28(8):1545–88.

102. Sturges B, LeCouteur R. Intracranial hypertension. In:

Silverstein D, Hopper K,editors. Small animal critical care medicine. 1st edition. St Louis (MO): ElsevierSaunders; 2009. p.

423–9.

103. Brain Trauma Foundation T, National Association of

State EMS Officials T,National Association of EMTs. Guidelines for

prehospital management of traumatic brain injury. Prehosp

Emerg Care 2007;12(1):1–52.

104. Davis D, Dunford J, Poste J, et al. The impact of hypoxia and hyperventilation on outcome after paramedic rapid

sequence intubation of severely head-injured patients. J Trauma

2004;57(1):1–8.

105. Muizelaar J, Marmarou A, Ward J, et al. Adverse effects

of prolonged hyperventilationin patients with severe head injury;

a randomized clinical trial. J Neurosurg 1991;75(5):731–9.

106. Deutschman C, Konstantinides F, Raup S. Physiological and metabolic response to isolated closed-head injury. Part i:

basal metabolic state: correlations of metabolic and physiological parameters with fasting and stressed controls. J Neurosurg

1986;64?89–98.

107. Jeremitsky E, Omert L, Dunham C, et al. The impact of

hyperglycemia on patients with severe brain injury. J Trauma

2005;58(1):47–50.

108. Syring R, Otto C, Drobatz K. Hyperglycemia in dogs

and cats with head trauma:122 cases (1997-1999). J Am Vet

Med Assoc 2001;218?1124–9.

109. Vespa P, McArthur D, Stein N, et al. Tight glycemic

control increases metabolic distress in traumatic brain injury: a

randomized controlled within subjects trial. Crit Care Med

2012;40(6):1923–9.

110. Green D, O’ Phelan K, Bassin S, et al. Intensive versus

conventional insulin therapy in critically ill neurologic patients.

Neurocrit Care 2010;13(3):299–306.

111. Bilotta F, Caramia R, Cernak I, et al. Intensive insulin

therapy after severe traumatic brain injury: randomized clinical

trial. Neurocrit Care 2008;9(2):159–66.

112. Dewey C. Urinary bladder management. In: Dewey

CW, editor. A practical guide to canine and feline neurology. St

Louis (MO): Elsevier Saunders; 2003. p. 419–26.

113. Bubenik L, Hosgood G. Urinary tract infection in dogs

with thoracolumbar intervertebral disc herniation and urinary

bladder dysfunction managed by manual expression, indwelling

catheterization or intermittent catheterization. Vet Surg

2008;37?791–800.

114. Smarick S, Haskins S, Aldrich J, et al. Incidence of

catheter-associated urinary tract infection among dogs in a

small animal intensive care unit. J Am Vet Med Assoc

2004;224(12):1936–40.

115. Ng I, Lim J, Wong H. Effects of head posture on cerebral hemodynamics its influences on intracranial pressure, cerebral perfusion pressure, and cerebral oxygenation. Neurosurgery

2004;54(3):593–7.

116. Sadaka F, Veremakis C. Therapeutic hypothermia for

the management of intracranial hypertension in severe traumatic

brain injury: a systematic review. Brain Inj 2012;26(7–8):899–908.

117. McCarthy P, Scott L, Ganta C, et al. Hypothermic protection in traumatic brain injury. Pathophysiology 2012;735–57.

118. Wijayatilake D, Shepherd S, Sherren P. Updates in the

management of intracranial pressure in traumatic brain injury.

Curr Opin Anaesthesiol 2012;25(5):540–7.

119. Hutchinson P, Corteen E, Czosnyka M, et al. Decompressive craniectomy intraumatic brain injury: the randomized

multicenter RESCUEicp study. Acta Neurochir 2006;96(S):17–20.

120. La Rosa G, Conti A, Cardali S, et al. Does early decompression improve neurological outcome of spinal cord injured

patients? Appraisal of the literature using a meta-analytical

approach. Spinal Cord 2004;42(9):503–12.

121. Croce M, Bee T, Pritchard E, et al. Does optimal timing

for spine fracture fixation exist? Ann Surg 2001;233(6):851–8.

122. Fehlings M, Perrin R. The timing of surgical intervention in the treatment of spinal cord injury: a systematic review of

recent clinical evidence. Spine 2006;31(11): S28–35.

123. Jeffery ND. Vertebral fracture and luxation in small

animals. Vet Clin North Am Small Anim Pract 2010;40(5):809–28.

124. Denis F. Spinal instability as defined by the three-column spine concept in acute spinal trauma. Clin Orthop Relat Res

1984;189?65–76.

125. Hillman R, Kengeri S, Waters D. Reevaluation of predictive factors for complete recovery in dogs with nonambulatory tetraparesis secondary to cervical disk herniation. J Am Anim

Hosp Assoc 2009;45?155–63.

126. Cherrone K, Dewey C, Coates J, et al. A retrospective

comparison of cervical intervertebral disk disease in nonchondrodystrophic large dogs versus small dogs. J Am Anim Hosp

Assoc 2004;40?316–20.

127. Gage E, Hoerlein B. Hemilaminectomy and dorsal

laminectomy for relieving compressions of the spinal cord in the

dog. J Am Vet Med Assoc 1968;152: 351–9.

128. Seim H 3rd, Prata R. Ventral decompression for the

treatment of cervical disk disease in the dog: a review of 54

cases. J Am Anim Hosp Assoc 1982;18: 233–40.

129. Gill P, Lippincott C, Anderson S. Dorsal laminectomy in

the treatment of cervical intervertebral disk disease in small

dogs: a retrospective study of 30 cases.J Am Anim Hosp Assoc

1996;32?77–80.

130. Felts J, Prata R. Cervical disk disease in the dog: intraforaminal and lateral extrusions. J Am Anim Hosp Assoc

1983;19?755–60.

131. Tanaka H, Nakayama M, Takase K. Usefulness of hemilaminectomy for cervical intervertebral disk disease in small

dogs. J Vet Med Sci 2005;67?679–83.

132. McCartney W. Comparison of recovery times and

complication rates between a modified slanted slot and the

standard ventral slot for the treatment of cervical disc disease in

20 dogs. J Small Anim Pract 2007;48?498–501.

133. Levine J, Levine G, Johnson S, et al. Evaluation of the

success of medical management for presumptive thoracolumbar

intervertebral disk herniation in dogs. Vet Surg 2007;36?482–91.

134. Kent M. Intraaxial spinal cord hemorrhage secondary

to atlantoaxial subluxationin a dog. J Am Anim Hosp Assoc

2010;46(2):132–7.

135. Cerda-Gonzalez S, Olby NJ. Fecal incontinence associated with epidural spinalhematoma and intervertebral disk

extrusion in a dog. J Am Vet Med Assoc 2006;228(2):230–5.

136. Caswell JL, Nykamp SG. Intradural vasculitis and hemorrhage in full sibling Welsh springer spaniels. Can Vet J

2003;44(2):137–9.

137. Tidwell AS, Specht A, Blaeser L, et al. Magnetic resonance imaging features ofextradural hematomas associated with

intervertebral disc herniation in a dog.Vet Radiol Ultrasound

2001;43(4):319–24.

138. Jeffery N, Lakatos A, Franklin R. Autologous olfactory

glial cell transplantation is eliable and safe in naturally occurring

spinal cord injury. J Neurotrauma 2005;22(11):1282–93.

139. Nishida H, Nakayama M, Tanaka H. Safety of autologous bone marrow stromal cell transplantation in dogs with

acute spinal cord injury. Vet Surg 2012;41?437–42.

140. Olby N, Levine J, Harris T. Long-term functional outcome of dogs with severe injuries of the thoracolumbar spinal

cord: 87 cases (1996-2001). J Am VetMed Assoc

2003;222(6):762–9.

141. Dewey CW. Myelopathies: disorders of the spinal cord.

In: Dewey CW, editor. A practical guide to canine and feline neurology. 2nd edition. Ames (IA):Wiley-Blackwell; 2008. p. 323–88.

142. Hawthorne J, Blevins W, Wallace L, et al. Cervical vertebral fractures in 56 dogs:a retrospective study. J Am Anim

Hosp Assoc 1999;35?135–46.

143. Eminaga S, Palus V, Cherubini G. Acute spinal cord

injury in the cat: causes,treatment and prognosis. J Feline Med

Surg 2011;13(11):850–62.spontaneous hyperadrenocorticism in

dogs. Part 2: Adrenal function testing and differentiating tests[J].

The Veterinary Journal, 2019, 252?105343.

第114頁

小動物臨床前沿(神經(jīng)學(xué)???- 上冊)· 腦部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 總第 12 期

- 112 -

參考文獻:

1. Simpson S, Syring R, Otto C. Severe blunt trauma in

dogs: 235 cases (1997-2003). J Vet Emerg Crit Care (San Antonio) 2009;19(6):588–602.

2. Marioni-Henry K, Vite CH, Newton AL, et al. Prevalence

of diseases of the spinalcord of cats. J Vet Intern Med

2004;18(6):851–8.

3. Fluehmann G, Doherr MG, Jaggy A. Canine neurological

diseases in a referralhospital population between 1989 and

2000 in Switzerland. J Small Anim Pract2006;47(10):582–7.

4. Sande A, West C. Traumatic brain injury: a review of

pathophysiology and management.J Vet Emerg Crit Care (San

Antonio) 2010;20(2):177–90.

5. Dewey C. Emergency management of the head trauma

patient. Vet Clin NorthAm Small Anim Pract 2000;30?207–25.

6. Hopkins A. Head trauma. Vet Clin North Am Small Anim

Pract 1996;26?875–91.

7. Dewey C, Fletcher D. Head trauma management. In:

Dewey C, editor. A practicalguide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell;2008. p. 221–35.

8. Aries M, Czrosynka M, Budohoski K, et al. Continuous

determination of optimalcerebral perfusion pressure in traumatic brain injury. Crit Care Med 2012;40(8):2456–63.

9. Ling G, Marshall S, Moore D. Diagnosis and management of traumatic braininjury. Continuum 2010;16(6):27–40.

10. Kim J, Gean A. Imaging for the diagnosis and management of traumatic braininjury. Neurotherapeutics

2011;8(1):39–53.

11. Tsang K, Whitfield P. Traumatic brain injury: review of

current management strategies.Br J Oral Maxillofac Surg

2012;50?298–308.

12. Proulx J, Dhupa N. Severe brain injury: part I: pathophysiology. CompendContin Educ Vet 1998;20?897–905.

13. Fletcher DJ, Dewey CW. Spinal trauma management.

In: Dewey CW, editor.A practical guide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell; 2008. p.

405–17.

14. Johnson K, Vite C. Spinal cord injury. In: Silverstein D,

Hopper K, editors. Smallanimal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders;2009. p. 419–23.

15. Park EH, White GA, Tieber LM. Mechanisms of injury

and emergency care ofacute spinal cord injury in dogs and cats.

J Vet Emerg Crit Care (San Antonio)2012;22(2):160–78.

16. Olby N. The pathogenesis and treatment of acute

spinal cord injuries in dogs.Vet Clin North Am Small Anim Pract

2010;40(5):791–807.

17. Fletcher D, Syring R. Traumatic brain injury. In: Silverstein D, Hopper K, editors.Small animal critical care medicine.

1st edition. St Louis (MO): Elsevier Saunders;2009. p. 658–62.

18. Leonard SE, Kirby R. The role of glutamate, calcium

and magnesium in secondarybrain injury. J Vet Emerg Crit Care

2002;12(1):17–32.

19. McMichael M, Moore R. Ischemia and reperfusion

injury pathophysiology, part I.J Vet Emerg Crit Care (San Antonio) 2004;14(4):231–41.

20. Oyinbo C. Secondary injury mechanisms in traumatic

spinal cord injury: anugget of this multiply cascade. Acta Neurobiol Exp 2011;71(2):281–99.

21. Tator C, Fehlings M. Review of the secondary injury

theory of acute spinal cordtrauma with emphasis on vascular

mechanisms. J Neurosurg 1991;75(1):15–26.

22. Dooney N, Dagal A. Anesthetic considerations in acute

spinal cord trauma. Int JCrit Illn Inj Sci 2011;1(1):36–43.

23. Armitage-Chan E, Wetmore L, Chan D. Anesthetic

management of the headtrauma patient. J Vet Emerg Crit Care

(San Antonio) 2007;17(1):5–14.

24. Shores A. Craniocerebral trauma. In: Kirk R, editor. Current veterinary therapy X.X. Philadelphia: WB Saunders; 1983. p.

847–54.

25. Platt S, Radaelli S, McDonnell J. The prognostic value of

the Modified GlasgowComa Scale in head trauma in gods. J Vet

Intern Med 2001;15(6):581–4.

26. Levine GJ, Levine JM, Budke CM, et al. Description and

repeatability of anewly developed spinal cord injury scale for

dogs. Prev Vet Med 2009;89(1–2):121–7.

27. Olby N, De Risio L, Munana K, et al. Development of a

functional scoring systemin dogs with acute spinal cord injuries.

Am J Vet Res 2001;62(10):1624–8.

28. Smith P, Jeffery N. Spinal shock—comparative aspects

and clinical relevance.J Vet Intern Med 2005;19?788–93.

29. Boysen S, Rozanski E, Tidwell A, et al. Evaluation of a

focused assessment with sonography for trauma protocol to

detect free abdominal fluid in dogs involved in motor vehicle

accidents. J Am Vet Med Assoc 2004;225(8):1198–204.

30. Lisciandro GR. Abdominal and thoracic focused assessment with sonographyfor trauma, triage, and monitoring in small

animals. J Vet Emerg Crit Care(San Antonio) 2011;21(2):104–22.

31. Kinns J, Mai W, Seiler G, et al. Radiographic sensitivity

and negative predictive value for acute canine spinal trauma. Vet

Radiol Ultrasound 2006;47(6):563–70.

32. Vitale C, Coates J. Acute spinal injury. Compendium

Standards of Care: Emergencyand Critical Care Medicine

2007;9(7):1–11.

33. Lamb CR, Nicholls A, Targett M, et al. Accuracy of

survey radiographic diagnosis of intervertebral disc protrusion in

dogs. Vet Radiol Ultrasound 2002;43(3):222–8.

34. Brisson BA. Intervertebral disc disease in dogs. Vet Clin

North Am Small Anim Pract 2010;40(5):829–58.

35. Israel SK, Levine JM, Kerwin SC, et al. The relative sensitivity of computed tomography and myelography for identification of thoracolumbar intervertebral disk herniations in dogs. Vet

Radiol Ultrasound 2009;50(3):247–52.

36. Olby N, Dyce J, Houlton J. Correlation of plain radiographic and lumbar myelographic findings with surgical findings

in thoracolumbar disc disease. J SmallAnim Pract

1994;35(7):345–50.

37. Griffin J, Levine J, Kerwin S. Canine thoracolumbar

intervertebral disk disease:pathophysiology, neurologic examination, and emergency medical therapy.Compend Contin Educ

Vet 2009;31(3):E1–13.

38. Lewis D, Hosgood G. Complications associated with

the use of iohexol for myelographyof the cervical vertebral

column in dogs: 66 cases (1988-1990). J AmVet Med Assoc

1992;200(9):1381–4.

39. Barone G, Ziemer L, Shofer F, et al. Risk factors associated with the developmentof seizures after use of iohexol for

myelography in dogs: 182 cases(1998). J Am Vet Med Assoc

2002;220(10):1499–502.

40. Johnson P, Beltran E, Dennis R, et al. Magnetic resonance imaging characteristics of suspected vertebral instability

associated with fracture or subluxation in eleven dogs. Vet

Radiol Ultrasound 2012;53(5):552–9.

41. Rozanski EA, Rondeau MP. Respiratory pharmacotherapy in emergency and critical care medicine. Vet Clin North Am

Small Anim Pract 2002;32(5):1073–86.

42. Mazzaferro E. Oxygen therapy. In: Silverstein D, Hopper

K, editors. Small animal critical caremedicine. 1stedition. StLouis(MO): Elsevier Saunders; 2009.p. 78–81.

43. Hopper K. Basic mechanical ventilation. In: Silverstein

D, Hopper K, editors. Small animal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders; 2009. p. 900–4.

44. Zhuang J, Shackford S, Schmoker J, et al. Colloid infusion after brain injury: an effect on intracranial pressure, cerebral

blood flow, and oxygen delivery. Crit Care Med

1995;23(1):140–8.

45. Wade C, Grady J, Kramer G, et al. Individual patient

cohort analysis of the efficacy of hypertonic saline/dextran in

patients with traumatic brain injury and hypotension. J Trauma

1997;42?561–5.

46. Vassar M, Perry C, Gannaway W, et al. Analysis of

potential risks associated with 7.5% sodium chloride resuscitation of traumatic shock. Arch Surg 1990;124: 1309–15.

47. Vassar M, Perry C, Gannaway W, et al. 7.5% sodium

chloride/dextran for resuscitation of trauma patients undergoing

helicopter transport. Arch Surg 1991;126: 1065–72.

48. Vassar M, Perry C, Holcroft J. Prehospital resuscitation

of hypotensive trauma patients with 7.5% NaCl versus 7.5% NaCl

with added dextran: a controlled trial. J Trauma 1993;34?622–32.

49. Vassar M, Fisher R, O’ Brien P, et al. A multicenter trial

for resuscitation of injured patients with 7.5% sodium chloride.

Arch Surg 1993;128?1003–11.

50. Cooper J, Myles P, McDermott F, et al. Prehospital

hypertonic saline resuscitation of patients with hypotension and

severe traumatic brain injury. JAMA 2004;291?1350–7.

51. Roberts D, Hall R, Kramer A. Sedation for critically ill

adults with severe traumatic brain injury: a systematic review of

randomized controlled trials. CritCare Med 2012;39(12):2743–51.

52. Sperry R, Bailey P, Reichman M, et al. Fentanyl and

sulfentanil increase intracranial pressure in head trauma patients.

Anesthesiology 1992;77?416–20.

53. Lauer K, Connolly L, Schmeling W. Opioid sedation

does not alter intracranial pressure in head injured patients. Can

J Anaesth 1997;44?929–33.

54. Albanese J, Viviand X, Potie F, et al. Sulfentanil, fentanyl,

and alfentanil in head trauma patients: a study on cerebral

hemodynamics. Crit Care Med 1999;27?407–11.

55. de Nadal M, Munar F, Poca M, et al. Cerebral hemodynamic effects of morphine and fentanyl in patients with severe

head injury: absence of correlation to cerebral autoregulation.

Anesthesiology 2000;92?11–9.

56. Hansen B. Acute pain management. Vet Clin North Am

Small Anim Pract 2000;30(4):899–916.

57. Pascoe P. Opioid analgesics. Vet Clin North Am Small

Anim Pract 2000;30(4):757–69.

58. Keegan R, Green S, Bagley R, et al. Effects of medetomidine administration on intracranial pressure and cardiovascular variables of isoflurane-anesthetized dogs. Am J Vet Res

1996;56(2):193–8.

59. Treggiari M, Schultz N, Yanez N, et al. Role of intracranial pressure values and patterns in predicting outcome of traumatic brain injury: a systematic review. Neurocrit Care

2007;6?104–12.

60. Weed L, McKibbon P. Pressure changes in the cerebrospinal fluid following intravenous injection of solutions of various

concentrations. Am J Phys 1919;48?512–30.

61. Ropper A. Hyperosmolar therapy for raised intracranial

pressure. N Engl J Med 2012;367(8):746–52.

62. Brain Trauma Foundation, American Association of

Neurological Surgeons,Congress of Neurological Surgeons.

Guidelines for the management of severetraumatic brain injury. J

Neurotrauma 2007;24(1):S1–106.

63. Fink M. Osmotherapy for intracranial hypertension:

mannitol versus hypertonic saline. Continuum

2012;18(3):640–54.

64. Kaufmann A, Cardoso E. Aggravation of vasogenic

cerebral edema by multipledose mannitol. J Neurosurg

1992;77(4):584–9.

65. McManus M, Soriano S. Rebound swelling of astroglial

cells exposed to hypertonic mannitol. Anesthesiology

1998;88(6):1586–91.

66. Oddo M, Levine J, Frangos S, et al. Effect of mannitol

and hypertonic salineon cerebral oxygenation in patients with

severe traumatic brain injury and refractoryintracranial hypertension. J Neurol Neurosurg Psychiatr 2009;80(8):916–20.

67. Aiyagari V, Deibert E, Diringer M. Hypernatremia in the

neurologic intensive careunit: how high is too high? J Crit Care

2006;21(2):163–72.

68. Battison C, Andrews P, Graham C, et al. Randomized,

controlled trial on theeffect of a 20% mannitol solution and a

7.5% saline/6% dextran solution onincreased intracranial pressure after brain injury. Crit Care Med 2005;33(1):196–202.

69. Francony C, Fauvage B, Falcon D, et al. Equimolar

doses of mannitol and hypertonicsaline in the treatment of intracranial pressure. Crit Care Med 2008;36(3):795–800.

70. Zeng H, Wang Q, Deng Y, et al. A comparative study on

the efficacy of 10%hypertonic saline and equal volume of 20%

mannitol in the treatment of experimentallyinduced cerebral

edema in adult rats. BMC Neurosci 2010;11?153.

71. da Silva J, de Lima F, Valenca M, et al. Hypertonic saline

more efficacious thanmannitol in lethal intracranial hypertension

model. Neurol Res 2010;32(2):139–43.

72. Todd M, Cutkomp J, Brian J. Influence of mannitol and

furosemide, alone and incombination, on brain water content

after fluid percussion injury. Anesthesiology2006;105?1176–80.

73. Edwards P, Arango M, Balica L, et al. Final results of

MRC CRASH, a randomized placebo-controlled trial of intravenous corticosteroids in adults with headinjury- outcomes at 6

months. Lancet 2005;365(9475):1957–9.

74. Roberts I, Yates D, Sandercock P, et al. Effect of intravenous corticosteroids on death within 14 days in 10,008 adults

with clinically significant head injury (MRC CRASH trial): randomized placebo-controlled trial. Lancet 2004;364?9442.

75. Schierhout G, Roberts I. Withdrawn: antiepileptic drugs

for preventing seizures following acute traumatic brain injury.

Cochrane Database Syst Rev 2012;(6):CD000173.

76. Musulin S, Mariani C, Papich M. Diazepam pharmacokinetics after nasal drop and atomized nasal administration in

dogs. J Vet Pharmacol Ther 2011;34(1): 17–24.

77. Kassell N, Hitchon P, Gerk M, et al. Alterations in cerebral blood flow,oxygen metabolism, and electrical activity produced by high-dose thiopental.Neurosurgery 1980;7?598–603.

78. Hayes G. Severe seizures associated with traumatic

brain injury managed bycontrolled hypothermia, pharmacologic

coma, and mechanical ventilation in a dog. J Vet Emerg Crit Care

(San Antonio) 2009;19(6):629–34.

79. Giacino J, Whyte J, Bagiella E, et al. Placebo-controlled

trial of amantadine for severe traumatic brain injury. N Engl J

Med 2012;366?819–26.

80. Hall E. The neuroprotective pharmacology of methylprednisolone. J Neurosurg 1992;76(1):13–22.

81. Parker A, Smith C. Functional recovery from spinal cord

trauma following dexamethasone and chlorpromazine therapy in

dogs. Res Vet Sci 1976;21(2):246–7.

82. Levine J, Levine G, Boozer L, et al. Adverse effects and

outcome associatedwith dexamethasone administration in dogs

with acute thoracolumbar intervertebral disk herniation: 161

cases (2000-2006). J Am Vet Med Assoc 2008;232(3):411–7.

83. Bracken M, Shepard M, Collins W. A randomized, controlled trial of methylprednisolone or naloxone in the treatment

of acute spinal-cord injury. Results of the second national acute

spinal cord injury study. N Engl J Med 1990;322(20):1405–11.

84. Bracken M, Shepard M, Hellenbrand K. Methylprednisolone and neurologicalfunction 1 year after spinal cord injury.

Results of the National Acute Spinal Cord Injury Study. J Neurosurg 1985;63(5):704–13.

85. Bracken M, Shepard M, Holford T. Administration of

methylprednisolone for 24 or

48 hours or tirilazad mesylate for 48 hours in the treatment

of acute spinal cord injury. Results of the Third National Acute

Spinal Cord Injury Randomized Controlled Trial. National Acute

Spinal Cord Injury.JAMA 1997;277(20):1597–604.

86. Nesathurai S. Steroids and spinal cord injury: revisiting

the NASCIS 2 and NASCIS 3 trials. J Trauma Acute Care Surg

1998;45(6):1088–93.

87. Rabinowitz R, Eck J, Harper C. Urgent surgical decompression compared to methylprednisolone for the treatment of

acute spinal cord injury. Spine 2008;33(21):2260–8.

88. Coates J, Sorjonen D, Simpson S, et al. Clinicopathologic effects of a 21-aminosteroid compound (U74389G) and high

dose methylprednisolone onspinal cord function after simulated

spinal cord trauma. Vet Surg 1995;24?128–39.

89. Baltzer W, McMichael MA, Hosgood G. Randomized,

blinded, placebocontrolledclinical trial of N-acetylcysteine in

dogs with spinal cord trauma from acute intervertebral disc

disease. Spine 2008;33(13):1397–402.

90. Bains M, Hall E. Antioxidant therapies in traumatic brain

injury and spinal cord injury. Biochim Biophys Acta

2012;1822(5):675–84.

91. Hall E, Wolf D. A pharmacological analysis of the

pathophysiologicalmechanisms of posttraumatic spinal cord

ischemia. J Neurosurg 1986;64(6):951–61.

92. Ates O, Cayli S, Gurses I. Comparative neuroprotective

effect of sodium channel blockers after experimental spinal cord

injury. J Clin Neurosci 2007;14(7):658–65.

93. Kaptanoglu E, Solaroglu I, Surucu H. Blockade of

sodium channels by phenytoin protects ultrastructure and attenuates lipid peroxidation in experimental spinal cord injury. Acta

Neurochir 2005;147(4):405–12.

94. Hains B, Saab C, Lo A. Sodium channel blockade with

phenytoin protects spinal cord axons, enhances axonal conduction, and improves functional recovery after contusion SCI. Exp

Neurol 2004;188(2):365–77.

95. Schwartz G, Fehlings M. Secondary injury mechanisms

of spinal cord trauma:novel therapeutic approach for the management of secondary pathophysiology with the sodium channel blocker riluzole. Prog Brain Res 2002;137?177–90.

96. Park E, Velumian A, Fehlings M. The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with

an emphasis on the implications for white matter degeneration. J

Neurotrauma 2004;21?754–74.

97. Walters M, Kaste M, Lees K, et al. The AMPA antagonist

ZK 200775 in patients with acute ischaemic stroke: a double-blind, multi-centre, placebo-controlled safety and tolerability study. Cerebrovasc Dis 2005;20?304–9.

98. Chan P. White matter injury in spinal cord ischemia:

protection by AMPA/kainite glutamate receptor antagonism—Editoral comment. Stroke 2000;31?1952.

99. Chen HS, Lipton S. The chemical biology of clinically

tolerated NMDA receptor antagonists. J Neurochem

2006;97?1611–26.

100. Tadie M, D’ Arbigny P, Mathe J, et al. Acute spinal cord

injury. Early care and treatment in a multicenter study with

gacylidine. Soc Neurosci 1999;25?1090.

101. Kwon B, Okon E, Hillyer J. A systematic review of

non-invasive pharmacologic neuroprotective treatments for

acute spinal cord injury. J Neurotrauma 2011;28(8):1545–88.

102. Sturges B, LeCouteur R. Intracranial hypertension. In:

Silverstein D, Hopper K,editors. Small animal critical care medicine. 1st edition. St Louis (MO): ElsevierSaunders; 2009. p.

423–9.

103. Brain Trauma Foundation T, National Association of

State EMS Officials T,National Association of EMTs. Guidelines for

prehospital management of traumatic brain injury. Prehosp

Emerg Care 2007;12(1):1–52.

104. Davis D, Dunford J, Poste J, et al. The impact of hypoxia and hyperventilation on outcome after paramedic rapid

sequence intubation of severely head-injured patients. J Trauma

2004;57(1):1–8.

105. Muizelaar J, Marmarou A, Ward J, et al. Adverse effects

of prolonged hyperventilationin patients with severe head injury;

a randomized clinical trial. J Neurosurg 1991;75(5):731–9.

106. Deutschman C, Konstantinides F, Raup S. Physiological and metabolic response to isolated closed-head injury. Part i:

basal metabolic state: correlations of metabolic and physiological parameters with fasting and stressed controls. J Neurosurg

1986;64?89–98.

107. Jeremitsky E, Omert L, Dunham C, et al. The impact of

hyperglycemia on patients with severe brain injury. J Trauma

2005;58(1):47–50.

108. Syring R, Otto C, Drobatz K. Hyperglycemia in dogs

and cats with head trauma:122 cases (1997-1999). J Am Vet

Med Assoc 2001;218?1124–9.

109. Vespa P, McArthur D, Stein N, et al. Tight glycemic

control increases metabolic distress in traumatic brain injury: a

randomized controlled within subjects trial. Crit Care Med

2012;40(6):1923–9.

110. Green D, O’ Phelan K, Bassin S, et al. Intensive versus

conventional insulin therapy in critically ill neurologic patients.

Neurocrit Care 2010;13(3):299–306.

111. Bilotta F, Caramia R, Cernak I, et al. Intensive insulin

therapy after severe traumatic brain injury: randomized clinical

trial. Neurocrit Care 2008;9(2):159–66.

112. Dewey C. Urinary bladder management. In: Dewey

CW, editor. A practical guide to canine and feline neurology. St

Louis (MO): Elsevier Saunders; 2003. p. 419–26.

113. Bubenik L, Hosgood G. Urinary tract infection in dogs

with thoracolumbar intervertebral disc herniation and urinary

bladder dysfunction managed by manual expression, indwelling

catheterization or intermittent catheterization. Vet Surg

2008;37?791–800.

114. Smarick S, Haskins S, Aldrich J, et al. Incidence of

catheter-associated urinary tract infection among dogs in a

small animal intensive care unit. J Am Vet Med Assoc

2004;224(12):1936–40.

115. Ng I, Lim J, Wong H. Effects of head posture on cerebral hemodynamics its influences on intracranial pressure, cerebral perfusion pressure, and cerebral oxygenation. Neurosurgery

2004;54(3):593–7.

116. Sadaka F, Veremakis C. Therapeutic hypothermia for

the management of intracranial hypertension in severe traumatic

brain injury: a systematic review. Brain Inj 2012;26(7–8):899–908.

117. McCarthy P, Scott L, Ganta C, et al. Hypothermic protection in traumatic brain injury. Pathophysiology 2012;735–57.

118. Wijayatilake D, Shepherd S, Sherren P. Updates in the

management of intracranial pressure in traumatic brain injury.

Curr Opin Anaesthesiol 2012;25(5):540–7.

119. Hutchinson P, Corteen E, Czosnyka M, et al. Decompressive craniectomy intraumatic brain injury: the randomized

multicenter RESCUEicp study. Acta Neurochir 2006;96(S):17–20.

120. La Rosa G, Conti A, Cardali S, et al. Does early decompression improve neurological outcome of spinal cord injured

patients? Appraisal of the literature using a meta-analytical

approach. Spinal Cord 2004;42(9):503–12.

121. Croce M, Bee T, Pritchard E, et al. Does optimal timing

for spine fracture fixation exist? Ann Surg 2001;233(6):851–8.

122. Fehlings M, Perrin R. The timing of surgical intervention in the treatment of spinal cord injury: a systematic review of

recent clinical evidence. Spine 2006;31(11): S28–35.

123. Jeffery ND. Vertebral fracture and luxation in small

animals. Vet Clin North Am Small Anim Pract 2010;40(5):809–28.

124. Denis F. Spinal instability as defined by the three-column spine concept in acute spinal trauma. Clin Orthop Relat Res

1984;189?65–76.

125. Hillman R, Kengeri S, Waters D. Reevaluation of predictive factors for complete recovery in dogs with nonambulatory tetraparesis secondary to cervical disk herniation. J Am Anim

Hosp Assoc 2009;45?155–63.

126. Cherrone K, Dewey C, Coates J, et al. A retrospective

comparison of cervical intervertebral disk disease in nonchondrodystrophic large dogs versus small dogs. J Am Anim Hosp

Assoc 2004;40?316–20.

127. Gage E, Hoerlein B. Hemilaminectomy and dorsal

laminectomy for relieving compressions of the spinal cord in the

dog. J Am Vet Med Assoc 1968;152: 351–9.

128. Seim H 3rd, Prata R. Ventral decompression for the

treatment of cervical disk disease in the dog: a review of 54

cases. J Am Anim Hosp Assoc 1982;18: 233–40.

129. Gill P, Lippincott C, Anderson S. Dorsal laminectomy in

the treatment of cervical intervertebral disk disease in small

dogs: a retrospective study of 30 cases.J Am Anim Hosp Assoc

1996;32?77–80.

130. Felts J, Prata R. Cervical disk disease in the dog: intraforaminal and lateral extrusions. J Am Anim Hosp Assoc

1983;19?755–60.

131. Tanaka H, Nakayama M, Takase K. Usefulness of hemilaminectomy for cervical intervertebral disk disease in small

dogs. J Vet Med Sci 2005;67?679–83.

132. McCartney W. Comparison of recovery times and

complication rates between a modified slanted slot and the

standard ventral slot for the treatment of cervical disc disease in

20 dogs. J Small Anim Pract 2007;48?498–501.

133. Levine J, Levine G, Johnson S, et al. Evaluation of the

success of medical management for presumptive thoracolumbar

intervertebral disk herniation in dogs. Vet Surg 2007;36?482–91.

134. Kent M. Intraaxial spinal cord hemorrhage secondary

to atlantoaxial subluxationin a dog. J Am Anim Hosp Assoc

2010;46(2):132–7.

135. Cerda-Gonzalez S, Olby NJ. Fecal incontinence associated with epidural spinalhematoma and intervertebral disk

extrusion in a dog. J Am Vet Med Assoc 2006;228(2):230–5.

136. Caswell JL, Nykamp SG. Intradural vasculitis and hemorrhage in full sibling Welsh springer spaniels. Can Vet J

2003;44(2):137–9.

137. Tidwell AS, Specht A, Blaeser L, et al. Magnetic resonance imaging features ofextradural hematomas associated with

intervertebral disc herniation in a dog.Vet Radiol Ultrasound

2001;43(4):319–24.

138. Jeffery N, Lakatos A, Franklin R. Autologous olfactory

glial cell transplantation is eliable and safe in naturally occurring

spinal cord injury. J Neurotrauma 2005;22(11):1282–93.

139. Nishida H, Nakayama M, Tanaka H. Safety of autologous bone marrow stromal cell transplantation in dogs with

acute spinal cord injury. Vet Surg 2012;41?437–42.

140. Olby N, Levine J, Harris T. Long-term functional outcome of dogs with severe injuries of the thoracolumbar spinal

cord: 87 cases (1996-2001). J Am VetMed Assoc

2003;222(6):762–9.

141. Dewey CW. Myelopathies: disorders of the spinal cord.

In: Dewey CW, editor. A practical guide to canine and feline neurology. 2nd edition. Ames (IA):Wiley-Blackwell; 2008. p. 323–88.

142. Hawthorne J, Blevins W, Wallace L, et al. Cervical vertebral fractures in 56 dogs:a retrospective study. J Am Anim

Hosp Assoc 1999;35?135–46.

143. Eminaga S, Palus V, Cherubini G. Acute spinal cord

injury in the cat: causes,treatment and prognosis. J Feline Med

Surg 2011;13(11):850–62.spontaneous hyperadrenocorticism in

dogs. Part 2: Adrenal function testing and differentiating tests[J].

The Veterinary Journal, 2019, 252?105343.

第115頁

小動物臨床前沿(神經(jīng)學(xué)專刊 - 上冊)· 腦部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 總第 12 期

- 113 -

參考文獻:

1. Simpson S, Syring R, Otto C. Severe blunt trauma in

dogs: 235 cases (1997-2003). J Vet Emerg Crit Care (San Antonio) 2009;19(6):588–602.

2. Marioni-Henry K, Vite CH, Newton AL, et al. Prevalence

of diseases of the spinalcord of cats. J Vet Intern Med

2004;18(6):851–8.

3. Fluehmann G, Doherr MG, Jaggy A. Canine neurological

diseases in a referralhospital population between 1989 and

2000 in Switzerland. J Small Anim Pract2006;47(10):582–7.

4. Sande A, West C. Traumatic brain injury: a review of

pathophysiology and management.J Vet Emerg Crit Care (San

Antonio) 2010;20(2):177–90.

5. Dewey C. Emergency management of the head trauma

patient. Vet Clin NorthAm Small Anim Pract 2000;30?207–25.

6. Hopkins A. Head trauma. Vet Clin North Am Small Anim

Pract 1996;26?875–91.

7. Dewey C, Fletcher D. Head trauma management. In:

Dewey C, editor. A practicalguide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell;2008. p. 221–35.

8. Aries M, Czrosynka M, Budohoski K, et al. Continuous

determination of optimalcerebral perfusion pressure in traumatic brain injury. Crit Care Med 2012;40(8):2456–63.

9. Ling G, Marshall S, Moore D. Diagnosis and management of traumatic braininjury. Continuum 2010;16(6):27–40.

10. Kim J, Gean A. Imaging for the diagnosis and management of traumatic braininjury. Neurotherapeutics

2011;8(1):39–53.

11. Tsang K, Whitfield P. Traumatic brain injury: review of

current management strategies.Br J Oral Maxillofac Surg

2012;50?298–308.

12. Proulx J, Dhupa N. Severe brain injury: part I: pathophysiology. CompendContin Educ Vet 1998;20?897–905.

13. Fletcher DJ, Dewey CW. Spinal trauma management.

In: Dewey CW, editor.A practical guide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell; 2008. p.

405–17.

14. Johnson K, Vite C. Spinal cord injury. In: Silverstein D,

Hopper K, editors. Smallanimal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders;2009. p. 419–23.

15. Park EH, White GA, Tieber LM. Mechanisms of injury

and emergency care ofacute spinal cord injury in dogs and cats.

J Vet Emerg Crit Care (San Antonio)2012;22(2):160–78.

16. Olby N. The pathogenesis and treatment of acute

spinal cord injuries in dogs.Vet Clin North Am Small Anim Pract

2010;40(5):791–807.

17. Fletcher D, Syring R. Traumatic brain injury. In: Silverstein D, Hopper K, editors.Small animal critical care medicine.

1st edition. St Louis (MO): Elsevier Saunders;2009. p. 658–62.

18. Leonard SE, Kirby R. The role of glutamate, calcium

and magnesium in secondarybrain injury. J Vet Emerg Crit Care

2002;12(1):17–32.

19. McMichael M, Moore R. Ischemia and reperfusion

injury pathophysiology, part I.J Vet Emerg Crit Care (San Antonio) 2004;14(4):231–41.

20. Oyinbo C. Secondary injury mechanisms in traumatic

spinal cord injury: anugget of this multiply cascade. Acta Neurobiol Exp 2011;71(2):281–99.

21. Tator C, Fehlings M. Review of the secondary injury

theory of acute spinal cordtrauma with emphasis on vascular

mechanisms. J Neurosurg 1991;75(1):15–26.

22. Dooney N, Dagal A. Anesthetic considerations in acute

spinal cord trauma. Int JCrit Illn Inj Sci 2011;1(1):36–43.

23. Armitage-Chan E, Wetmore L, Chan D. Anesthetic

management of the headtrauma patient. J Vet Emerg Crit Care

(San Antonio) 2007;17(1):5–14.

24. Shores A. Craniocerebral trauma. In: Kirk R, editor. Current veterinary therapy X.X. Philadelphia: WB Saunders; 1983. p.

847–54.

25. Platt S, Radaelli S, McDonnell J. The prognostic value of

the Modified GlasgowComa Scale in head trauma in gods. J Vet

Intern Med 2001;15(6):581–4.

26. Levine GJ, Levine JM, Budke CM, et al. Description and

repeatability of anewly developed spinal cord injury scale for

dogs. Prev Vet Med 2009;89(1–2):121–7.

27. Olby N, De Risio L, Munana K, et al. Development of a

functional scoring systemin dogs with acute spinal cord injuries.

Am J Vet Res 2001;62(10):1624–8.

28. Smith P, Jeffery N. Spinal shock—comparative aspects

and clinical relevance.J Vet Intern Med 2005;19?788–93.

29. Boysen S, Rozanski E, Tidwell A, et al. Evaluation of a

focused assessment with sonography for trauma protocol to

detect free abdominal fluid in dogs involved in motor vehicle

accidents. J Am Vet Med Assoc 2004;225(8):1198–204.

30. Lisciandro GR. Abdominal and thoracic focused assessment with sonographyfor trauma, triage, and monitoring in small

animals. J Vet Emerg Crit Care(San Antonio) 2011;21(2):104–22.

31. Kinns J, Mai W, Seiler G, et al. Radiographic sensitivity

and negative predictive value for acute canine spinal trauma. Vet

Radiol Ultrasound 2006;47(6):563–70.

32. Vitale C, Coates J. Acute spinal injury. Compendium

Standards of Care: Emergencyand Critical Care Medicine

2007;9(7):1–11.

33. Lamb CR, Nicholls A, Targett M, et al. Accuracy of

survey radiographic diagnosis of intervertebral disc protrusion in

dogs. Vet Radiol Ultrasound 2002;43(3):222–8.

34. Brisson BA. Intervertebral disc disease in dogs. Vet Clin

North Am Small Anim Pract 2010;40(5):829–58.

35. Israel SK, Levine JM, Kerwin SC, et al. The relative sensitivity of computed tomography and myelography for identification of thoracolumbar intervertebral disk herniations in dogs. Vet

Radiol Ultrasound 2009;50(3):247–52.

36. Olby N, Dyce J, Houlton J. Correlation of plain radiographic and lumbar myelographic findings with surgical findings

in thoracolumbar disc disease. J SmallAnim Pract

1994;35(7):345–50.

37. Griffin J, Levine J, Kerwin S. Canine thoracolumbar

intervertebral disk disease:pathophysiology, neurologic examination, and emergency medical therapy.Compend Contin Educ

Vet 2009;31(3):E1–13.

38. Lewis D, Hosgood G. Complications associated with

the use of iohexol for myelographyof the cervical vertebral

column in dogs: 66 cases (1988-1990). J AmVet Med Assoc

1992;200(9):1381–4.

39. Barone G, Ziemer L, Shofer F, et al. Risk factors associated with the developmentof seizures after use of iohexol for

myelography in dogs: 182 cases(1998). J Am Vet Med Assoc

2002;220(10):1499–502.

40. Johnson P, Beltran E, Dennis R, et al. Magnetic resonance imaging characteristics of suspected vertebral instability

associated with fracture or subluxation in eleven dogs. Vet

Radiol Ultrasound 2012;53(5):552–9.

41. Rozanski EA, Rondeau MP. Respiratory pharmacotherapy in emergency and critical care medicine. Vet Clin North Am

Small Anim Pract 2002;32(5):1073–86.

42. Mazzaferro E. Oxygen therapy. In: Silverstein D, Hopper

K, editors. Small animal critical caremedicine. 1stedition. StLouis(MO): Elsevier Saunders; 2009.p. 78–81.

43. Hopper K. Basic mechanical ventilation. In: Silverstein

D, Hopper K, editors. Small animal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders; 2009. p. 900–4.

44. Zhuang J, Shackford S, Schmoker J, et al. Colloid infusion after brain injury: an effect on intracranial pressure, cerebral

blood flow, and oxygen delivery. Crit Care Med

1995;23(1):140–8.

45. Wade C, Grady J, Kramer G, et al. Individual patient

cohort analysis of the efficacy of hypertonic saline/dextran in

patients with traumatic brain injury and hypotension. J Trauma

1997;42?561–5.

46. Vassar M, Perry C, Gannaway W, et al. Analysis of

potential risks associated with 7.5% sodium chloride resuscitation of traumatic shock. Arch Surg 1990;124: 1309–15.

47. Vassar M, Perry C, Gannaway W, et al. 7.5% sodium

chloride/dextran for resuscitation of trauma patients undergoing

helicopter transport. Arch Surg 1991;126: 1065–72.

48. Vassar M, Perry C, Holcroft J. Prehospital resuscitation

of hypotensive trauma patients with 7.5% NaCl versus 7.5% NaCl

with added dextran: a controlled trial. J Trauma 1993;34?622–32.

49. Vassar M, Fisher R, O’ Brien P, et al. A multicenter trial

for resuscitation of injured patients with 7.5% sodium chloride.

Arch Surg 1993;128?1003–11.

50. Cooper J, Myles P, McDermott F, et al. Prehospital

hypertonic saline resuscitation of patients with hypotension and

severe traumatic brain injury. JAMA 2004;291?1350–7.

51. Roberts D, Hall R, Kramer A. Sedation for critically ill

adults with severe traumatic brain injury: a systematic review of

randomized controlled trials. CritCare Med 2012;39(12):2743–51.

52. Sperry R, Bailey P, Reichman M, et al. Fentanyl and

sulfentanil increase intracranial pressure in head trauma patients.

Anesthesiology 1992;77?416–20.

53. Lauer K, Connolly L, Schmeling W. Opioid sedation

does not alter intracranial pressure in head injured patients. Can

J Anaesth 1997;44?929–33.

54. Albanese J, Viviand X, Potie F, et al. Sulfentanil, fentanyl,

and alfentanil in head trauma patients: a study on cerebral

hemodynamics. Crit Care Med 1999;27?407–11.

55. de Nadal M, Munar F, Poca M, et al. Cerebral hemodynamic effects of morphine and fentanyl in patients with severe

head injury: absence of correlation to cerebral autoregulation.

Anesthesiology 2000;92?11–9.

56. Hansen B. Acute pain management. Vet Clin North Am

Small Anim Pract 2000;30(4):899–916.

57. Pascoe P. Opioid analgesics. Vet Clin North Am Small

Anim Pract 2000;30(4):757–69.

58. Keegan R, Green S, Bagley R, et al. Effects of medetomidine administration on intracranial pressure and cardiovascular variables of isoflurane-anesthetized dogs. Am J Vet Res

1996;56(2):193–8.

59. Treggiari M, Schultz N, Yanez N, et al. Role of intracranial pressure values and patterns in predicting outcome of traumatic brain injury: a systematic review. Neurocrit Care

2007;6?104–12.

60. Weed L, McKibbon P. Pressure changes in the cerebrospinal fluid following intravenous injection of solutions of various

concentrations. Am J Phys 1919;48?512–30.

61. Ropper A. Hyperosmolar therapy for raised intracranial

pressure. N Engl J Med 2012;367(8):746–52.

62. Brain Trauma Foundation, American Association of

Neurological Surgeons,Congress of Neurological Surgeons.

Guidelines for the management of severetraumatic brain injury. J

Neurotrauma 2007;24(1):S1–106.

63. Fink M. Osmotherapy for intracranial hypertension:

mannitol versus hypertonic saline. Continuum

2012;18(3):640–54.

64. Kaufmann A, Cardoso E. Aggravation of vasogenic

cerebral edema by multipledose mannitol. J Neurosurg

1992;77(4):584–9.

65. McManus M, Soriano S. Rebound swelling of astroglial

cells exposed to hypertonic mannitol. Anesthesiology

1998;88(6):1586–91.

66. Oddo M, Levine J, Frangos S, et al. Effect of mannitol

and hypertonic salineon cerebral oxygenation in patients with

severe traumatic brain injury and refractoryintracranial hypertension. J Neurol Neurosurg Psychiatr 2009;80(8):916–20.

67. Aiyagari V, Deibert E, Diringer M. Hypernatremia in the

neurologic intensive careunit: how high is too high? J Crit Care

2006;21(2):163–72.

68. Battison C, Andrews P, Graham C, et al. Randomized,

controlled trial on theeffect of a 20% mannitol solution and a

7.5% saline/6% dextran solution onincreased intracranial pressure after brain injury. Crit Care Med 2005;33(1):196–202.

69. Francony C, Fauvage B, Falcon D, et al. Equimolar

doses of mannitol and hypertonicsaline in the treatment of intracranial pressure. Crit Care Med 2008;36(3):795–800.

70. Zeng H, Wang Q, Deng Y, et al. A comparative study on

the efficacy of 10%hypertonic saline and equal volume of 20%

mannitol in the treatment of experimentallyinduced cerebral

edema in adult rats. BMC Neurosci 2010;11?153.

71. da Silva J, de Lima F, Valenca M, et al. Hypertonic saline

more efficacious thanmannitol in lethal intracranial hypertension

model. Neurol Res 2010;32(2):139–43.

72. Todd M, Cutkomp J, Brian J. Influence of mannitol and

furosemide, alone and incombination, on brain water content

after fluid percussion injury. Anesthesiology2006;105?1176–80.

73. Edwards P, Arango M, Balica L, et al. Final results of

MRC CRASH, a randomized placebo-controlled trial of intravenous corticosteroids in adults with headinjury- outcomes at 6

months. Lancet 2005;365(9475):1957–9.

74. Roberts I, Yates D, Sandercock P, et al. Effect of intravenous corticosteroids on death within 14 days in 10,008 adults

with clinically significant head injury (MRC CRASH trial): randomized placebo-controlled trial. Lancet 2004;364?9442.

75. Schierhout G, Roberts I. Withdrawn: antiepileptic drugs

for preventing seizures following acute traumatic brain injury.

Cochrane Database Syst Rev 2012;(6):CD000173.

76. Musulin S, Mariani C, Papich M. Diazepam pharmacokinetics after nasal drop and atomized nasal administration in

dogs. J Vet Pharmacol Ther 2011;34(1): 17–24.

77. Kassell N, Hitchon P, Gerk M, et al. Alterations in cerebral blood flow,oxygen metabolism, and electrical activity produced by high-dose thiopental.Neurosurgery 1980;7?598–603.

78. Hayes G. Severe seizures associated with traumatic

brain injury managed bycontrolled hypothermia, pharmacologic

coma, and mechanical ventilation in a dog. J Vet Emerg Crit Care

(San Antonio) 2009;19(6):629–34.

79. Giacino J, Whyte J, Bagiella E, et al. Placebo-controlled

trial of amantadine for severe traumatic brain injury. N Engl J

Med 2012;366?819–26.

80. Hall E. The neuroprotective pharmacology of methylprednisolone. J Neurosurg 1992;76(1):13–22.

81. Parker A, Smith C. Functional recovery from spinal cord

trauma following dexamethasone and chlorpromazine therapy in

dogs. Res Vet Sci 1976;21(2):246–7.

82. Levine J, Levine G, Boozer L, et al. Adverse effects and

outcome associatedwith dexamethasone administration in dogs

with acute thoracolumbar intervertebral disk herniation: 161

cases (2000-2006). J Am Vet Med Assoc 2008;232(3):411–7.

83. Bracken M, Shepard M, Collins W. A randomized, controlled trial of methylprednisolone or naloxone in the treatment

of acute spinal-cord injury. Results of the second national acute

spinal cord injury study. N Engl J Med 1990;322(20):1405–11.

84. Bracken M, Shepard M, Hellenbrand K. Methylprednisolone and neurologicalfunction 1 year after spinal cord injury.

Results of the National Acute Spinal Cord Injury Study. J Neurosurg 1985;63(5):704–13.

85. Bracken M, Shepard M, Holford T. Administration of

methylprednisolone for 24 or

48 hours or tirilazad mesylate for 48 hours in the treatment

of acute spinal cord injury. Results of the Third National Acute

Spinal Cord Injury Randomized Controlled Trial. National Acute

Spinal Cord Injury.JAMA 1997;277(20):1597–604.

86. Nesathurai S. Steroids and spinal cord injury: revisiting

the NASCIS 2 and NASCIS 3 trials. J Trauma Acute Care Surg

1998;45(6):1088–93.

87. Rabinowitz R, Eck J, Harper C. Urgent surgical decompression compared to methylprednisolone for the treatment of

acute spinal cord injury. Spine 2008;33(21):2260–8.

88. Coates J, Sorjonen D, Simpson S, et al. Clinicopathologic effects of a 21-aminosteroid compound (U74389G) and high

dose methylprednisolone onspinal cord function after simulated

spinal cord trauma. Vet Surg 1995;24?128–39.

89. Baltzer W, McMichael MA, Hosgood G. Randomized,

blinded, placebocontrolledclinical trial of N-acetylcysteine in

dogs with spinal cord trauma from acute intervertebral disc

disease. Spine 2008;33(13):1397–402.

90. Bains M, Hall E. Antioxidant therapies in traumatic brain

injury and spinal cord injury. Biochim Biophys Acta

2012;1822(5):675–84.

91. Hall E, Wolf D. A pharmacological analysis of the

pathophysiologicalmechanisms of posttraumatic spinal cord

ischemia. J Neurosurg 1986;64(6):951–61.

92. Ates O, Cayli S, Gurses I. Comparative neuroprotective

effect of sodium channel blockers after experimental spinal cord

injury. J Clin Neurosci 2007;14(7):658–65.

93. Kaptanoglu E, Solaroglu I, Surucu H. Blockade of

sodium channels by phenytoin protects ultrastructure and attenuates lipid peroxidation in experimental spinal cord injury. Acta

Neurochir 2005;147(4):405–12.

94. Hains B, Saab C, Lo A. Sodium channel blockade with

phenytoin protects spinal cord axons, enhances axonal conduction, and improves functional recovery after contusion SCI. Exp

Neurol 2004;188(2):365–77.

95. Schwartz G, Fehlings M. Secondary injury mechanisms

of spinal cord trauma:novel therapeutic approach for the management of secondary pathophysiology with the sodium channel blocker riluzole. Prog Brain Res 2002;137?177–90.

96. Park E, Velumian A, Fehlings M. The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with

an emphasis on the implications for white matter degeneration. J

Neurotrauma 2004;21?754–74.

97. Walters M, Kaste M, Lees K, et al. The AMPA antagonist

ZK 200775 in patients with acute ischaemic stroke: a double-blind, multi-centre, placebo-controlled safety and tolerability study. Cerebrovasc Dis 2005;20?304–9.

98. Chan P. White matter injury in spinal cord ischemia:

protection by AMPA/kainite glutamate receptor antagonism—Editoral comment. Stroke 2000;31?1952.

99. Chen HS, Lipton S. The chemical biology of clinically

tolerated NMDA receptor antagonists. J Neurochem

2006;97?1611–26.

100. Tadie M, D’ Arbigny P, Mathe J, et al. Acute spinal cord

injury. Early care and treatment in a multicenter study with

gacylidine. Soc Neurosci 1999;25?1090.

101. Kwon B, Okon E, Hillyer J. A systematic review of

non-invasive pharmacologic neuroprotective treatments for

acute spinal cord injury. J Neurotrauma 2011;28(8):1545–88.

102. Sturges B, LeCouteur R. Intracranial hypertension. In:

Silverstein D, Hopper K,editors. Small animal critical care medicine. 1st edition. St Louis (MO): ElsevierSaunders; 2009. p.

423–9.

103. Brain Trauma Foundation T, National Association of

State EMS Officials T,National Association of EMTs. Guidelines for

prehospital management of traumatic brain injury. Prehosp

Emerg Care 2007;12(1):1–52.

104. Davis D, Dunford J, Poste J, et al. The impact of hypoxia and hyperventilation on outcome after paramedic rapid

sequence intubation of severely head-injured patients. J Trauma

2004;57(1):1–8.

105. Muizelaar J, Marmarou A, Ward J, et al. Adverse effects

of prolonged hyperventilationin patients with severe head injury;

a randomized clinical trial. J Neurosurg 1991;75(5):731–9.

106. Deutschman C, Konstantinides F, Raup S. Physiological and metabolic response to isolated closed-head injury. Part i:

basal metabolic state: correlations of metabolic and physiological parameters with fasting and stressed controls. J Neurosurg

1986;64?89–98.

107. Jeremitsky E, Omert L, Dunham C, et al. The impact of

hyperglycemia on patients with severe brain injury. J Trauma

2005;58(1):47–50.

108. Syring R, Otto C, Drobatz K. Hyperglycemia in dogs

and cats with head trauma:122 cases (1997-1999). J Am Vet

Med Assoc 2001;218?1124–9.

109. Vespa P, McArthur D, Stein N, et al. Tight glycemic

control increases metabolic distress in traumatic brain injury: a

randomized controlled within subjects trial. Crit Care Med

2012;40(6):1923–9.

110. Green D, O’ Phelan K, Bassin S, et al. Intensive versus

conventional insulin therapy in critically ill neurologic patients.

Neurocrit Care 2010;13(3):299–306.

111. Bilotta F, Caramia R, Cernak I, et al. Intensive insulin

therapy after severe traumatic brain injury: randomized clinical

trial. Neurocrit Care 2008;9(2):159–66.

112. Dewey C. Urinary bladder management. In: Dewey

CW, editor. A practical guide to canine and feline neurology. St

Louis (MO): Elsevier Saunders; 2003. p. 419–26.

113. Bubenik L, Hosgood G. Urinary tract infection in dogs

with thoracolumbar intervertebral disc herniation and urinary

bladder dysfunction managed by manual expression, indwelling

catheterization or intermittent catheterization. Vet Surg

2008;37?791–800.

114. Smarick S, Haskins S, Aldrich J, et al. Incidence of

catheter-associated urinary tract infection among dogs in a

small animal intensive care unit. J Am Vet Med Assoc

2004;224(12):1936–40.

115. Ng I, Lim J, Wong H. Effects of head posture on cerebral hemodynamics its influences on intracranial pressure, cerebral perfusion pressure, and cerebral oxygenation. Neurosurgery

2004;54(3):593–7.

116. Sadaka F, Veremakis C. Therapeutic hypothermia for

the management of intracranial hypertension in severe traumatic

brain injury: a systematic review. Brain Inj 2012;26(7–8):899–908.

117. McCarthy P, Scott L, Ganta C, et al. Hypothermic protection in traumatic brain injury. Pathophysiology 2012;735–57.

118. Wijayatilake D, Shepherd S, Sherren P. Updates in the

management of intracranial pressure in traumatic brain injury.

Curr Opin Anaesthesiol 2012;25(5):540–7.

119. Hutchinson P, Corteen E, Czosnyka M, et al. Decompressive craniectomy intraumatic brain injury: the randomized

multicenter RESCUEicp study. Acta Neurochir 2006;96(S):17–20.

120. La Rosa G, Conti A, Cardali S, et al. Does early decompression improve neurological outcome of spinal cord injured

patients? Appraisal of the literature using a meta-analytical

approach. Spinal Cord 2004;42(9):503–12.

121. Croce M, Bee T, Pritchard E, et al. Does optimal timing

for spine fracture fixation exist? Ann Surg 2001;233(6):851–8.

122. Fehlings M, Perrin R. The timing of surgical intervention in the treatment of spinal cord injury: a systematic review of

recent clinical evidence. Spine 2006;31(11): S28–35.

123. Jeffery ND. Vertebral fracture and luxation in small

animals. Vet Clin North Am Small Anim Pract 2010;40(5):809–28.

124. Denis F. Spinal instability as defined by the three-column spine concept in acute spinal trauma. Clin Orthop Relat Res

1984;189?65–76.

125. Hillman R, Kengeri S, Waters D. Reevaluation of predictive factors for complete recovery in dogs with nonambulatory tetraparesis secondary to cervical disk herniation. J Am Anim

Hosp Assoc 2009;45?155–63.

126. Cherrone K, Dewey C, Coates J, et al. A retrospective

comparison of cervical intervertebral disk disease in nonchondrodystrophic large dogs versus small dogs. J Am Anim Hosp

Assoc 2004;40?316–20.

127. Gage E, Hoerlein B. Hemilaminectomy and dorsal

laminectomy for relieving compressions of the spinal cord in the

dog. J Am Vet Med Assoc 1968;152: 351–9.

128. Seim H 3rd, Prata R. Ventral decompression for the

treatment of cervical disk disease in the dog: a review of 54

cases. J Am Anim Hosp Assoc 1982;18: 233–40.

129. Gill P, Lippincott C, Anderson S. Dorsal laminectomy in

the treatment of cervical intervertebral disk disease in small

dogs: a retrospective study of 30 cases.J Am Anim Hosp Assoc

1996;32?77–80.

130. Felts J, Prata R. Cervical disk disease in the dog: intraforaminal and lateral extrusions. J Am Anim Hosp Assoc

1983;19?755–60.

131. Tanaka H, Nakayama M, Takase K. Usefulness of hemilaminectomy for cervical intervertebral disk disease in small

dogs. J Vet Med Sci 2005;67?679–83.

132. McCartney W. Comparison of recovery times and

complication rates between a modified slanted slot and the

standard ventral slot for the treatment of cervical disc disease in

20 dogs. J Small Anim Pract 2007;48?498–501.

133. Levine J, Levine G, Johnson S, et al. Evaluation of the

success of medical management for presumptive thoracolumbar

intervertebral disk herniation in dogs. Vet Surg 2007;36?482–91.

134. Kent M. Intraaxial spinal cord hemorrhage secondary

to atlantoaxial subluxationin a dog. J Am Anim Hosp Assoc

2010;46(2):132–7.

135. Cerda-Gonzalez S, Olby NJ. Fecal incontinence associated with epidural spinalhematoma and intervertebral disk

extrusion in a dog. J Am Vet Med Assoc 2006;228(2):230–5.

136. Caswell JL, Nykamp SG. Intradural vasculitis and hemorrhage in full sibling Welsh springer spaniels. Can Vet J

2003;44(2):137–9.

137. Tidwell AS, Specht A, Blaeser L, et al. Magnetic resonance imaging features ofextradural hematomas associated with

intervertebral disc herniation in a dog.Vet Radiol Ultrasound

2001;43(4):319–24.

138. Jeffery N, Lakatos A, Franklin R. Autologous olfactory

glial cell transplantation is eliable and safe in naturally occurring

spinal cord injury. J Neurotrauma 2005;22(11):1282–93.

139. Nishida H, Nakayama M, Tanaka H. Safety of autologous bone marrow stromal cell transplantation in dogs with

acute spinal cord injury. Vet Surg 2012;41?437–42.

140. Olby N, Levine J, Harris T. Long-term functional outcome of dogs with severe injuries of the thoracolumbar spinal

cord: 87 cases (1996-2001). J Am VetMed Assoc

2003;222(6):762–9.

141. Dewey CW. Myelopathies: disorders of the spinal cord.

In: Dewey CW, editor. A practical guide to canine and feline neurology. 2nd edition. Ames (IA):Wiley-Blackwell; 2008. p. 323–88.

142. Hawthorne J, Blevins W, Wallace L, et al. Cervical vertebral fractures in 56 dogs:a retrospective study. J Am Anim

Hosp Assoc 1999;35?135–46.

143. Eminaga S, Palus V, Cherubini G. Acute spinal cord

injury in the cat: causes,treatment and prognosis. J Feline Med

Surg 2011;13(11):850–62.spontaneous hyperadrenocorticism in

dogs. Part 2: Adrenal function testing and differentiating tests[J].

The Veterinary Journal, 2019, 252?105343.

第116頁

參考文獻:

1. Simpson S, Syring R, Otto C. Severe blunt trauma in

dogs: 235 cases (1997-2003). J Vet Emerg Crit Care (San Antonio) 2009;19(6):588–602.

2. Marioni-Henry K, Vite CH, Newton AL, et al. Prevalence

of diseases of the spinalcord of cats. J Vet Intern Med

2004;18(6):851–8.

3. Fluehmann G, Doherr MG, Jaggy A. Canine neurological

diseases in a referralhospital population between 1989 and

2000 in Switzerland. J Small Anim Pract2006;47(10):582–7.

4. Sande A, West C. Traumatic brain injury: a review of

pathophysiology and management.J Vet Emerg Crit Care (San

Antonio) 2010;20(2):177–90.

5. Dewey C. Emergency management of the head trauma

patient. Vet Clin NorthAm Small Anim Pract 2000;30?207–25.

6. Hopkins A. Head trauma. Vet Clin North Am Small Anim

Pract 1996;26?875–91.

7. Dewey C, Fletcher D. Head trauma management. In:

Dewey C, editor. A practicalguide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell;2008. p. 221–35.

8. Aries M, Czrosynka M, Budohoski K, et al. Continuous

determination of optimalcerebral perfusion pressure in traumatic brain injury. Crit Care Med 2012;40(8):2456–63.

9. Ling G, Marshall S, Moore D. Diagnosis and management of traumatic braininjury. Continuum 2010;16(6):27–40.

10. Kim J, Gean A. Imaging for the diagnosis and management of traumatic braininjury. Neurotherapeutics

2011;8(1):39–53.

11. Tsang K, Whitfield P. Traumatic brain injury: review of

current management strategies.Br J Oral Maxillofac Surg

2012;50?298–308.

12. Proulx J, Dhupa N. Severe brain injury: part I: pathophysiology. CompendContin Educ Vet 1998;20?897–905.

13. Fletcher DJ, Dewey CW. Spinal trauma management.

In: Dewey CW, editor.A practical guide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell; 2008. p.

405–17.

14. Johnson K, Vite C. Spinal cord injury. In: Silverstein D,

Hopper K, editors. Smallanimal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders;2009. p. 419–23.

15. Park EH, White GA, Tieber LM. Mechanisms of injury

and emergency care ofacute spinal cord injury in dogs and cats.

J Vet Emerg Crit Care (San Antonio)2012;22(2):160–78.

16. Olby N. The pathogenesis and treatment of acute

spinal cord injuries in dogs.Vet Clin North Am Small Anim Pract

2010;40(5):791–807.

17. Fletcher D, Syring R. Traumatic brain injury. In: Silverstein D, Hopper K, editors.Small animal critical care medicine.

1st edition. St Louis (MO): Elsevier Saunders;2009. p. 658–62.

18. Leonard SE, Kirby R. The role of glutamate, calcium

and magnesium in secondarybrain injury. J Vet Emerg Crit Care

2002;12(1):17–32.

19. McMichael M, Moore R. Ischemia and reperfusion

injury pathophysiology, part I.J Vet Emerg Crit Care (San Antonio) 2004;14(4):231–41.

20. Oyinbo C. Secondary injury mechanisms in traumatic

spinal cord injury: anugget of this multiply cascade. Acta Neurobiol Exp 2011;71(2):281–99.

21. Tator C, Fehlings M. Review of the secondary injury

theory of acute spinal cordtrauma with emphasis on vascular

mechanisms. J Neurosurg 1991;75(1):15–26.

22. Dooney N, Dagal A. Anesthetic considerations in acute

spinal cord trauma. Int JCrit Illn Inj Sci 2011;1(1):36–43.

23. Armitage-Chan E, Wetmore L, Chan D. Anesthetic

management of the headtrauma patient. J Vet Emerg Crit Care

(San Antonio) 2007;17(1):5–14.

24. Shores A. Craniocerebral trauma. In: Kirk R, editor. Current veterinary therapy X.X. Philadelphia: WB Saunders; 1983. p.

847–54.

25. Platt S, Radaelli S, McDonnell J. The prognostic value of

the Modified GlasgowComa Scale in head trauma in gods. J Vet

Intern Med 2001;15(6):581–4.

26. Levine GJ, Levine JM, Budke CM, et al. Description and

repeatability of anewly developed spinal cord injury scale for

dogs. Prev Vet Med 2009;89(1–2):121–7.

27. Olby N, De Risio L, Munana K, et al. Development of a

functional scoring systemin dogs with acute spinal cord injuries.

Am J Vet Res 2001;62(10):1624–8.

28. Smith P, Jeffery N. Spinal shock—comparative aspects

and clinical relevance.J Vet Intern Med 2005;19?788–93.

29. Boysen S, Rozanski E, Tidwell A, et al. Evaluation of a

focused assessment with sonography for trauma protocol to

detect free abdominal fluid in dogs involved in motor vehicle

accidents. J Am Vet Med Assoc 2004;225(8):1198–204.

30. Lisciandro GR. Abdominal and thoracic focused assessment with sonographyfor trauma, triage, and monitoring in small

animals. J Vet Emerg Crit Care(San Antonio) 2011;21(2):104–22.

31. Kinns J, Mai W, Seiler G, et al. Radiographic sensitivity

and negative predictive value for acute canine spinal trauma. Vet

Radiol Ultrasound 2006;47(6):563–70.

32. Vitale C, Coates J. Acute spinal injury. Compendium

Standards of Care: Emergencyand Critical Care Medicine

2007;9(7):1–11.

33. Lamb CR, Nicholls A, Targett M, et al. Accuracy of

survey radiographic diagnosis of intervertebral disc protrusion in

dogs. Vet Radiol Ultrasound 2002;43(3):222–8.

34. Brisson BA. Intervertebral disc disease in dogs. Vet Clin

North Am Small Anim Pract 2010;40(5):829–58.

35. Israel SK, Levine JM, Kerwin SC, et al. The relative sensitivity of computed tomography and myelography for identification of thoracolumbar intervertebral disk herniations in dogs. Vet

Radiol Ultrasound 2009;50(3):247–52.

36. Olby N, Dyce J, Houlton J. Correlation of plain radiographic and lumbar myelographic findings with surgical findings

in thoracolumbar disc disease. J SmallAnim Pract

1994;35(7):345–50.

37. Griffin J, Levine J, Kerwin S. Canine thoracolumbar

intervertebral disk disease:pathophysiology, neurologic examination, and emergency medical therapy.Compend Contin Educ

Vet 2009;31(3):E1–13.

38. Lewis D, Hosgood G. Complications associated with

the use of iohexol for myelographyof the cervical vertebral

column in dogs: 66 cases (1988-1990). J AmVet Med Assoc

1992;200(9):1381–4.

39. Barone G, Ziemer L, Shofer F, et al. Risk factors associated with the developmentof seizures after use of iohexol for

myelography in dogs: 182 cases(1998). J Am Vet Med Assoc

2002;220(10):1499–502.

40. Johnson P, Beltran E, Dennis R, et al. Magnetic resonance imaging characteristics of suspected vertebral instability

associated with fracture or subluxation in eleven dogs. Vet

Radiol Ultrasound 2012;53(5):552–9.

41. Rozanski EA, Rondeau MP. Respiratory pharmacotherapy in emergency and critical care medicine. Vet Clin North Am

Small Anim Pract 2002;32(5):1073–86.

42. Mazzaferro E. Oxygen therapy. In: Silverstein D, Hopper

K, editors. Small animal critical caremedicine. 1stedition. StLouis(MO): Elsevier Saunders; 2009.p. 78–81.

43. Hopper K. Basic mechanical ventilation. In: Silverstein

D, Hopper K, editors. Small animal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders; 2009. p. 900–4.

44. Zhuang J, Shackford S, Schmoker J, et al. Colloid infusion after brain injury: an effect on intracranial pressure, cerebral

blood flow, and oxygen delivery. Crit Care Med

1995;23(1):140–8.

45. Wade C, Grady J, Kramer G, et al. Individual patient

cohort analysis of the efficacy of hypertonic saline/dextran in

patients with traumatic brain injury and hypotension. J Trauma

1997;42?561–5.

46. Vassar M, Perry C, Gannaway W, et al. Analysis of

potential risks associated with 7.5% sodium chloride resuscitation of traumatic shock. Arch Surg 1990;124: 1309–15.

47. Vassar M, Perry C, Gannaway W, et al. 7.5% sodium

chloride/dextran for resuscitation of trauma patients undergoing

helicopter transport. Arch Surg 1991;126: 1065–72.

48. Vassar M, Perry C, Holcroft J. Prehospital resuscitation

of hypotensive trauma patients with 7.5% NaCl versus 7.5% NaCl

with added dextran: a controlled trial. J Trauma 1993;34?622–32.

49. Vassar M, Fisher R, O’ Brien P, et al. A multicenter trial

for resuscitation of injured patients with 7.5% sodium chloride.

Arch Surg 1993;128?1003–11.

50. Cooper J, Myles P, McDermott F, et al. Prehospital

hypertonic saline resuscitation of patients with hypotension and

severe traumatic brain injury. JAMA 2004;291?1350–7.

51. Roberts D, Hall R, Kramer A. Sedation for critically ill

adults with severe traumatic brain injury: a systematic review of

randomized controlled trials. CritCare Med 2012;39(12):2743–51.

52. Sperry R, Bailey P, Reichman M, et al. Fentanyl and

sulfentanil increase intracranial pressure in head trauma patients.

Anesthesiology 1992;77?416–20.

53. Lauer K, Connolly L, Schmeling W. Opioid sedation

does not alter intracranial pressure in head injured patients. Can

J Anaesth 1997;44?929–33.

54. Albanese J, Viviand X, Potie F, et al. Sulfentanil, fentanyl,

and alfentanil in head trauma patients: a study on cerebral

hemodynamics. Crit Care Med 1999;27?407–11.

55. de Nadal M, Munar F, Poca M, et al. Cerebral hemodynamic effects of morphine and fentanyl in patients with severe

head injury: absence of correlation to cerebral autoregulation.

Anesthesiology 2000;92?11–9.

56. Hansen B. Acute pain management. Vet Clin North Am

Small Anim Pract 2000;30(4):899–916.

57. Pascoe P. Opioid analgesics. Vet Clin North Am Small

Anim Pract 2000;30(4):757–69.

58. Keegan R, Green S, Bagley R, et al. Effects of medetomidine administration on intracranial pressure and cardiovascular variables of isoflurane-anesthetized dogs. Am J Vet Res

1996;56(2):193–8.

59. Treggiari M, Schultz N, Yanez N, et al. Role of intracranial pressure values and patterns in predicting outcome of traumatic brain injury: a systematic review. Neurocrit Care

2007;6?104–12.

60. Weed L, McKibbon P. Pressure changes in the cerebrospinal fluid following intravenous injection of solutions of various

concentrations. Am J Phys 1919;48?512–30.

61. Ropper A. Hyperosmolar therapy for raised intracranial

pressure. N Engl J Med 2012;367(8):746–52.

62. Brain Trauma Foundation, American Association of

Neurological Surgeons,Congress of Neurological Surgeons.

Guidelines for the management of severetraumatic brain injury. J

Neurotrauma 2007;24(1):S1–106.

63. Fink M. Osmotherapy for intracranial hypertension:

mannitol versus hypertonic saline. Continuum

2012;18(3):640–54.

64. Kaufmann A, Cardoso E. Aggravation of vasogenic

cerebral edema by multipledose mannitol. J Neurosurg

1992;77(4):584–9.

65. McManus M, Soriano S. Rebound swelling of astroglial

cells exposed to hypertonic mannitol. Anesthesiology

1998;88(6):1586–91.

66. Oddo M, Levine J, Frangos S, et al. Effect of mannitol

and hypertonic salineon cerebral oxygenation in patients with

severe traumatic brain injury and refractoryintracranial hypertension. J Neurol Neurosurg Psychiatr 2009;80(8):916–20.

67. Aiyagari V, Deibert E, Diringer M. Hypernatremia in the

neurologic intensive careunit: how high is too high? J Crit Care

2006;21(2):163–72.

68. Battison C, Andrews P, Graham C, et al. Randomized,

controlled trial on theeffect of a 20% mannitol solution and a

7.5% saline/6% dextran solution onincreased intracranial pressure after brain injury. Crit Care Med 2005;33(1):196–202.

69. Francony C, Fauvage B, Falcon D, et al. Equimolar

doses of mannitol and hypertonicsaline in the treatment of intracranial pressure. Crit Care Med 2008;36(3):795–800.

70. Zeng H, Wang Q, Deng Y, et al. A comparative study on

the efficacy of 10%hypertonic saline and equal volume of 20%

mannitol in the treatment of experimentallyinduced cerebral

edema in adult rats. BMC Neurosci 2010;11?153.

71. da Silva J, de Lima F, Valenca M, et al. Hypertonic saline

more efficacious thanmannitol in lethal intracranial hypertension

model. Neurol Res 2010;32(2):139–43.

72. Todd M, Cutkomp J, Brian J. Influence of mannitol and

furosemide, alone and incombination, on brain water content

after fluid percussion injury. Anesthesiology2006;105?1176–80.

73. Edwards P, Arango M, Balica L, et al. Final results of

MRC CRASH, a randomized placebo-controlled trial of intravenous corticosteroids in adults with headinjury- outcomes at 6

months. Lancet 2005;365(9475):1957–9.

74. Roberts I, Yates D, Sandercock P, et al. Effect of intravenous corticosteroids on death within 14 days in 10,008 adults

with clinically significant head injury (MRC CRASH trial): randomized placebo-controlled trial. Lancet 2004;364?9442.

75. Schierhout G, Roberts I. Withdrawn: antiepileptic drugs

for preventing seizures following acute traumatic brain injury.

Cochrane Database Syst Rev 2012;(6):CD000173.

76. Musulin S, Mariani C, Papich M. Diazepam pharmacokinetics after nasal drop and atomized nasal administration in

dogs. J Vet Pharmacol Ther 2011;34(1): 17–24.

77. Kassell N, Hitchon P, Gerk M, et al. Alterations in cerebral blood flow,oxygen metabolism, and electrical activity produced by high-dose thiopental.Neurosurgery 1980;7?598–603.

78. Hayes G. Severe seizures associated with traumatic

brain injury managed bycontrolled hypothermia, pharmacologic

coma, and mechanical ventilation in a dog. J Vet Emerg Crit Care

(San Antonio) 2009;19(6):629–34.

79. Giacino J, Whyte J, Bagiella E, et al. Placebo-controlled

trial of amantadine for severe traumatic brain injury. N Engl J

Med 2012;366?819–26.

80. Hall E. The neuroprotective pharmacology of methylprednisolone. J Neurosurg 1992;76(1):13–22.

81. Parker A, Smith C. Functional recovery from spinal cord

trauma following dexamethasone and chlorpromazine therapy in

dogs. Res Vet Sci 1976;21(2):246–7.

82. Levine J, Levine G, Boozer L, et al. Adverse effects and

outcome associatedwith dexamethasone administration in dogs

with acute thoracolumbar intervertebral disk herniation: 161

cases (2000-2006). J Am Vet Med Assoc 2008;232(3):411–7.

83. Bracken M, Shepard M, Collins W. A randomized, controlled trial of methylprednisolone or naloxone in the treatment

of acute spinal-cord injury. Results of the second national acute

spinal cord injury study. N Engl J Med 1990;322(20):1405–11.

84. Bracken M, Shepard M, Hellenbrand K. Methylprednisolone and neurologicalfunction 1 year after spinal cord injury.

Results of the National Acute Spinal Cord Injury Study. J Neurosurg 1985;63(5):704–13.

85. Bracken M, Shepard M, Holford T. Administration of

methylprednisolone for 24 or

48 hours or tirilazad mesylate for 48 hours in the treatment

of acute spinal cord injury. Results of the Third National Acute

Spinal Cord Injury Randomized Controlled Trial. National Acute

Spinal Cord Injury.JAMA 1997;277(20):1597–604.

86. Nesathurai S. Steroids and spinal cord injury: revisiting

the NASCIS 2 and NASCIS 3 trials. J Trauma Acute Care Surg

1998;45(6):1088–93.

87. Rabinowitz R, Eck J, Harper C. Urgent surgical decompression compared to methylprednisolone for the treatment of

acute spinal cord injury. Spine 2008;33(21):2260–8.

88. Coates J, Sorjonen D, Simpson S, et al. Clinicopathologic effects of a 21-aminosteroid compound (U74389G) and high

dose methylprednisolone onspinal cord function after simulated

spinal cord trauma. Vet Surg 1995;24?128–39.

89. Baltzer W, McMichael MA, Hosgood G. Randomized,

blinded, placebocontrolledclinical trial of N-acetylcysteine in

dogs with spinal cord trauma from acute intervertebral disc

disease. Spine 2008;33(13):1397–402.

90. Bains M, Hall E. Antioxidant therapies in traumatic brain

injury and spinal cord injury. Biochim Biophys Acta

2012;1822(5):675–84.

91. Hall E, Wolf D. A pharmacological analysis of the

pathophysiologicalmechanisms of posttraumatic spinal cord

ischemia. J Neurosurg 1986;64(6):951–61.

92. Ates O, Cayli S, Gurses I. Comparative neuroprotective

effect of sodium channel blockers after experimental spinal cord

injury. J Clin Neurosci 2007;14(7):658–65.

93. Kaptanoglu E, Solaroglu I, Surucu H. Blockade of

sodium channels by phenytoin protects ultrastructure and attenuates lipid peroxidation in experimental spinal cord injury. Acta

Neurochir 2005;147(4):405–12.

94. Hains B, Saab C, Lo A. Sodium channel blockade with

phenytoin protects spinal cord axons, enhances axonal conduction, and improves functional recovery after contusion SCI. Exp

Neurol 2004;188(2):365–77.

95. Schwartz G, Fehlings M. Secondary injury mechanisms

of spinal cord trauma:novel therapeutic approach for the management of secondary pathophysiology with the sodium channel blocker riluzole. Prog Brain Res 2002;137?177–90.

96. Park E, Velumian A, Fehlings M. The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with

an emphasis on the implications for white matter degeneration. J

Neurotrauma 2004;21?754–74.

97. Walters M, Kaste M, Lees K, et al. The AMPA antagonist

ZK 200775 in patients with acute ischaemic stroke: a double-blind, multi-centre, placebo-controlled safety and tolerability study. Cerebrovasc Dis 2005;20?304–9.

98. Chan P. White matter injury in spinal cord ischemia:

protection by AMPA/kainite glutamate receptor antagonism—Editoral comment. Stroke 2000;31?1952.

99. Chen HS, Lipton S. The chemical biology of clinically

tolerated NMDA receptor antagonists. J Neurochem

2006;97?1611–26.

100. Tadie M, D’ Arbigny P, Mathe J, et al. Acute spinal cord

injury. Early care and treatment in a multicenter study with

gacylidine. Soc Neurosci 1999;25?1090.

101. Kwon B, Okon E, Hillyer J. A systematic review of

non-invasive pharmacologic neuroprotective treatments for

acute spinal cord injury. J Neurotrauma 2011;28(8):1545–88.

102. Sturges B, LeCouteur R. Intracranial hypertension. In:

Silverstein D, Hopper K,editors. Small animal critical care medicine. 1st edition. St Louis (MO): ElsevierSaunders; 2009. p.

423–9.

103. Brain Trauma Foundation T, National Association of

State EMS Officials T,National Association of EMTs. Guidelines for

prehospital management of traumatic brain injury. Prehosp

Emerg Care 2007;12(1):1–52.

104. Davis D, Dunford J, Poste J, et al. The impact of hypoxia and hyperventilation on outcome after paramedic rapid

sequence intubation of severely head-injured patients. J Trauma

2004;57(1):1–8.

105. Muizelaar J, Marmarou A, Ward J, et al. Adverse effects

of prolonged hyperventilationin patients with severe head injury;

a randomized clinical trial. J Neurosurg 1991;75(5):731–9.

106. Deutschman C, Konstantinides F, Raup S. Physiological and metabolic response to isolated closed-head injury. Part i:

basal metabolic state: correlations of metabolic and physiological parameters with fasting and stressed controls. J Neurosurg

1986;64?89–98.

107. Jeremitsky E, Omert L, Dunham C, et al. The impact of

hyperglycemia on patients with severe brain injury. J Trauma

2005;58(1):47–50.

108. Syring R, Otto C, Drobatz K. Hyperglycemia in dogs

and cats with head trauma:122 cases (1997-1999). J Am Vet

Med Assoc 2001;218?1124–9.

109. Vespa P, McArthur D, Stein N, et al. Tight glycemic

control increases metabolic distress in traumatic brain injury: a

randomized controlled within subjects trial. Crit Care Med

2012;40(6):1923–9.

110. Green D, O’ Phelan K, Bassin S, et al. Intensive versus

conventional insulin therapy in critically ill neurologic patients.

Neurocrit Care 2010;13(3):299–306.

111. Bilotta F, Caramia R, Cernak I, et al. Intensive insulin

therapy after severe traumatic brain injury: randomized clinical

trial. Neurocrit Care 2008;9(2):159–66.

112. Dewey C. Urinary bladder management. In: Dewey

CW, editor. A practical guide to canine and feline neurology. St

Louis (MO): Elsevier Saunders; 2003. p. 419–26.

113. Bubenik L, Hosgood G. Urinary tract infection in dogs

with thoracolumbar intervertebral disc herniation and urinary

bladder dysfunction managed by manual expression, indwelling

catheterization or intermittent catheterization. Vet Surg

2008;37?791–800.

114. Smarick S, Haskins S, Aldrich J, et al. Incidence of

catheter-associated urinary tract infection among dogs in a

small animal intensive care unit. J Am Vet Med Assoc

2004;224(12):1936–40.

115. Ng I, Lim J, Wong H. Effects of head posture on cerebral hemodynamics its influences on intracranial pressure, cerebral perfusion pressure, and cerebral oxygenation. Neurosurgery

2004;54(3):593–7.

116. Sadaka F, Veremakis C. Therapeutic hypothermia for

the management of intracranial hypertension in severe traumatic

brain injury: a systematic review. Brain Inj 2012;26(7–8):899–908.

117. McCarthy P, Scott L, Ganta C, et al. Hypothermic protection in traumatic brain injury. Pathophysiology 2012;735–57.

118. Wijayatilake D, Shepherd S, Sherren P. Updates in the

management of intracranial pressure in traumatic brain injury.

Curr Opin Anaesthesiol 2012;25(5):540–7.

119. Hutchinson P, Corteen E, Czosnyka M, et al. Decompressive craniectomy intraumatic brain injury: the randomized

multicenter RESCUEicp study. Acta Neurochir 2006;96(S):17–20.

120. La Rosa G, Conti A, Cardali S, et al. Does early decompression improve neurological outcome of spinal cord injured

patients? Appraisal of the literature using a meta-analytical

approach. Spinal Cord 2004;42(9):503–12.

121. Croce M, Bee T, Pritchard E, et al. Does optimal timing

for spine fracture fixation exist? Ann Surg 2001;233(6):851–8.

122. Fehlings M, Perrin R. The timing of surgical intervention in the treatment of spinal cord injury: a systematic review of

recent clinical evidence. Spine 2006;31(11): S28–35.

123. Jeffery ND. Vertebral fracture and luxation in small

animals. Vet Clin North Am Small Anim Pract 2010;40(5):809–28.

124. Denis F. Spinal instability as defined by the three-column spine concept in acute spinal trauma. Clin Orthop Relat Res

1984;189?65–76.

125. Hillman R, Kengeri S, Waters D. Reevaluation of predictive factors for complete recovery in dogs with nonambulatory tetraparesis secondary to cervical disk herniation. J Am Anim

Hosp Assoc 2009;45?155–63.

126. Cherrone K, Dewey C, Coates J, et al. A retrospective

comparison of cervical intervertebral disk disease in nonchondrodystrophic large dogs versus small dogs. J Am Anim Hosp

Assoc 2004;40?316–20.

127. Gage E, Hoerlein B. Hemilaminectomy and dorsal

laminectomy for relieving compressions of the spinal cord in the

dog. J Am Vet Med Assoc 1968;152: 351–9.

128. Seim H 3rd, Prata R. Ventral decompression for the

treatment of cervical disk disease in the dog: a review of 54

cases. J Am Anim Hosp Assoc 1982;18: 233–40.

129. Gill P, Lippincott C, Anderson S. Dorsal laminectomy in

the treatment of cervical intervertebral disk disease in small

dogs: a retrospective study of 30 cases.J Am Anim Hosp Assoc

1996;32?77–80.

130. Felts J, Prata R. Cervical disk disease in the dog: intraforaminal and lateral extrusions. J Am Anim Hosp Assoc

1983;19?755–60.

131. Tanaka H, Nakayama M, Takase K. Usefulness of hemilaminectomy for cervical intervertebral disk disease in small

dogs. J Vet Med Sci 2005;67?679–83.

132. McCartney W. Comparison of recovery times and

complication rates between a modified slanted slot and the

standard ventral slot for the treatment of cervical disc disease in

20 dogs. J Small Anim Pract 2007;48?498–501.

133. Levine J, Levine G, Johnson S, et al. Evaluation of the

success of medical management for presumptive thoracolumbar

intervertebral disk herniation in dogs. Vet Surg 2007;36?482–91.

134. Kent M. Intraaxial spinal cord hemorrhage secondary

to atlantoaxial subluxationin a dog. J Am Anim Hosp Assoc

2010;46(2):132–7.

135. Cerda-Gonzalez S, Olby NJ. Fecal incontinence associated with epidural spinalhematoma and intervertebral disk

extrusion in a dog. J Am Vet Med Assoc 2006;228(2):230–5.

136. Caswell JL, Nykamp SG. Intradural vasculitis and hemorrhage in full sibling Welsh springer spaniels. Can Vet J

2003;44(2):137–9.

137. Tidwell AS, Specht A, Blaeser L, et al. Magnetic resonance imaging features ofextradural hematomas associated with

intervertebral disc herniation in a dog.Vet Radiol Ultrasound

2001;43(4):319–24.

138. Jeffery N, Lakatos A, Franklin R. Autologous olfactory

glial cell transplantation is eliable and safe in naturally occurring

spinal cord injury. J Neurotrauma 2005;22(11):1282–93.

139. Nishida H, Nakayama M, Tanaka H. Safety of autologous bone marrow stromal cell transplantation in dogs with

acute spinal cord injury. Vet Surg 2012;41?437–42.

140. Olby N, Levine J, Harris T. Long-term functional outcome of dogs with severe injuries of the thoracolumbar spinal

cord: 87 cases (1996-2001). J Am VetMed Assoc

2003;222(6):762–9.

141. Dewey CW. Myelopathies: disorders of the spinal cord.

In: Dewey CW, editor. A practical guide to canine and feline neurology. 2nd edition. Ames (IA):Wiley-Blackwell; 2008. p. 323–88.

142. Hawthorne J, Blevins W, Wallace L, et al. Cervical vertebral fractures in 56 dogs:a retrospective study. J Am Anim

Hosp Assoc 1999;35?135–46.

143. Eminaga S, Palus V, Cherubini G. Acute spinal cord

injury in the cat: causes,treatment and prognosis. J Feline Med

Surg 2011;13(11):850–62.spontaneous hyperadrenocorticism in

dogs. Part 2: Adrenal function testing and differentiating tests[J].

The Veterinary Journal, 2019, 252?105343.

第117頁

小動物臨床前沿(神經(jīng)學(xué)???- 上冊)· 腦部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 總第 12 期

- 115 -

Clinical presentation, diagnostic ?indings, prognostic factors, treatment and

outcome in dogs with meningoencephalomyelitis of unknown origin: A review

I. Cornelisa,*, L. Van Hama

, I. Gielenb

, S. De Deckerc

, S.F.M. Bhattia

摘要:

病因不明性腦膜腦脊髓炎(MUO)指的是一組特發(fā)性,很可能是免疫介導(dǎo)

的炎癥性中樞神經(jīng)系統(tǒng)疾病,使獸醫(yī)神經(jīng)學(xué)家面臨臨床、診斷和治療的挑

戰(zhàn)。目前可以獲得這種假定診斷的臨床標(biāo)準(zhǔn),以前在小型(前瞻性或回顧性)

病例系列中研究了多種治療方案。由于這類疾病如果不得到及時治療將會被

認(rèn)為是致命的,因此確定臨床可用的預(yù)后指標(biāo)可能具有很大的價值。本文綜

述了診斷患有MUO犬的臨床表現(xiàn)、診斷結(jié)果、可能的預(yù)后因素、治療和結(jié)

果方面的最新進展。

關(guān)鍵詞:犬、肉芽腫性腦膜腦脊髓炎、病因不明性腦膜腦炎、壞死性腦白質(zhì)

炎、壞死性腦膜腦脊髓炎

譯者:高健(北京芭比堂國際動物醫(yī)療中心) a

Small Animal Department, Faculty

of Veterinary Medicine, Ghent

University, Merelbeke, Belgium

b

Department of Medical Imaging

and Small Animal Orthopaedics,

Faculty of Veterinary Medicine,

Ghent University, Merelbeke,

Belgium

c

Clinical Science and Services, The

Royal Veterinary College,

University of London, Hat?ield,

United Kingdom

綜述:犬不明原因的腦膜炎腦脊髓炎的臨床表現(xiàn),

診斷結(jié)果,預(yù)后因素,治療和結(jié)果

Doi:10.1016/j.radi.2010.11.001

病因不明性腦膜腦脊髓炎(MUO)指的是一組特

發(fā)性、非感染性中樞神經(jīng)系統(tǒng)(CNS)疾病(Talarico

and Schatzberg, 2010; Coates and Jeffery, 2014)。

值得注意的是,術(shù)語MUO與MUA(aetiology病因?qū)W)

和MUE(病因?qū)Wetiology)是同義的,并且所有術(shù)語在

整篇文獻中相互混雜。這組特發(fā)性非感染性腦膜炎

腦脊髓炎(NIME)分為幾個亞型,包括類固醇反應(yīng)性

腦膜炎-動脈炎(steroid responsive meningitis-arteritis,SRMA)、嗜酸性粒細(xì)胞性腦膜腦炎(eosinophilic meningoencephalitis,EME)、肉芽腫性腦膜

腦脊髓炎(granulomatous meningoencephalomyelitis,GME)和壞死性腦炎(necrotizing encephalitis,NE;包括壞死性腦膜腦脊髓炎(necrotizing

meningoencephalomyelitis,NME)和壞死性白質(zhì)腦炎

(necrotizing leucoencephalitis,NLE))。由于SRMA和

EME具有相當(dāng)明顯的診斷特征,因此引入MUO一詞

介紹

來涵蓋只能通過組織病理學(xué)證實的NIME三種特定亞

型,包括GME、NME和NLE (Granger et al., 2010;

Talarico and Schatzberg, 2010; Coates and Jeffery,

2014)。目前還沒有關(guān)于犬類MUO的總體發(fā)病率的

統(tǒng)計數(shù)據(jù),但早期的報告引用了GME在犬所有中樞

神經(jīng)系統(tǒng)疾病中的不一的發(fā)病率5-25%(Braund,

1985; Tipold, 1995)。

通常,MUO的診斷是根據(jù)動物特征、神經(jīng)學(xué)檢

查結(jié)果、磁共振成像(MRI)發(fā)現(xiàn)和腦脊液(CSF)分析

相結(jié)合得出的(Munana and Luttgen, 1998; Adamo

et al., 2007; Granger et al., 2010; Talarico and

Schatzberg, 2010; Coates and Jeffery, 2014),盡管

這些檢查結(jié)果可能在不同的研究和病患之間存在很

大差異(Wong et al., 2010)。

這組疾病的診斷和治療都使獸醫(yī)面臨挑戰(zhàn)。如

果不開始恰當(dāng)?shù)闹委?,這種疾病被認(rèn)為是致命的

(Munana and Luttgen, 1998; Granger et al., 2010),

最近的一些研究評估了不同的治療方式和潛在的預(yù)

后因素。

病因?qū)W

MUO 的確切病因?qū)W和病理生理學(xué)目前尚不清

楚,最新的一些理論在最近的一些文獻綜述中進行了

討論 (Coates and Jeffery, 2014)。雖然 MUO 很可能

有多因素發(fā)病機制,但遺傳傾向性和觸發(fā)過度免疫反

應(yīng)的因素的結(jié)合被認(rèn)為是最重要的 (Kipar et al.,

1998; Talarico and Schatzberg, 2010; Flegel et al.,

2011; Coates and Jeffery, 2014)??梢傻恼T因包括環(huán)

境因素和各類感染性抗原 (Schatzberg et al., 2005;

Greer et al., 2010; Barber et al., 2012)。結(jié) 合 這 組 疾

病對免疫抑制治療的普遍積極反應(yīng)等信息,表明了誘

發(fā) MUO 的因素是免疫介導(dǎo)性疾病 (Wong et al.,

2010),因此,藥物治療的基石是免疫抑制治療 (Kipar

et al.,1998; Talarico and Schatzberg, 2010; Coates

and Jeffery, 2014)。

臨床表現(xiàn)

中年玩具品種犬和?犬易患 GME (Munana and

Luttgen, 1998; Adamo et al., 2007; Talarico and

Schatzberg, 2010); 而 NE 主要侵襲較小體型的玩具

品種和小型犬,包括巴哥犬、約克夏?、馬爾濟斯犬、

吉娃娃、北京犬、蝴蝶犬、西施犬、圖萊亞爾絨毛犬和

布魯塞爾格里芬犬 (Talarico and Schatzberg, 2010;

Cooper et al., 2014)。然而,任何品種和年齡的犬都

可 能 受 到 侵 襲 (Granger et al., 2010; Coates and

Jeffery, 2014);最近的一項研究顯示,25% 診斷患有

MUO 的犬是大型犬 (>15kg; Cornelis et al., 2016b)。

通過對 173 例 GME、53 例 MUO 和 69 例 NE 的

數(shù)據(jù)統(tǒng)計分析,發(fā)現(xiàn) GME 和 NE 的年齡分布有顯著差

異;有 NE 的犬主要小于 4 歲,而 GME 的峰值年齡為

4-8 歲 (Granger et al., 2010)。在一組 60 例患 NE 巴哥

犬中 (Levine et al., 2008),診斷時的中位年齡為 18 個

月。在一組 5 例 NE 的吉娃娃 (Higgins et al., 2008) 中,

診斷時的中位年齡為 5 歲。在巴哥犬中,與深色雄性相

比,淺褐色雌性更常被診斷患有 NME (Greer et al.,

2010)。盡管普遍認(rèn)為 GME 中雌性占多數(shù) (Russo,

1979; Braund, 1985; Bailey and Higgins, 1986; Sorjonen, 1990; Munana and Luttgen, 1998),在較近期的

研 究 中,雌 雄 比 例 沒 有 統(tǒng) 計 學(xué) 差 異 (Talarico and

Schatzberg, 2010; Granger et al., 2010; Cornelis et al.,

2016a,b)。

曾經(jīng) GME 的組織學(xué)分布有描述三種模式:多灶

型或彌散型、局灶型和眼型 (Cuddon and Smith-Maxie, 1984;Braund,1985; Sorjonen, 1990)。每一種分布型

都與不同的臨床表現(xiàn)有關(guān),包括多灶型 GME 犬的急性

發(fā)作和快速漸進性發(fā)展,局灶型 GME 犬的發(fā)展更隱匿

或更緩慢漸進性,以及眼型 GME 犬的視覺功能障礙的

急 性 癥 狀 (Braund,1985; Sorjonen,1990; Zarfoss et

al.,2006;Talarico and Schatzberg, 2009; Coates and

Jeffery, 2014)。

神經(jīng)外癥狀很少見,但發(fā)熱偶爾會伴隨于中樞

神經(jīng)系統(tǒng)炎癥(Talarico and Schatzberg, 2010)。常

見的實驗室檢查(血常規(guī)、生化、尿分析)往往在正常

參考范圍內(nèi)(Thomas and Eger, 1989; Sorjonen,

1990; Tipold, 1995)。

在神經(jīng)學(xué)檢查中,疾病定位分類如下:a) GME

以前腦、腦干或多灶型病變?yōu)橹?;b) MUO 以多灶型

( 前腦、腦干 ) 或多灶型為主;或 c)NE 以前腦為主

(Granger et al., 2010; Talarico and Schatzberg,

2010; Coates and Jeffery, 2014; Cornelis et al.,

2016a)。與小型犬相比,大型犬更容易出現(xiàn)可識別的

意識狀態(tài)下降 (Cornelis et al., 2016b)。8% 被診斷為

GME 的 犬 表 現(xiàn) 出 提 示 脊 髓 病 的 神 經(jīng) 功 能 缺 陷

(Granger et al., 2010)。脊髓病可定位于脊髓的任何

部位,臨床表現(xiàn)從全身性本體感受性共濟失調(diào)到輕癱

或麻痹;常見發(fā)現(xiàn)有脊髓過度敏感 (Griffin et al.,

2008; Wong et al., 2010; Cornelis et al., 2017a)。

診斷發(fā)現(xiàn)

如前所述,MUO 是一種臨床診斷,可基于動物

特征、神經(jīng)學(xué)檢查結(jié)果、顱內(nèi)橫斷面影像異常和腦脊

液分析獲得 (Munana and Luttgen,1998; Adamo et

al.,2007; Talarico and Schatzberg, 2010; Coates

and Jeffery,2014)。Granger 等人 (2010) 系統(tǒng)性地回

顧了 457 例已發(fā)表的 NIME 病例 ( 包括 MUO、GME

和 NE),并制定了招募沒有組織病理學(xué)診斷的 MUO

病例的指南。已確定以下四項納入標(biāo)準(zhǔn) : (1) 年齡大

于 6 個月的犬 ; (2) T2W MR 影像上表現(xiàn)為多發(fā)、單

發(fā)或彌漫性軸內(nèi)高強度信號 ; (3) 腦脊液分析表現(xiàn)出

腦脊液細(xì)胞增多,且單核細(xì)胞 / 淋巴細(xì)胞 >50%; (4)

排除特定地理區(qū)域內(nèi)常見的傳染病 (Granger et al.,

2010)。如前所述,只有通過組織病理學(xué)檢查才能獲

得明確診斷 (Uchida et al., 2016)。

參考文獻:

1. Simpson S, Syring R, Otto C. Severe blunt trauma in

dogs: 235 cases (1997-2003). J Vet Emerg Crit Care (San Antonio) 2009;19(6):588–602.

2. Marioni-Henry K, Vite CH, Newton AL, et al. Prevalence

of diseases of the spinalcord of cats. J Vet Intern Med

2004;18(6):851–8.

3. Fluehmann G, Doherr MG, Jaggy A. Canine neurological

diseases in a referralhospital population between 1989 and

2000 in Switzerland. J Small Anim Pract2006;47(10):582–7.

4. Sande A, West C. Traumatic brain injury: a review of

pathophysiology and management.J Vet Emerg Crit Care (San

Antonio) 2010;20(2):177–90.

5. Dewey C. Emergency management of the head trauma

patient. Vet Clin NorthAm Small Anim Pract 2000;30?207–25.

6. Hopkins A. Head trauma. Vet Clin North Am Small Anim

Pract 1996;26?875–91.

7. Dewey C, Fletcher D. Head trauma management. In:

Dewey C, editor. A practicalguide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell;2008. p. 221–35.

8. Aries M, Czrosynka M, Budohoski K, et al. Continuous

determination of optimalcerebral perfusion pressure in traumatic brain injury. Crit Care Med 2012;40(8):2456–63.

9. Ling G, Marshall S, Moore D. Diagnosis and management of traumatic braininjury. Continuum 2010;16(6):27–40.

10. Kim J, Gean A. Imaging for the diagnosis and management of traumatic braininjury. Neurotherapeutics

2011;8(1):39–53.

11. Tsang K, Whitfield P. Traumatic brain injury: review of

current management strategies.Br J Oral Maxillofac Surg

2012;50?298–308.

12. Proulx J, Dhupa N. Severe brain injury: part I: pathophysiology. CompendContin Educ Vet 1998;20?897–905.

13. Fletcher DJ, Dewey CW. Spinal trauma management.

In: Dewey CW, editor.A practical guide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell; 2008. p.

405–17.

14. Johnson K, Vite C. Spinal cord injury. In: Silverstein D,

Hopper K, editors. Smallanimal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders;2009. p. 419–23.

15. Park EH, White GA, Tieber LM. Mechanisms of injury

and emergency care ofacute spinal cord injury in dogs and cats.

J Vet Emerg Crit Care (San Antonio)2012;22(2):160–78.

16. Olby N. The pathogenesis and treatment of acute

spinal cord injuries in dogs.Vet Clin North Am Small Anim Pract

2010;40(5):791–807.

17. Fletcher D, Syring R. Traumatic brain injury. In: Silverstein D, Hopper K, editors.Small animal critical care medicine.

1st edition. St Louis (MO): Elsevier Saunders;2009. p. 658–62.

18. Leonard SE, Kirby R. The role of glutamate, calcium

and magnesium in secondarybrain injury. J Vet Emerg Crit Care

2002;12(1):17–32.

19. McMichael M, Moore R. Ischemia and reperfusion

injury pathophysiology, part I.J Vet Emerg Crit Care (San Antonio) 2004;14(4):231–41.

20. Oyinbo C. Secondary injury mechanisms in traumatic

spinal cord injury: anugget of this multiply cascade. Acta Neurobiol Exp 2011;71(2):281–99.

21. Tator C, Fehlings M. Review of the secondary injury

theory of acute spinal cordtrauma with emphasis on vascular

mechanisms. J Neurosurg 1991;75(1):15–26.

22. Dooney N, Dagal A. Anesthetic considerations in acute

spinal cord trauma. Int JCrit Illn Inj Sci 2011;1(1):36–43.

23. Armitage-Chan E, Wetmore L, Chan D. Anesthetic

management of the headtrauma patient. J Vet Emerg Crit Care

(San Antonio) 2007;17(1):5–14.

24. Shores A. Craniocerebral trauma. In: Kirk R, editor. Current veterinary therapy X.X. Philadelphia: WB Saunders; 1983. p.

847–54.

25. Platt S, Radaelli S, McDonnell J. The prognostic value of

the Modified GlasgowComa Scale in head trauma in gods. J Vet

Intern Med 2001;15(6):581–4.

26. Levine GJ, Levine JM, Budke CM, et al. Description and

repeatability of anewly developed spinal cord injury scale for

dogs. Prev Vet Med 2009;89(1–2):121–7.

27. Olby N, De Risio L, Munana K, et al. Development of a

functional scoring systemin dogs with acute spinal cord injuries.

Am J Vet Res 2001;62(10):1624–8.

28. Smith P, Jeffery N. Spinal shock—comparative aspects

and clinical relevance.J Vet Intern Med 2005;19?788–93.

29. Boysen S, Rozanski E, Tidwell A, et al. Evaluation of a

focused assessment with sonography for trauma protocol to

detect free abdominal fluid in dogs involved in motor vehicle

accidents. J Am Vet Med Assoc 2004;225(8):1198–204.

30. Lisciandro GR. Abdominal and thoracic focused assessment with sonographyfor trauma, triage, and monitoring in small

animals. J Vet Emerg Crit Care(San Antonio) 2011;21(2):104–22.

31. Kinns J, Mai W, Seiler G, et al. Radiographic sensitivity

and negative predictive value for acute canine spinal trauma. Vet

Radiol Ultrasound 2006;47(6):563–70.

32. Vitale C, Coates J. Acute spinal injury. Compendium

Standards of Care: Emergencyand Critical Care Medicine

2007;9(7):1–11.

33. Lamb CR, Nicholls A, Targett M, et al. Accuracy of

survey radiographic diagnosis of intervertebral disc protrusion in

dogs. Vet Radiol Ultrasound 2002;43(3):222–8.

34. Brisson BA. Intervertebral disc disease in dogs. Vet Clin

North Am Small Anim Pract 2010;40(5):829–58.

35. Israel SK, Levine JM, Kerwin SC, et al. The relative sensitivity of computed tomography and myelography for identification of thoracolumbar intervertebral disk herniations in dogs. Vet

Radiol Ultrasound 2009;50(3):247–52.

36. Olby N, Dyce J, Houlton J. Correlation of plain radiographic and lumbar myelographic findings with surgical findings

in thoracolumbar disc disease. J SmallAnim Pract

1994;35(7):345–50.

37. Griffin J, Levine J, Kerwin S. Canine thoracolumbar

intervertebral disk disease:pathophysiology, neurologic examination, and emergency medical therapy.Compend Contin Educ

Vet 2009;31(3):E1–13.

38. Lewis D, Hosgood G. Complications associated with

the use of iohexol for myelographyof the cervical vertebral

column in dogs: 66 cases (1988-1990). J AmVet Med Assoc

1992;200(9):1381–4.

39. Barone G, Ziemer L, Shofer F, et al. Risk factors associated with the developmentof seizures after use of iohexol for

myelography in dogs: 182 cases(1998). J Am Vet Med Assoc

2002;220(10):1499–502.

40. Johnson P, Beltran E, Dennis R, et al. Magnetic resonance imaging characteristics of suspected vertebral instability

associated with fracture or subluxation in eleven dogs. Vet

Radiol Ultrasound 2012;53(5):552–9.

41. Rozanski EA, Rondeau MP. Respiratory pharmacotherapy in emergency and critical care medicine. Vet Clin North Am

Small Anim Pract 2002;32(5):1073–86.

42. Mazzaferro E. Oxygen therapy. In: Silverstein D, Hopper

K, editors. Small animal critical caremedicine. 1stedition. StLouis(MO): Elsevier Saunders; 2009.p. 78–81.

43. Hopper K. Basic mechanical ventilation. In: Silverstein

D, Hopper K, editors. Small animal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders; 2009. p. 900–4.

44. Zhuang J, Shackford S, Schmoker J, et al. Colloid infusion after brain injury: an effect on intracranial pressure, cerebral

blood flow, and oxygen delivery. Crit Care Med

1995;23(1):140–8.

45. Wade C, Grady J, Kramer G, et al. Individual patient

cohort analysis of the efficacy of hypertonic saline/dextran in

patients with traumatic brain injury and hypotension. J Trauma

1997;42?561–5.

46. Vassar M, Perry C, Gannaway W, et al. Analysis of

potential risks associated with 7.5% sodium chloride resuscitation of traumatic shock. Arch Surg 1990;124: 1309–15.

47. Vassar M, Perry C, Gannaway W, et al. 7.5% sodium

chloride/dextran for resuscitation of trauma patients undergoing

helicopter transport. Arch Surg 1991;126: 1065–72.

48. Vassar M, Perry C, Holcroft J. Prehospital resuscitation

of hypotensive trauma patients with 7.5% NaCl versus 7.5% NaCl

with added dextran: a controlled trial. J Trauma 1993;34?622–32.

49. Vassar M, Fisher R, O’ Brien P, et al. A multicenter trial

for resuscitation of injured patients with 7.5% sodium chloride.

Arch Surg 1993;128?1003–11.

50. Cooper J, Myles P, McDermott F, et al. Prehospital

hypertonic saline resuscitation of patients with hypotension and

severe traumatic brain injury. JAMA 2004;291?1350–7.

51. Roberts D, Hall R, Kramer A. Sedation for critically ill

adults with severe traumatic brain injury: a systematic review of

randomized controlled trials. CritCare Med 2012;39(12):2743–51.

52. Sperry R, Bailey P, Reichman M, et al. Fentanyl and

sulfentanil increase intracranial pressure in head trauma patients.

Anesthesiology 1992;77?416–20.

53. Lauer K, Connolly L, Schmeling W. Opioid sedation

does not alter intracranial pressure in head injured patients. Can

J Anaesth 1997;44?929–33.

54. Albanese J, Viviand X, Potie F, et al. Sulfentanil, fentanyl,

and alfentanil in head trauma patients: a study on cerebral

hemodynamics. Crit Care Med 1999;27?407–11.

55. de Nadal M, Munar F, Poca M, et al. Cerebral hemodynamic effects of morphine and fentanyl in patients with severe

head injury: absence of correlation to cerebral autoregulation.

Anesthesiology 2000;92?11–9.

56. Hansen B. Acute pain management. Vet Clin North Am

Small Anim Pract 2000;30(4):899–916.

57. Pascoe P. Opioid analgesics. Vet Clin North Am Small

Anim Pract 2000;30(4):757–69.

58. Keegan R, Green S, Bagley R, et al. Effects of medetomidine administration on intracranial pressure and cardiovascular variables of isoflurane-anesthetized dogs. Am J Vet Res

1996;56(2):193–8.

59. Treggiari M, Schultz N, Yanez N, et al. Role of intracranial pressure values and patterns in predicting outcome of traumatic brain injury: a systematic review. Neurocrit Care

2007;6?104–12.

60. Weed L, McKibbon P. Pressure changes in the cerebrospinal fluid following intravenous injection of solutions of various

concentrations. Am J Phys 1919;48?512–30.

61. Ropper A. Hyperosmolar therapy for raised intracranial

pressure. N Engl J Med 2012;367(8):746–52.

62. Brain Trauma Foundation, American Association of

Neurological Surgeons,Congress of Neurological Surgeons.

Guidelines for the management of severetraumatic brain injury. J

Neurotrauma 2007;24(1):S1–106.

63. Fink M. Osmotherapy for intracranial hypertension:

mannitol versus hypertonic saline. Continuum

2012;18(3):640–54.

64. Kaufmann A, Cardoso E. Aggravation of vasogenic

cerebral edema by multipledose mannitol. J Neurosurg

1992;77(4):584–9.

65. McManus M, Soriano S. Rebound swelling of astroglial

cells exposed to hypertonic mannitol. Anesthesiology

1998;88(6):1586–91.

66. Oddo M, Levine J, Frangos S, et al. Effect of mannitol

and hypertonic salineon cerebral oxygenation in patients with

severe traumatic brain injury and refractoryintracranial hypertension. J Neurol Neurosurg Psychiatr 2009;80(8):916–20.

67. Aiyagari V, Deibert E, Diringer M. Hypernatremia in the

neurologic intensive careunit: how high is too high? J Crit Care

2006;21(2):163–72.

68. Battison C, Andrews P, Graham C, et al. Randomized,

controlled trial on theeffect of a 20% mannitol solution and a

7.5% saline/6% dextran solution onincreased intracranial pressure after brain injury. Crit Care Med 2005;33(1):196–202.

69. Francony C, Fauvage B, Falcon D, et al. Equimolar

doses of mannitol and hypertonicsaline in the treatment of intracranial pressure. Crit Care Med 2008;36(3):795–800.

70. Zeng H, Wang Q, Deng Y, et al. A comparative study on

the efficacy of 10%hypertonic saline and equal volume of 20%

mannitol in the treatment of experimentallyinduced cerebral

edema in adult rats. BMC Neurosci 2010;11?153.

71. da Silva J, de Lima F, Valenca M, et al. Hypertonic saline

more efficacious thanmannitol in lethal intracranial hypertension

model. Neurol Res 2010;32(2):139–43.

72. Todd M, Cutkomp J, Brian J. Influence of mannitol and

furosemide, alone and incombination, on brain water content

after fluid percussion injury. Anesthesiology2006;105?1176–80.

73. Edwards P, Arango M, Balica L, et al. Final results of

MRC CRASH, a randomized placebo-controlled trial of intravenous corticosteroids in adults with headinjury- outcomes at 6

months. Lancet 2005;365(9475):1957–9.

74. Roberts I, Yates D, Sandercock P, et al. Effect of intravenous corticosteroids on death within 14 days in 10,008 adults

with clinically significant head injury (MRC CRASH trial): randomized placebo-controlled trial. Lancet 2004;364?9442.

75. Schierhout G, Roberts I. Withdrawn: antiepileptic drugs

for preventing seizures following acute traumatic brain injury.

Cochrane Database Syst Rev 2012;(6):CD000173.

76. Musulin S, Mariani C, Papich M. Diazepam pharmacokinetics after nasal drop and atomized nasal administration in

dogs. J Vet Pharmacol Ther 2011;34(1): 17–24.

77. Kassell N, Hitchon P, Gerk M, et al. Alterations in cerebral blood flow,oxygen metabolism, and electrical activity produced by high-dose thiopental.Neurosurgery 1980;7?598–603.

78. Hayes G. Severe seizures associated with traumatic

brain injury managed bycontrolled hypothermia, pharmacologic

coma, and mechanical ventilation in a dog. J Vet Emerg Crit Care

(San Antonio) 2009;19(6):629–34.

79. Giacino J, Whyte J, Bagiella E, et al. Placebo-controlled

trial of amantadine for severe traumatic brain injury. N Engl J

Med 2012;366?819–26.

80. Hall E. The neuroprotective pharmacology of methylprednisolone. J Neurosurg 1992;76(1):13–22.

81. Parker A, Smith C. Functional recovery from spinal cord

trauma following dexamethasone and chlorpromazine therapy in

dogs. Res Vet Sci 1976;21(2):246–7.

82. Levine J, Levine G, Boozer L, et al. Adverse effects and

outcome associatedwith dexamethasone administration in dogs

with acute thoracolumbar intervertebral disk herniation: 161

cases (2000-2006). J Am Vet Med Assoc 2008;232(3):411–7.

83. Bracken M, Shepard M, Collins W. A randomized, controlled trial of methylprednisolone or naloxone in the treatment

of acute spinal-cord injury. Results of the second national acute

spinal cord injury study. N Engl J Med 1990;322(20):1405–11.

84. Bracken M, Shepard M, Hellenbrand K. Methylprednisolone and neurologicalfunction 1 year after spinal cord injury.

Results of the National Acute Spinal Cord Injury Study. J Neurosurg 1985;63(5):704–13.

85. Bracken M, Shepard M, Holford T. Administration of

methylprednisolone for 24 or

48 hours or tirilazad mesylate for 48 hours in the treatment

of acute spinal cord injury. Results of the Third National Acute

Spinal Cord Injury Randomized Controlled Trial. National Acute

Spinal Cord Injury.JAMA 1997;277(20):1597–604.

86. Nesathurai S. Steroids and spinal cord injury: revisiting

the NASCIS 2 and NASCIS 3 trials. J Trauma Acute Care Surg

1998;45(6):1088–93.

87. Rabinowitz R, Eck J, Harper C. Urgent surgical decompression compared to methylprednisolone for the treatment of

acute spinal cord injury. Spine 2008;33(21):2260–8.

88. Coates J, Sorjonen D, Simpson S, et al. Clinicopathologic effects of a 21-aminosteroid compound (U74389G) and high

dose methylprednisolone onspinal cord function after simulated

spinal cord trauma. Vet Surg 1995;24?128–39.

89. Baltzer W, McMichael MA, Hosgood G. Randomized,

blinded, placebocontrolledclinical trial of N-acetylcysteine in

dogs with spinal cord trauma from acute intervertebral disc

disease. Spine 2008;33(13):1397–402.

90. Bains M, Hall E. Antioxidant therapies in traumatic brain

injury and spinal cord injury. Biochim Biophys Acta

2012;1822(5):675–84.

91. Hall E, Wolf D. A pharmacological analysis of the

pathophysiologicalmechanisms of posttraumatic spinal cord

ischemia. J Neurosurg 1986;64(6):951–61.

92. Ates O, Cayli S, Gurses I. Comparative neuroprotective

effect of sodium channel blockers after experimental spinal cord

injury. J Clin Neurosci 2007;14(7):658–65.

93. Kaptanoglu E, Solaroglu I, Surucu H. Blockade of

sodium channels by phenytoin protects ultrastructure and attenuates lipid peroxidation in experimental spinal cord injury. Acta

Neurochir 2005;147(4):405–12.

94. Hains B, Saab C, Lo A. Sodium channel blockade with

phenytoin protects spinal cord axons, enhances axonal conduction, and improves functional recovery after contusion SCI. Exp

Neurol 2004;188(2):365–77.

95. Schwartz G, Fehlings M. Secondary injury mechanisms

of spinal cord trauma:novel therapeutic approach for the management of secondary pathophysiology with the sodium channel blocker riluzole. Prog Brain Res 2002;137?177–90.

96. Park E, Velumian A, Fehlings M. The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with

an emphasis on the implications for white matter degeneration. J

Neurotrauma 2004;21?754–74.

97. Walters M, Kaste M, Lees K, et al. The AMPA antagonist

ZK 200775 in patients with acute ischaemic stroke: a double-blind, multi-centre, placebo-controlled safety and tolerability study. Cerebrovasc Dis 2005;20?304–9.

98. Chan P. White matter injury in spinal cord ischemia:

protection by AMPA/kainite glutamate receptor antagonism—Editoral comment. Stroke 2000;31?1952.

99. Chen HS, Lipton S. The chemical biology of clinically

tolerated NMDA receptor antagonists. J Neurochem

2006;97?1611–26.

100. Tadie M, D’ Arbigny P, Mathe J, et al. Acute spinal cord

injury. Early care and treatment in a multicenter study with

gacylidine. Soc Neurosci 1999;25?1090.

101. Kwon B, Okon E, Hillyer J. A systematic review of

non-invasive pharmacologic neuroprotective treatments for

acute spinal cord injury. J Neurotrauma 2011;28(8):1545–88.

102. Sturges B, LeCouteur R. Intracranial hypertension. In:

Silverstein D, Hopper K,editors. Small animal critical care medicine. 1st edition. St Louis (MO): ElsevierSaunders; 2009. p.

423–9.

103. Brain Trauma Foundation T, National Association of

State EMS Officials T,National Association of EMTs. Guidelines for

prehospital management of traumatic brain injury. Prehosp

Emerg Care 2007;12(1):1–52.

104. Davis D, Dunford J, Poste J, et al. The impact of hypoxia and hyperventilation on outcome after paramedic rapid

sequence intubation of severely head-injured patients. J Trauma

2004;57(1):1–8.

105. Muizelaar J, Marmarou A, Ward J, et al. Adverse effects

of prolonged hyperventilationin patients with severe head injury;

a randomized clinical trial. J Neurosurg 1991;75(5):731–9.

106. Deutschman C, Konstantinides F, Raup S. Physiological and metabolic response to isolated closed-head injury. Part i:

basal metabolic state: correlations of metabolic and physiological parameters with fasting and stressed controls. J Neurosurg

1986;64?89–98.

107. Jeremitsky E, Omert L, Dunham C, et al. The impact of

hyperglycemia on patients with severe brain injury. J Trauma

2005;58(1):47–50.

108. Syring R, Otto C, Drobatz K. Hyperglycemia in dogs

and cats with head trauma:122 cases (1997-1999). J Am Vet

Med Assoc 2001;218?1124–9.

109. Vespa P, McArthur D, Stein N, et al. Tight glycemic

control increases metabolic distress in traumatic brain injury: a

randomized controlled within subjects trial. Crit Care Med

2012;40(6):1923–9.

110. Green D, O’ Phelan K, Bassin S, et al. Intensive versus

conventional insulin therapy in critically ill neurologic patients.

Neurocrit Care 2010;13(3):299–306.

111. Bilotta F, Caramia R, Cernak I, et al. Intensive insulin

therapy after severe traumatic brain injury: randomized clinical

trial. Neurocrit Care 2008;9(2):159–66.

112. Dewey C. Urinary bladder management. In: Dewey

CW, editor. A practical guide to canine and feline neurology. St

Louis (MO): Elsevier Saunders; 2003. p. 419–26.

113. Bubenik L, Hosgood G. Urinary tract infection in dogs

with thoracolumbar intervertebral disc herniation and urinary

bladder dysfunction managed by manual expression, indwelling

catheterization or intermittent catheterization. Vet Surg

2008;37?791–800.

114. Smarick S, Haskins S, Aldrich J, et al. Incidence of

catheter-associated urinary tract infection among dogs in a

small animal intensive care unit. J Am Vet Med Assoc

2004;224(12):1936–40.

115. Ng I, Lim J, Wong H. Effects of head posture on cerebral hemodynamics its influences on intracranial pressure, cerebral perfusion pressure, and cerebral oxygenation. Neurosurgery

2004;54(3):593–7.

116. Sadaka F, Veremakis C. Therapeutic hypothermia for

the management of intracranial hypertension in severe traumatic

brain injury: a systematic review. Brain Inj 2012;26(7–8):899–908.

117. McCarthy P, Scott L, Ganta C, et al. Hypothermic protection in traumatic brain injury. Pathophysiology 2012;735–57.

118. Wijayatilake D, Shepherd S, Sherren P. Updates in the

management of intracranial pressure in traumatic brain injury.

Curr Opin Anaesthesiol 2012;25(5):540–7.

119. Hutchinson P, Corteen E, Czosnyka M, et al. Decompressive craniectomy intraumatic brain injury: the randomized

multicenter RESCUEicp study. Acta Neurochir 2006;96(S):17–20.

120. La Rosa G, Conti A, Cardali S, et al. Does early decompression improve neurological outcome of spinal cord injured

patients? Appraisal of the literature using a meta-analytical

approach. Spinal Cord 2004;42(9):503–12.

121. Croce M, Bee T, Pritchard E, et al. Does optimal timing

for spine fracture fixation exist? Ann Surg 2001;233(6):851–8.

122. Fehlings M, Perrin R. The timing of surgical intervention in the treatment of spinal cord injury: a systematic review of

recent clinical evidence. Spine 2006;31(11): S28–35.

123. Jeffery ND. Vertebral fracture and luxation in small

animals. Vet Clin North Am Small Anim Pract 2010;40(5):809–28.

124. Denis F. Spinal instability as defined by the three-column spine concept in acute spinal trauma. Clin Orthop Relat Res

1984;189?65–76.

125. Hillman R, Kengeri S, Waters D. Reevaluation of predictive factors for complete recovery in dogs with nonambulatory tetraparesis secondary to cervical disk herniation. J Am Anim

Hosp Assoc 2009;45?155–63.

126. Cherrone K, Dewey C, Coates J, et al. A retrospective

comparison of cervical intervertebral disk disease in nonchondrodystrophic large dogs versus small dogs. J Am Anim Hosp

Assoc 2004;40?316–20.

127. Gage E, Hoerlein B. Hemilaminectomy and dorsal

laminectomy for relieving compressions of the spinal cord in the

dog. J Am Vet Med Assoc 1968;152: 351–9.

128. Seim H 3rd, Prata R. Ventral decompression for the

treatment of cervical disk disease in the dog: a review of 54

cases. J Am Anim Hosp Assoc 1982;18: 233–40.

129. Gill P, Lippincott C, Anderson S. Dorsal laminectomy in

the treatment of cervical intervertebral disk disease in small

dogs: a retrospective study of 30 cases.J Am Anim Hosp Assoc

1996;32?77–80.

130. Felts J, Prata R. Cervical disk disease in the dog: intraforaminal and lateral extrusions. J Am Anim Hosp Assoc

1983;19?755–60.

131. Tanaka H, Nakayama M, Takase K. Usefulness of hemilaminectomy for cervical intervertebral disk disease in small

dogs. J Vet Med Sci 2005;67?679–83.

132. McCartney W. Comparison of recovery times and

complication rates between a modified slanted slot and the

standard ventral slot for the treatment of cervical disc disease in

20 dogs. J Small Anim Pract 2007;48?498–501.

133. Levine J, Levine G, Johnson S, et al. Evaluation of the

success of medical management for presumptive thoracolumbar

intervertebral disk herniation in dogs. Vet Surg 2007;36?482–91.

134. Kent M. Intraaxial spinal cord hemorrhage secondary

to atlantoaxial subluxationin a dog. J Am Anim Hosp Assoc

2010;46(2):132–7.

135. Cerda-Gonzalez S, Olby NJ. Fecal incontinence associated with epidural spinalhematoma and intervertebral disk

extrusion in a dog. J Am Vet Med Assoc 2006;228(2):230–5.

136. Caswell JL, Nykamp SG. Intradural vasculitis and hemorrhage in full sibling Welsh springer spaniels. Can Vet J

2003;44(2):137–9.

137. Tidwell AS, Specht A, Blaeser L, et al. Magnetic resonance imaging features ofextradural hematomas associated with

intervertebral disc herniation in a dog.Vet Radiol Ultrasound

2001;43(4):319–24.

138. Jeffery N, Lakatos A, Franklin R. Autologous olfactory

glial cell transplantation is eliable and safe in naturally occurring

spinal cord injury. J Neurotrauma 2005;22(11):1282–93.

139. Nishida H, Nakayama M, Tanaka H. Safety of autologous bone marrow stromal cell transplantation in dogs with

acute spinal cord injury. Vet Surg 2012;41?437–42.

140. Olby N, Levine J, Harris T. Long-term functional outcome of dogs with severe injuries of the thoracolumbar spinal

cord: 87 cases (1996-2001). J Am VetMed Assoc

2003;222(6):762–9.

141. Dewey CW. Myelopathies: disorders of the spinal cord.

In: Dewey CW, editor. A practical guide to canine and feline neurology. 2nd edition. Ames (IA):Wiley-Blackwell; 2008. p. 323–88.

142. Hawthorne J, Blevins W, Wallace L, et al. Cervical vertebral fractures in 56 dogs:a retrospective study. J Am Anim

Hosp Assoc 1999;35?135–46.

143. Eminaga S, Palus V, Cherubini G. Acute spinal cord

injury in the cat: causes,treatment and prognosis. J Feline Med

Surg 2011;13(11):850–62.spontaneous hyperadrenocorticism in

dogs. Part 2: Adrenal function testing and differentiating tests[J].

The Veterinary Journal, 2019, 252?105343.

第118頁

小動物臨床前沿(神經(jīng)學(xué)???- 上冊)· 腦部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 總第 12 期

- 116 -

病因不明性腦膜腦脊髓炎(MUO)指的是一組特

發(fā)性、非感染性中樞神經(jīng)系統(tǒng)(CNS)疾病(Talarico

and Schatzberg, 2010; Coates and Jeffery, 2014)。

值得注意的是,術(shù)語MUO與MUA(aetiology病因?qū)W)

和MUE(病因?qū)Wetiology)是同義的,并且所有術(shù)語在

整篇文獻中相互混雜。這組特發(fā)性非感染性腦膜炎

腦脊髓炎(NIME)分為幾個亞型,包括類固醇反應(yīng)性

腦膜炎-動脈炎(steroid responsive meningitis-arteritis,SRMA)、嗜酸性粒細(xì)胞性腦膜腦炎(eosinophilic meningoencephalitis,EME)、肉芽腫性腦膜

腦脊髓炎(granulomatous meningoencephalomyelitis,GME)和壞死性腦炎(necrotizing encephalitis,NE;包括壞死性腦膜腦脊髓炎(necrotizing

meningoencephalomyelitis,NME)和壞死性白質(zhì)腦炎

(necrotizing leucoencephalitis,NLE))。由于SRMA和

EME具有相當(dāng)明顯的診斷特征,因此引入MUO一詞

來涵蓋只能通過組織病理學(xué)證實的NIME三種特定亞

型,包括GME、NME和NLE (Granger et al., 2010;

Talarico and Schatzberg, 2010; Coates and Jeffery,

2014)。目前還沒有關(guān)于犬類MUO的總體發(fā)病率的

統(tǒng)計數(shù)據(jù),但早期的報告引用了GME在犬所有中樞

神經(jīng)系統(tǒng)疾病中的不一的發(fā)病率5-25%(Braund,

1985; Tipold, 1995)。

通常,MUO的診斷是根據(jù)動物特征、神經(jīng)學(xué)檢

查結(jié)果、磁共振成像(MRI)發(fā)現(xiàn)和腦脊液(CSF)分析

相結(jié)合得出的(Munana and Luttgen, 1998; Adamo

et al., 2007; Granger et al., 2010; Talarico and

Schatzberg, 2010; Coates and Jeffery, 2014),盡管

這些檢查結(jié)果可能在不同的研究和病患之間存在很

大差異(Wong et al., 2010)。

這組疾病的診斷和治療都使獸醫(yī)面臨挑戰(zhàn)。如

果不開始恰當(dāng)?shù)闹委?,這種疾病被認(rèn)為是致命的

(Munana and Luttgen, 1998; Granger et al., 2010),

最近的一些研究評估了不同的治療方式和潛在的預(yù)

后因素。

病因?qū)W

MUO 的確切病因?qū)W和病理生理學(xué)目前尚不清

楚,最新的一些理論在最近的一些文獻綜述中進行了

討論 (Coates and Jeffery, 2014)。雖然 MUO 很可能

有多因素發(fā)病機制,但遺傳傾向性和觸發(fā)過度免疫反

應(yīng)的因素的結(jié)合被認(rèn)為是最重要的 (Kipar et al.,

1998; Talarico and Schatzberg, 2010; Flegel et al.,

2011; Coates and Jeffery, 2014)??梢傻恼T因包括環(huán)

境因素和各類感染性抗原 (Schatzberg et al., 2005;

Greer et al., 2010; Barber et al., 2012)。結(jié) 合 這 組 疾

病對免疫抑制治療的普遍積極反應(yīng)等信息,表明了誘

發(fā) MUO 的因素是免疫介導(dǎo)性疾病 (Wong et al.,

2010),因此,藥物治療的基石是免疫抑制治療 (Kipar

et al.,1998; Talarico and Schatzberg, 2010; Coates

and Jeffery, 2014)。

臨床表現(xiàn)

中年玩具品種犬和?犬易患 GME (Munana and

Luttgen, 1998; Adamo et al., 2007; Talarico and

Schatzberg, 2010); 而 NE 主要侵襲較小體型的玩具

品種和小型犬,包括巴哥犬、約克夏?、馬爾濟斯犬、

吉娃娃、北京犬、蝴蝶犬、西施犬、圖萊亞爾絨毛犬和

布魯塞爾格里芬犬 (Talarico and Schatzberg, 2010;

Cooper et al., 2014)。然而,任何品種和年齡的犬都

可 能 受 到 侵 襲 (Granger et al., 2010; Coates and

Jeffery, 2014);最近的一項研究顯示,25% 診斷患有

MUO 的犬是大型犬 (>15kg; Cornelis et al., 2016b)。

通過對 173 例 GME、53 例 MUO 和 69 例 NE 的

數(shù)據(jù)統(tǒng)計分析,發(fā)現(xiàn) GME 和 NE 的年齡分布有顯著差

異;有 NE 的犬主要小于 4 歲,而 GME 的峰值年齡為

4-8 歲 (Granger et al., 2010)。在一組 60 例患 NE 巴哥

犬中 (Levine et al., 2008),診斷時的中位年齡為 18 個

月。在一組 5 例 NE 的吉娃娃 (Higgins et al., 2008) 中,

診斷時的中位年齡為 5 歲。在巴哥犬中,與深色雄性相

比,淺褐色雌性更常被診斷患有 NME (Greer et al.,

2010)。盡管普遍認(rèn)為 GME 中雌性占多數(shù) (Russo,

1979; Braund, 1985; Bailey and Higgins, 1986; Sorjonen, 1990; Munana and Luttgen, 1998),在較近期的

研 究 中,雌 雄 比 例 沒 有 統(tǒng) 計 學(xué) 差 異 (Talarico and

Schatzberg, 2010; Granger et al., 2010; Cornelis et al.,

2016a,b)。

曾經(jīng) GME 的組織學(xué)分布有描述三種模式:多灶

型或彌散型、局灶型和眼型 (Cuddon and Smith-Maxie, 1984;Braund,1985; Sorjonen, 1990)。每一種分布型

都與不同的臨床表現(xiàn)有關(guān),包括多灶型 GME 犬的急性

發(fā)作和快速漸進性發(fā)展,局灶型 GME 犬的發(fā)展更隱匿

或更緩慢漸進性,以及眼型 GME 犬的視覺功能障礙的

急 性 癥 狀 (Braund,1985; Sorjonen,1990; Zarfoss et

al.,2006;Talarico and Schatzberg, 2009; Coates and

Jeffery, 2014)。

神經(jīng)外癥狀很少見,但發(fā)熱偶爾會伴隨于中樞

神經(jīng)系統(tǒng)炎癥(Talarico and Schatzberg, 2010)。常

見的實驗室檢查(血常規(guī)、生化、尿分析)往往在正常

參考范圍內(nèi)(Thomas and Eger, 1989; Sorjonen,

1990; Tipold, 1995)。

在神經(jīng)學(xué)檢查中,疾病定位分類如下:a) GME

以前腦、腦干或多灶型病變?yōu)橹?;b) MUO 以多灶型

( 前腦、腦干 ) 或多灶型為主;或 c)NE 以前腦為主

(Granger et al., 2010; Talarico and Schatzberg,

2010; Coates and Jeffery, 2014; Cornelis et al.,

2016a)。與小型犬相比,大型犬更容易出現(xiàn)可識別的

意識狀態(tài)下降 (Cornelis et al., 2016b)。8% 被診斷為

GME 的 犬 表 現(xiàn) 出 提 示 脊 髓 病 的 神 經(jīng) 功 能 缺 陷

(Granger et al., 2010)。脊髓病可定位于脊髓的任何

部位,臨床表現(xiàn)從全身性本體感受性共濟失調(diào)到輕癱

或麻痹;常見發(fā)現(xiàn)有脊髓過度敏感 (Griffin et al.,

2008; Wong et al., 2010; Cornelis et al., 2017a)。

診斷發(fā)現(xiàn)

如前所述,MUO 是一種臨床診斷,可基于動物

特征、神經(jīng)學(xué)檢查結(jié)果、顱內(nèi)橫斷面影像異常和腦脊

液分析獲得 (Munana and Luttgen,1998; Adamo et

al.,2007; Talarico and Schatzberg, 2010; Coates

and Jeffery,2014)。Granger 等人 (2010) 系統(tǒng)性地回

顧了 457 例已發(fā)表的 NIME 病例 ( 包括 MUO、GME

和 NE),并制定了招募沒有組織病理學(xué)診斷的 MUO

病例的指南。已確定以下四項納入標(biāo)準(zhǔn) : (1) 年齡大

于 6 個月的犬 ; (2) T2W MR 影像上表現(xiàn)為多發(fā)、單

發(fā)或彌漫性軸內(nèi)高強度信號 ; (3) 腦脊液分析表現(xiàn)出

腦脊液細(xì)胞增多,且單核細(xì)胞 / 淋巴細(xì)胞 >50%; (4)

排除特定地理區(qū)域內(nèi)常見的傳染病 (Granger et al.,

2010)。如前所述,只有通過組織病理學(xué)檢查才能獲

得明確診斷 (Uchida et al., 2016)。

參考文獻:

1. Simpson S, Syring R, Otto C. Severe blunt trauma in

dogs: 235 cases (1997-2003). J Vet Emerg Crit Care (San Antonio) 2009;19(6):588–602.

2. Marioni-Henry K, Vite CH, Newton AL, et al. Prevalence

of diseases of the spinalcord of cats. J Vet Intern Med

2004;18(6):851–8.

3. Fluehmann G, Doherr MG, Jaggy A. Canine neurological

diseases in a referralhospital population between 1989 and

2000 in Switzerland. J Small Anim Pract2006;47(10):582–7.

4. Sande A, West C. Traumatic brain injury: a review of

pathophysiology and management.J Vet Emerg Crit Care (San

Antonio) 2010;20(2):177–90.

5. Dewey C. Emergency management of the head trauma

patient. Vet Clin NorthAm Small Anim Pract 2000;30?207–25.

6. Hopkins A. Head trauma. Vet Clin North Am Small Anim

Pract 1996;26?875–91.

7. Dewey C, Fletcher D. Head trauma management. In:

Dewey C, editor. A practicalguide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell;2008. p. 221–35.

8. Aries M, Czrosynka M, Budohoski K, et al. Continuous

determination of optimalcerebral perfusion pressure in traumatic brain injury. Crit Care Med 2012;40(8):2456–63.

9. Ling G, Marshall S, Moore D. Diagnosis and management of traumatic braininjury. Continuum 2010;16(6):27–40.

10. Kim J, Gean A. Imaging for the diagnosis and management of traumatic braininjury. Neurotherapeutics

2011;8(1):39–53.

11. Tsang K, Whitfield P. Traumatic brain injury: review of

current management strategies.Br J Oral Maxillofac Surg

2012;50?298–308.

12. Proulx J, Dhupa N. Severe brain injury: part I: pathophysiology. CompendContin Educ Vet 1998;20?897–905.

13. Fletcher DJ, Dewey CW. Spinal trauma management.

In: Dewey CW, editor.A practical guide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell; 2008. p.

405–17.

14. Johnson K, Vite C. Spinal cord injury. In: Silverstein D,

Hopper K, editors. Smallanimal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders;2009. p. 419–23.

15. Park EH, White GA, Tieber LM. Mechanisms of injury

and emergency care ofacute spinal cord injury in dogs and cats.

J Vet Emerg Crit Care (San Antonio)2012;22(2):160–78.

16. Olby N. The pathogenesis and treatment of acute

spinal cord injuries in dogs.Vet Clin North Am Small Anim Pract

2010;40(5):791–807.

17. Fletcher D, Syring R. Traumatic brain injury. In: Silverstein D, Hopper K, editors.Small animal critical care medicine.

1st edition. St Louis (MO): Elsevier Saunders;2009. p. 658–62.

18. Leonard SE, Kirby R. The role of glutamate, calcium

and magnesium in secondarybrain injury. J Vet Emerg Crit Care

2002;12(1):17–32.

19. McMichael M, Moore R. Ischemia and reperfusion

injury pathophysiology, part I.J Vet Emerg Crit Care (San Antonio) 2004;14(4):231–41.

20. Oyinbo C. Secondary injury mechanisms in traumatic

spinal cord injury: anugget of this multiply cascade. Acta Neurobiol Exp 2011;71(2):281–99.

21. Tator C, Fehlings M. Review of the secondary injury

theory of acute spinal cordtrauma with emphasis on vascular

mechanisms. J Neurosurg 1991;75(1):15–26.

22. Dooney N, Dagal A. Anesthetic considerations in acute

spinal cord trauma. Int JCrit Illn Inj Sci 2011;1(1):36–43.

23. Armitage-Chan E, Wetmore L, Chan D. Anesthetic

management of the headtrauma patient. J Vet Emerg Crit Care

(San Antonio) 2007;17(1):5–14.

24. Shores A. Craniocerebral trauma. In: Kirk R, editor. Current veterinary therapy X.X. Philadelphia: WB Saunders; 1983. p.

847–54.

25. Platt S, Radaelli S, McDonnell J. The prognostic value of

the Modified GlasgowComa Scale in head trauma in gods. J Vet

Intern Med 2001;15(6):581–4.

26. Levine GJ, Levine JM, Budke CM, et al. Description and

repeatability of anewly developed spinal cord injury scale for

dogs. Prev Vet Med 2009;89(1–2):121–7.

27. Olby N, De Risio L, Munana K, et al. Development of a

functional scoring systemin dogs with acute spinal cord injuries.

Am J Vet Res 2001;62(10):1624–8.

28. Smith P, Jeffery N. Spinal shock—comparative aspects

and clinical relevance.J Vet Intern Med 2005;19?788–93.

29. Boysen S, Rozanski E, Tidwell A, et al. Evaluation of a

focused assessment with sonography for trauma protocol to

detect free abdominal fluid in dogs involved in motor vehicle

accidents. J Am Vet Med Assoc 2004;225(8):1198–204.

30. Lisciandro GR. Abdominal and thoracic focused assessment with sonographyfor trauma, triage, and monitoring in small

animals. J Vet Emerg Crit Care(San Antonio) 2011;21(2):104–22.

31. Kinns J, Mai W, Seiler G, et al. Radiographic sensitivity

and negative predictive value for acute canine spinal trauma. Vet

Radiol Ultrasound 2006;47(6):563–70.

32. Vitale C, Coates J. Acute spinal injury. Compendium

Standards of Care: Emergencyand Critical Care Medicine

2007;9(7):1–11.

33. Lamb CR, Nicholls A, Targett M, et al. Accuracy of

survey radiographic diagnosis of intervertebral disc protrusion in

dogs. Vet Radiol Ultrasound 2002;43(3):222–8.

34. Brisson BA. Intervertebral disc disease in dogs. Vet Clin

North Am Small Anim Pract 2010;40(5):829–58.

35. Israel SK, Levine JM, Kerwin SC, et al. The relative sensitivity of computed tomography and myelography for identification of thoracolumbar intervertebral disk herniations in dogs. Vet

Radiol Ultrasound 2009;50(3):247–52.

36. Olby N, Dyce J, Houlton J. Correlation of plain radiographic and lumbar myelographic findings with surgical findings

in thoracolumbar disc disease. J SmallAnim Pract

1994;35(7):345–50.

37. Griffin J, Levine J, Kerwin S. Canine thoracolumbar

intervertebral disk disease:pathophysiology, neurologic examination, and emergency medical therapy.Compend Contin Educ

Vet 2009;31(3):E1–13.

38. Lewis D, Hosgood G. Complications associated with

the use of iohexol for myelographyof the cervical vertebral

column in dogs: 66 cases (1988-1990). J AmVet Med Assoc

1992;200(9):1381–4.

39. Barone G, Ziemer L, Shofer F, et al. Risk factors associated with the developmentof seizures after use of iohexol for

myelography in dogs: 182 cases(1998). J Am Vet Med Assoc

2002;220(10):1499–502.

40. Johnson P, Beltran E, Dennis R, et al. Magnetic resonance imaging characteristics of suspected vertebral instability

associated with fracture or subluxation in eleven dogs. Vet

Radiol Ultrasound 2012;53(5):552–9.

41. Rozanski EA, Rondeau MP. Respiratory pharmacotherapy in emergency and critical care medicine. Vet Clin North Am

Small Anim Pract 2002;32(5):1073–86.

42. Mazzaferro E. Oxygen therapy. In: Silverstein D, Hopper

K, editors. Small animal critical caremedicine. 1stedition. StLouis(MO): Elsevier Saunders; 2009.p. 78–81.

43. Hopper K. Basic mechanical ventilation. In: Silverstein

D, Hopper K, editors. Small animal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders; 2009. p. 900–4.

44. Zhuang J, Shackford S, Schmoker J, et al. Colloid infusion after brain injury: an effect on intracranial pressure, cerebral

blood flow, and oxygen delivery. Crit Care Med

1995;23(1):140–8.

45. Wade C, Grady J, Kramer G, et al. Individual patient

cohort analysis of the efficacy of hypertonic saline/dextran in

patients with traumatic brain injury and hypotension. J Trauma

1997;42?561–5.

46. Vassar M, Perry C, Gannaway W, et al. Analysis of

potential risks associated with 7.5% sodium chloride resuscitation of traumatic shock. Arch Surg 1990;124: 1309–15.

47. Vassar M, Perry C, Gannaway W, et al. 7.5% sodium

chloride/dextran for resuscitation of trauma patients undergoing

helicopter transport. Arch Surg 1991;126: 1065–72.

48. Vassar M, Perry C, Holcroft J. Prehospital resuscitation

of hypotensive trauma patients with 7.5% NaCl versus 7.5% NaCl

with added dextran: a controlled trial. J Trauma 1993;34?622–32.

49. Vassar M, Fisher R, O’ Brien P, et al. A multicenter trial

for resuscitation of injured patients with 7.5% sodium chloride.

Arch Surg 1993;128?1003–11.

50. Cooper J, Myles P, McDermott F, et al. Prehospital

hypertonic saline resuscitation of patients with hypotension and

severe traumatic brain injury. JAMA 2004;291?1350–7.

51. Roberts D, Hall R, Kramer A. Sedation for critically ill

adults with severe traumatic brain injury: a systematic review of

randomized controlled trials. CritCare Med 2012;39(12):2743–51.

52. Sperry R, Bailey P, Reichman M, et al. Fentanyl and

sulfentanil increase intracranial pressure in head trauma patients.

Anesthesiology 1992;77?416–20.

53. Lauer K, Connolly L, Schmeling W. Opioid sedation

does not alter intracranial pressure in head injured patients. Can

J Anaesth 1997;44?929–33.

54. Albanese J, Viviand X, Potie F, et al. Sulfentanil, fentanyl,

and alfentanil in head trauma patients: a study on cerebral

hemodynamics. Crit Care Med 1999;27?407–11.

55. de Nadal M, Munar F, Poca M, et al. Cerebral hemodynamic effects of morphine and fentanyl in patients with severe

head injury: absence of correlation to cerebral autoregulation.

Anesthesiology 2000;92?11–9.

56. Hansen B. Acute pain management. Vet Clin North Am

Small Anim Pract 2000;30(4):899–916.

57. Pascoe P. Opioid analgesics. Vet Clin North Am Small

Anim Pract 2000;30(4):757–69.

58. Keegan R, Green S, Bagley R, et al. Effects of medetomidine administration on intracranial pressure and cardiovascular variables of isoflurane-anesthetized dogs. Am J Vet Res

1996;56(2):193–8.

59. Treggiari M, Schultz N, Yanez N, et al. Role of intracranial pressure values and patterns in predicting outcome of traumatic brain injury: a systematic review. Neurocrit Care

2007;6?104–12.

60. Weed L, McKibbon P. Pressure changes in the cerebrospinal fluid following intravenous injection of solutions of various

concentrations. Am J Phys 1919;48?512–30.

61. Ropper A. Hyperosmolar therapy for raised intracranial

pressure. N Engl J Med 2012;367(8):746–52.

62. Brain Trauma Foundation, American Association of

Neurological Surgeons,Congress of Neurological Surgeons.

Guidelines for the management of severetraumatic brain injury. J

Neurotrauma 2007;24(1):S1–106.

63. Fink M. Osmotherapy for intracranial hypertension:

mannitol versus hypertonic saline. Continuum

2012;18(3):640–54.

64. Kaufmann A, Cardoso E. Aggravation of vasogenic

cerebral edema by multipledose mannitol. J Neurosurg

1992;77(4):584–9.

65. McManus M, Soriano S. Rebound swelling of astroglial

cells exposed to hypertonic mannitol. Anesthesiology

1998;88(6):1586–91.

66. Oddo M, Levine J, Frangos S, et al. Effect of mannitol

and hypertonic salineon cerebral oxygenation in patients with

severe traumatic brain injury and refractoryintracranial hypertension. J Neurol Neurosurg Psychiatr 2009;80(8):916–20.

67. Aiyagari V, Deibert E, Diringer M. Hypernatremia in the

neurologic intensive careunit: how high is too high? J Crit Care

2006;21(2):163–72.

68. Battison C, Andrews P, Graham C, et al. Randomized,

controlled trial on theeffect of a 20% mannitol solution and a

7.5% saline/6% dextran solution onincreased intracranial pressure after brain injury. Crit Care Med 2005;33(1):196–202.

69. Francony C, Fauvage B, Falcon D, et al. Equimolar

doses of mannitol and hypertonicsaline in the treatment of intracranial pressure. Crit Care Med 2008;36(3):795–800.

70. Zeng H, Wang Q, Deng Y, et al. A comparative study on

the efficacy of 10%hypertonic saline and equal volume of 20%

mannitol in the treatment of experimentallyinduced cerebral

edema in adult rats. BMC Neurosci 2010;11?153.

71. da Silva J, de Lima F, Valenca M, et al. Hypertonic saline

more efficacious thanmannitol in lethal intracranial hypertension

model. Neurol Res 2010;32(2):139–43.

72. Todd M, Cutkomp J, Brian J. Influence of mannitol and

furosemide, alone and incombination, on brain water content

after fluid percussion injury. Anesthesiology2006;105?1176–80.

73. Edwards P, Arango M, Balica L, et al. Final results of

MRC CRASH, a randomized placebo-controlled trial of intravenous corticosteroids in adults with headinjury- outcomes at 6

months. Lancet 2005;365(9475):1957–9.

74. Roberts I, Yates D, Sandercock P, et al. Effect of intravenous corticosteroids on death within 14 days in 10,008 adults

with clinically significant head injury (MRC CRASH trial): randomized placebo-controlled trial. Lancet 2004;364?9442.

75. Schierhout G, Roberts I. Withdrawn: antiepileptic drugs

for preventing seizures following acute traumatic brain injury.

Cochrane Database Syst Rev 2012;(6):CD000173.

76. Musulin S, Mariani C, Papich M. Diazepam pharmacokinetics after nasal drop and atomized nasal administration in

dogs. J Vet Pharmacol Ther 2011;34(1): 17–24.

77. Kassell N, Hitchon P, Gerk M, et al. Alterations in cerebral blood flow,oxygen metabolism, and electrical activity produced by high-dose thiopental.Neurosurgery 1980;7?598–603.

78. Hayes G. Severe seizures associated with traumatic

brain injury managed bycontrolled hypothermia, pharmacologic

coma, and mechanical ventilation in a dog. J Vet Emerg Crit Care

(San Antonio) 2009;19(6):629–34.

79. Giacino J, Whyte J, Bagiella E, et al. Placebo-controlled

trial of amantadine for severe traumatic brain injury. N Engl J

Med 2012;366?819–26.

80. Hall E. The neuroprotective pharmacology of methylprednisolone. J Neurosurg 1992;76(1):13–22.

81. Parker A, Smith C. Functional recovery from spinal cord

trauma following dexamethasone and chlorpromazine therapy in

dogs. Res Vet Sci 1976;21(2):246–7.

82. Levine J, Levine G, Boozer L, et al. Adverse effects and

outcome associatedwith dexamethasone administration in dogs

with acute thoracolumbar intervertebral disk herniation: 161

cases (2000-2006). J Am Vet Med Assoc 2008;232(3):411–7.

83. Bracken M, Shepard M, Collins W. A randomized, controlled trial of methylprednisolone or naloxone in the treatment

of acute spinal-cord injury. Results of the second national acute

spinal cord injury study. N Engl J Med 1990;322(20):1405–11.

84. Bracken M, Shepard M, Hellenbrand K. Methylprednisolone and neurologicalfunction 1 year after spinal cord injury.

Results of the National Acute Spinal Cord Injury Study. J Neurosurg 1985;63(5):704–13.

85. Bracken M, Shepard M, Holford T. Administration of

methylprednisolone for 24 or

48 hours or tirilazad mesylate for 48 hours in the treatment

of acute spinal cord injury. Results of the Third National Acute

Spinal Cord Injury Randomized Controlled Trial. National Acute

Spinal Cord Injury.JAMA 1997;277(20):1597–604.

86. Nesathurai S. Steroids and spinal cord injury: revisiting

the NASCIS 2 and NASCIS 3 trials. J Trauma Acute Care Surg

1998;45(6):1088–93.

87. Rabinowitz R, Eck J, Harper C. Urgent surgical decompression compared to methylprednisolone for the treatment of

acute spinal cord injury. Spine 2008;33(21):2260–8.

88. Coates J, Sorjonen D, Simpson S, et al. Clinicopathologic effects of a 21-aminosteroid compound (U74389G) and high

dose methylprednisolone onspinal cord function after simulated

spinal cord trauma. Vet Surg 1995;24?128–39.

89. Baltzer W, McMichael MA, Hosgood G. Randomized,

blinded, placebocontrolledclinical trial of N-acetylcysteine in

dogs with spinal cord trauma from acute intervertebral disc

disease. Spine 2008;33(13):1397–402.

90. Bains M, Hall E. Antioxidant therapies in traumatic brain

injury and spinal cord injury. Biochim Biophys Acta

2012;1822(5):675–84.

91. Hall E, Wolf D. A pharmacological analysis of the

pathophysiologicalmechanisms of posttraumatic spinal cord

ischemia. J Neurosurg 1986;64(6):951–61.

92. Ates O, Cayli S, Gurses I. Comparative neuroprotective

effect of sodium channel blockers after experimental spinal cord

injury. J Clin Neurosci 2007;14(7):658–65.

93. Kaptanoglu E, Solaroglu I, Surucu H. Blockade of

sodium channels by phenytoin protects ultrastructure and attenuates lipid peroxidation in experimental spinal cord injury. Acta

Neurochir 2005;147(4):405–12.

94. Hains B, Saab C, Lo A. Sodium channel blockade with

phenytoin protects spinal cord axons, enhances axonal conduction, and improves functional recovery after contusion SCI. Exp

Neurol 2004;188(2):365–77.

95. Schwartz G, Fehlings M. Secondary injury mechanisms

of spinal cord trauma:novel therapeutic approach for the management of secondary pathophysiology with the sodium channel blocker riluzole. Prog Brain Res 2002;137?177–90.

96. Park E, Velumian A, Fehlings M. The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with

an emphasis on the implications for white matter degeneration. J

Neurotrauma 2004;21?754–74.

97. Walters M, Kaste M, Lees K, et al. The AMPA antagonist

ZK 200775 in patients with acute ischaemic stroke: a double-blind, multi-centre, placebo-controlled safety and tolerability study. Cerebrovasc Dis 2005;20?304–9.

98. Chan P. White matter injury in spinal cord ischemia:

protection by AMPA/kainite glutamate receptor antagonism—Editoral comment. Stroke 2000;31?1952.

99. Chen HS, Lipton S. The chemical biology of clinically

tolerated NMDA receptor antagonists. J Neurochem

2006;97?1611–26.

100. Tadie M, D’ Arbigny P, Mathe J, et al. Acute spinal cord

injury. Early care and treatment in a multicenter study with

gacylidine. Soc Neurosci 1999;25?1090.

101. Kwon B, Okon E, Hillyer J. A systematic review of

non-invasive pharmacologic neuroprotective treatments for

acute spinal cord injury. J Neurotrauma 2011;28(8):1545–88.

102. Sturges B, LeCouteur R. Intracranial hypertension. In:

Silverstein D, Hopper K,editors. Small animal critical care medicine. 1st edition. St Louis (MO): ElsevierSaunders; 2009. p.

423–9.

103. Brain Trauma Foundation T, National Association of

State EMS Officials T,National Association of EMTs. Guidelines for

prehospital management of traumatic brain injury. Prehosp

Emerg Care 2007;12(1):1–52.

104. Davis D, Dunford J, Poste J, et al. The impact of hypoxia and hyperventilation on outcome after paramedic rapid

sequence intubation of severely head-injured patients. J Trauma

2004;57(1):1–8.

105. Muizelaar J, Marmarou A, Ward J, et al. Adverse effects

of prolonged hyperventilationin patients with severe head injury;

a randomized clinical trial. J Neurosurg 1991;75(5):731–9.

106. Deutschman C, Konstantinides F, Raup S. Physiological and metabolic response to isolated closed-head injury. Part i:

basal metabolic state: correlations of metabolic and physiological parameters with fasting and stressed controls. J Neurosurg

1986;64?89–98.

107. Jeremitsky E, Omert L, Dunham C, et al. The impact of

hyperglycemia on patients with severe brain injury. J Trauma

2005;58(1):47–50.

108. Syring R, Otto C, Drobatz K. Hyperglycemia in dogs

and cats with head trauma:122 cases (1997-1999). J Am Vet

Med Assoc 2001;218?1124–9.

109. Vespa P, McArthur D, Stein N, et al. Tight glycemic

control increases metabolic distress in traumatic brain injury: a

randomized controlled within subjects trial. Crit Care Med

2012;40(6):1923–9.

110. Green D, O’ Phelan K, Bassin S, et al. Intensive versus

conventional insulin therapy in critically ill neurologic patients.

Neurocrit Care 2010;13(3):299–306.

111. Bilotta F, Caramia R, Cernak I, et al. Intensive insulin

therapy after severe traumatic brain injury: randomized clinical

trial. Neurocrit Care 2008;9(2):159–66.

112. Dewey C. Urinary bladder management. In: Dewey

CW, editor. A practical guide to canine and feline neurology. St

Louis (MO): Elsevier Saunders; 2003. p. 419–26.

113. Bubenik L, Hosgood G. Urinary tract infection in dogs

with thoracolumbar intervertebral disc herniation and urinary

bladder dysfunction managed by manual expression, indwelling

catheterization or intermittent catheterization. Vet Surg

2008;37?791–800.

114. Smarick S, Haskins S, Aldrich J, et al. Incidence of

catheter-associated urinary tract infection among dogs in a

small animal intensive care unit. J Am Vet Med Assoc

2004;224(12):1936–40.

115. Ng I, Lim J, Wong H. Effects of head posture on cerebral hemodynamics its influences on intracranial pressure, cerebral perfusion pressure, and cerebral oxygenation. Neurosurgery

2004;54(3):593–7.

116. Sadaka F, Veremakis C. Therapeutic hypothermia for

the management of intracranial hypertension in severe traumatic

brain injury: a systematic review. Brain Inj 2012;26(7–8):899–908.

117. McCarthy P, Scott L, Ganta C, et al. Hypothermic protection in traumatic brain injury. Pathophysiology 2012;735–57.

118. Wijayatilake D, Shepherd S, Sherren P. Updates in the

management of intracranial pressure in traumatic brain injury.

Curr Opin Anaesthesiol 2012;25(5):540–7.

119. Hutchinson P, Corteen E, Czosnyka M, et al. Decompressive craniectomy intraumatic brain injury: the randomized

multicenter RESCUEicp study. Acta Neurochir 2006;96(S):17–20.

120. La Rosa G, Conti A, Cardali S, et al. Does early decompression improve neurological outcome of spinal cord injured

patients? Appraisal of the literature using a meta-analytical

approach. Spinal Cord 2004;42(9):503–12.

121. Croce M, Bee T, Pritchard E, et al. Does optimal timing

for spine fracture fixation exist? Ann Surg 2001;233(6):851–8.

122. Fehlings M, Perrin R. The timing of surgical intervention in the treatment of spinal cord injury: a systematic review of

recent clinical evidence. Spine 2006;31(11): S28–35.

123. Jeffery ND. Vertebral fracture and luxation in small

animals. Vet Clin North Am Small Anim Pract 2010;40(5):809–28.

124. Denis F. Spinal instability as defined by the three-column spine concept in acute spinal trauma. Clin Orthop Relat Res

1984;189?65–76.

125. Hillman R, Kengeri S, Waters D. Reevaluation of predictive factors for complete recovery in dogs with nonambulatory tetraparesis secondary to cervical disk herniation. J Am Anim

Hosp Assoc 2009;45?155–63.

126. Cherrone K, Dewey C, Coates J, et al. A retrospective

comparison of cervical intervertebral disk disease in nonchondrodystrophic large dogs versus small dogs. J Am Anim Hosp

Assoc 2004;40?316–20.

127. Gage E, Hoerlein B. Hemilaminectomy and dorsal

laminectomy for relieving compressions of the spinal cord in the

dog. J Am Vet Med Assoc 1968;152: 351–9.

128. Seim H 3rd, Prata R. Ventral decompression for the

treatment of cervical disk disease in the dog: a review of 54

cases. J Am Anim Hosp Assoc 1982;18: 233–40.

129. Gill P, Lippincott C, Anderson S. Dorsal laminectomy in

the treatment of cervical intervertebral disk disease in small

dogs: a retrospective study of 30 cases.J Am Anim Hosp Assoc

1996;32?77–80.

130. Felts J, Prata R. Cervical disk disease in the dog: intraforaminal and lateral extrusions. J Am Anim Hosp Assoc

1983;19?755–60.

131. Tanaka H, Nakayama M, Takase K. Usefulness of hemilaminectomy for cervical intervertebral disk disease in small

dogs. J Vet Med Sci 2005;67?679–83.

132. McCartney W. Comparison of recovery times and

complication rates between a modified slanted slot and the

standard ventral slot for the treatment of cervical disc disease in

20 dogs. J Small Anim Pract 2007;48?498–501.

133. Levine J, Levine G, Johnson S, et al. Evaluation of the

success of medical management for presumptive thoracolumbar

intervertebral disk herniation in dogs. Vet Surg 2007;36?482–91.

134. Kent M. Intraaxial spinal cord hemorrhage secondary

to atlantoaxial subluxationin a dog. J Am Anim Hosp Assoc

2010;46(2):132–7.

135. Cerda-Gonzalez S, Olby NJ. Fecal incontinence associated with epidural spinalhematoma and intervertebral disk

extrusion in a dog. J Am Vet Med Assoc 2006;228(2):230–5.

136. Caswell JL, Nykamp SG. Intradural vasculitis and hemorrhage in full sibling Welsh springer spaniels. Can Vet J

2003;44(2):137–9.

137. Tidwell AS, Specht A, Blaeser L, et al. Magnetic resonance imaging features ofextradural hematomas associated with

intervertebral disc herniation in a dog.Vet Radiol Ultrasound

2001;43(4):319–24.

138. Jeffery N, Lakatos A, Franklin R. Autologous olfactory

glial cell transplantation is eliable and safe in naturally occurring

spinal cord injury. J Neurotrauma 2005;22(11):1282–93.

139. Nishida H, Nakayama M, Tanaka H. Safety of autologous bone marrow stromal cell transplantation in dogs with

acute spinal cord injury. Vet Surg 2012;41?437–42.

140. Olby N, Levine J, Harris T. Long-term functional outcome of dogs with severe injuries of the thoracolumbar spinal

cord: 87 cases (1996-2001). J Am VetMed Assoc

2003;222(6):762–9.

141. Dewey CW. Myelopathies: disorders of the spinal cord.

In: Dewey CW, editor. A practical guide to canine and feline neurology. 2nd edition. Ames (IA):Wiley-Blackwell; 2008. p. 323–88.

142. Hawthorne J, Blevins W, Wallace L, et al. Cervical vertebral fractures in 56 dogs:a retrospective study. J Am Anim

Hosp Assoc 1999;35?135–46.

143. Eminaga S, Palus V, Cherubini G. Acute spinal cord

injury in the cat: causes,treatment and prognosis. J Feline Med

Surg 2011;13(11):850–62.spontaneous hyperadrenocorticism in

dogs. Part 2: Adrenal function testing and differentiating tests[J].

The Veterinary Journal, 2019, 252?105343.

第119頁

小動物臨床前沿(神經(jīng)學(xué)???- 上冊)· 腦部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 總第 12 期

- 111 -

圖1:組織學(xué)病理診斷為GME的6歲雌性未絕育金毛尋回獵犬的丘腦間連結(jié)的T2W矢狀面(A)和T2W橫斷面(B) 和FLAIR橫斷面(C)。注意T2W

和FLAIR圖像上的彌漫性高強度信號影響到灰質(zhì)(包括皮質(zhì)和深灰質(zhì))和白質(zhì),累及前腦(顳葉)和腦干(圖片由倫敦大學(xué)皇家獸醫(yī)學(xué)院提供)。

病因不明性腦膜腦脊髓炎(MUO)指的是一組特

發(fā)性、非感染性中樞神經(jīng)系統(tǒng)(CNS)疾病(Talarico

and Schatzberg, 2010; Coates and Jeffery, 2014)。

值得注意的是,術(shù)語MUO與MUA(aetiology病因?qū)W)

和MUE(病因?qū)Wetiology)是同義的,并且所有術(shù)語在

整篇文獻中相互混雜。這組特發(fā)性非感染性腦膜炎

腦脊髓炎(NIME)分為幾個亞型,包括類固醇反應(yīng)性

腦膜炎-動脈炎(steroid responsive meningitis-arteritis,SRMA)、嗜酸性粒細(xì)胞性腦膜腦炎(eosinophilic meningoencephalitis,EME)、肉芽腫性腦膜

腦脊髓炎(granulomatous meningoencephalomyelitis,GME)和壞死性腦炎(necrotizing encephalitis,NE;包括壞死性腦膜腦脊髓炎(necrotizing

meningoencephalomyelitis,NME)和壞死性白質(zhì)腦炎

(necrotizing leucoencephalitis,NLE))。由于SRMA和

EME具有相當(dāng)明顯的診斷特征,因此引入MUO一詞

來涵蓋只能通過組織病理學(xué)證實的NIME三種特定亞

型,包括GME、NME和NLE (Granger et al., 2010;

Talarico and Schatzberg, 2010; Coates and Jeffery,

2014)。目前還沒有關(guān)于犬類MUO的總體發(fā)病率的

統(tǒng)計數(shù)據(jù),但早期的報告引用了GME在犬所有中樞

神經(jīng)系統(tǒng)疾病中的不一的發(fā)病率5-25%(Braund,

1985; Tipold, 1995)。

通常,MUO的診斷是根據(jù)動物特征、神經(jīng)學(xué)檢

查結(jié)果、磁共振成像(MRI)發(fā)現(xiàn)和腦脊液(CSF)分析

相結(jié)合得出的(Munana and Luttgen, 1998; Adamo

et al., 2007; Granger et al., 2010; Talarico and

Schatzberg, 2010; Coates and Jeffery, 2014),盡管

這些檢查結(jié)果可能在不同的研究和病患之間存在很

大差異(Wong et al., 2010)。

這組疾病的診斷和治療都使獸醫(yī)面臨挑戰(zhàn)。如

果不開始恰當(dāng)?shù)闹委?,這種疾病被認(rèn)為是致命的

(Munana and Luttgen, 1998; Granger et al., 2010),

最近的一些研究評估了不同的治療方式和潛在的預(yù)

后因素。

病因?qū)W

MUO 的確切病因?qū)W和病理生理學(xué)目前尚不清

楚,最新的一些理論在最近的一些文獻綜述中進行了

討論 (Coates and Jeffery, 2014)。雖然 MUO 很可能

有多因素發(fā)病機制,但遺傳傾向性和觸發(fā)過度免疫反

應(yīng)的因素的結(jié)合被認(rèn)為是最重要的 (Kipar et al.,

1998; Talarico and Schatzberg, 2010; Flegel et al.,

2011; Coates and Jeffery, 2014)??梢傻恼T因包括環(huán)

境因素和各類感染性抗原 (Schatzberg et al., 2005;

Greer et al., 2010; Barber et al., 2012)。結(jié) 合 這 組 疾

病對免疫抑制治療的普遍積極反應(yīng)等信息,表明了誘

發(fā) MUO 的因素是免疫介導(dǎo)性疾病 (Wong et al.,

2010),因此,藥物治療的基石是免疫抑制治療 (Kipar

et al.,1998; Talarico and Schatzberg, 2010; Coates

and Jeffery, 2014)。

臨床表現(xiàn)

中年玩具品種犬和?犬易患 GME (Munana and

Luttgen, 1998; Adamo et al., 2007; Talarico and

Schatzberg, 2010); 而 NE 主要侵襲較小體型的玩具

品種和小型犬,包括巴哥犬、約克夏?、馬爾濟斯犬、

吉娃娃、北京犬、蝴蝶犬、西施犬、圖萊亞爾絨毛犬和

布魯塞爾格里芬犬 (Talarico and Schatzberg, 2010;

Cooper et al., 2014)。然而,任何品種和年齡的犬都

可 能 受 到 侵 襲 (Granger et al., 2010; Coates and

Jeffery, 2014);最近的一項研究顯示,25% 診斷患有

MUO 的犬是大型犬 (>15kg; Cornelis et al., 2016b)。

通過對 173 例 GME、53 例 MUO 和 69 例 NE 的

數(shù)據(jù)統(tǒng)計分析,發(fā)現(xiàn) GME 和 NE 的年齡分布有顯著差

異;有 NE 的犬主要小于 4 歲,而 GME 的峰值年齡為

4-8 歲 (Granger et al., 2010)。在一組 60 例患 NE 巴哥

犬中 (Levine et al., 2008),診斷時的中位年齡為 18 個

月。在一組 5 例 NE 的吉娃娃 (Higgins et al., 2008) 中,

診斷時的中位年齡為 5 歲。在巴哥犬中,與深色雄性相

比,淺褐色雌性更常被診斷患有 NME (Greer et al.,

2010)。盡管普遍認(rèn)為 GME 中雌性占多數(shù) (Russo,

1979; Braund, 1985; Bailey and Higgins, 1986; Sorjonen, 1990; Munana and Luttgen, 1998),在較近期的

研 究 中,雌 雄 比 例 沒 有 統(tǒng) 計 學(xué) 差 異 (Talarico and

Schatzberg, 2010; Granger et al., 2010; Cornelis et al.,

2016a,b)。

曾經(jīng) GME 的組織學(xué)分布有描述三種模式:多灶

型或彌散型、局灶型和眼型 (Cuddon and Smith-Maxie, 1984;Braund,1985; Sorjonen, 1990)。每一種分布型

都與不同的臨床表現(xiàn)有關(guān),包括多灶型 GME 犬的急性

發(fā)作和快速漸進性發(fā)展,局灶型 GME 犬的發(fā)展更隱匿

或更緩慢漸進性,以及眼型 GME 犬的視覺功能障礙的

急 性 癥 狀 (Braund,1985; Sorjonen,1990; Zarfoss et

al.,2006;Talarico and Schatzberg, 2009; Coates and

Jeffery, 2014)。

神經(jīng)外癥狀很少見,但發(fā)熱偶爾會伴隨于中樞

神經(jīng)系統(tǒng)炎癥(Talarico and Schatzberg, 2010)。常

見的實驗室檢查(血常規(guī)、生化、尿分析)往往在正常

參考范圍內(nèi)(Thomas and Eger, 1989; Sorjonen,

1990; Tipold, 1995)。

在神經(jīng)學(xué)檢查中,疾病定位分類如下:a) GME

以前腦、腦干或多灶型病變?yōu)橹鳎籦) MUO 以多灶型

( 前腦、腦干 ) 或多灶型為主;或 c)NE 以前腦為主

(Granger et al., 2010; Talarico and Schatzberg,

2010; Coates and Jeffery, 2014; Cornelis et al.,

2016a)。與小型犬相比,大型犬更容易出現(xiàn)可識別的

意識狀態(tài)下降 (Cornelis et al., 2016b)。8% 被診斷為

GME 的 犬 表 現(xiàn) 出 提 示 脊 髓 病 的 神 經(jīng) 功 能 缺 陷

(Granger et al., 2010)。脊髓病可定位于脊髓的任何

部位,臨床表現(xiàn)從全身性本體感受性共濟失調(diào)到輕癱

或麻痹;常見發(fā)現(xiàn)有脊髓過度敏感 (Griffin et al.,

2008; Wong et al., 2010; Cornelis et al., 2017a)。

診斷發(fā)現(xiàn)

如前所述,MUO 是一種臨床診斷,可基于動物

特征、神經(jīng)學(xué)檢查結(jié)果、顱內(nèi)橫斷面影像異常和腦脊

液分析獲得 (Munana and Luttgen,1998; Adamo et

al.,2007; Talarico and Schatzberg, 2010; Coates

and Jeffery,2014)。Granger 等人 (2010) 系統(tǒng)性地回

顧了 457 例已發(fā)表的 NIME 病例 ( 包括 MUO、GME

和 NE),并制定了招募沒有組織病理學(xué)診斷的 MUO

病例的指南。已確定以下四項納入標(biāo)準(zhǔn) : (1) 年齡大

于 6 個月的犬 ; (2) T2W MR 影像上表現(xiàn)為多發(fā)、單

發(fā)或彌漫性軸內(nèi)高強度信號 ; (3) 腦脊液分析表現(xiàn)出

腦脊液細(xì)胞增多,且單核細(xì)胞 / 淋巴細(xì)胞 >50%; (4)

排除特定地理區(qū)域內(nèi)常見的傳染病 (Granger et al.,

2010)。如前所述,只有通過組織病理學(xué)檢查才能獲

得明確診斷 (Uchida et al., 2016)。

橫斷面影像

據(jù)報道,MRI 在檢測大腦異常方面的敏感性為

94.4%,特異性為 95.5%,在腫瘤性和炎癥性疾病的分

類方面也有同樣高度的表現(xiàn)。相比之下,MRI 對腦血

管疾病分類的敏感性僅為 38.9% (Wolff et al., 2012)。

值得注意的是,在一項研究中,多達 7% 的犬 (2/25 例

,一例診斷為 GME,另一例診斷為 MUO) 在 T2W MR

圖 像 中 沒 有 顯 示 異 常 (Talarico and Schatzberg,

2010; Granger et al., 2010),如果沒有組織病理學(xué)證

據(jù),可能會導(dǎo)致類似病例不被納入前瞻性研究或回顧

性 研 究。同 樣 在 CT 成 像 方 面,研 究 顯 示 高 達

14%(5/36 例 犬,未 指 定 具 體 診 斷 ) 未 發(fā) 現(xiàn) 異 常

(Granger et al., 2010)??偟膩碚f,影像學(xué)在識別神經(jīng)

系統(tǒng)檢查懷疑的所有炎癥性異常方面的敏感性仍然

很低 (<60%; Granger et al., 2010)。此外,在一項研究

中,只有 76% 的腦脊液炎性病變病例出現(xiàn) MRI 異常

(19/25 例犬 ; Lamb et al., 2005)。雖然使用橫斷面成

像可能有助于區(qū)分不同類型的特發(fā)性腦膜腦炎

(Talarico and Schatzberg, 2010),但目前沒有關(guān)于使

用 MRI 鑒別組織病理學(xué)證實的 GME、NME 和 NLE 病

例的信息。

一項研究特別關(guān)注了 11 例組織病理學(xué)證實為

GME 的犬的 MRI 檢查結(jié)果 (Cherubini et al.,2006)。

局灶型、多灶型或彌漫型的 T2W 和 FLAIR 高強度信

號分布于前腦、腦干或小腦 ( 圖 1)。異常散在分布于

灰質(zhì)和白質(zhì),在 T1 加權(quán) (T1W) 圖像上表現(xiàn)為不同強

度 信號,增強程度不同。T2W 圖像通常提示白質(zhì)內(nèi)血

管源性水腫,腦膜強化通常不明顯,即使有也很輕微

(Cherubini et al., 2006; Talarico and Schatzberg,

2010; Coates and Jeffery, 2014)。MR 影像病變的分

布 ( 位于灰質(zhì)或白質(zhì) ) 與組織病理學(xué)結(jié)果一致

(Cherubini et al., 2006)。

報道的 NME 犬最常見的 MRI 異常是不對稱、多

灶性和位于前腦的病變 ( 更嚴(yán)重的病變位于頂葉和枕

葉 );T2W、FLAIR 高強度信號 ; 通常影響皮質(zhì)灰質(zhì)和

皮質(zhì)下白質(zhì),在 T1W 增強后圖像上灰質(zhì) / 白質(zhì)界限

喪失,實質(zhì)病變的對比增強程度不同 (Flegel et al.,

2008; Young et al., 2009; Talarico and Schatzberg,

2010; 圖 2)。然而,在一項研究中,分別有 4/18 例和

3/18 例發(fā)現(xiàn)小腦和腦干病變 (Young et al., 2009)。腦

膜強化也可出現(xiàn),伴有腫物效應(yīng)和不同程度的腦室增

大 (Coates and Jeffery, 2014)。

在 NLE 中,發(fā)現(xiàn)了多處不對稱的大腦白質(zhì)和腦干

病變 (von Praun et al., 2006)。這些病變在 T2W 和

FLAIR 上表現(xiàn)為典型的高強度信號,常包括多個囊性

壞死區(qū)域。在兩項已報道的研究中,實質(zhì)異常的對比

度增強很少 (Talarico and Schatzberg, 2010; Coates

and Jeffery, 2014)。第三項研究顯示未見腦膜強化和

腫物效應(yīng),但伴有不同程度的腦室增大 (Coates 和

Jeffery, 2014; 圖 3)。

已有報道 57 例犬患有不明病因性腦膜脊髓炎,

包括 3 例經(jīng)組織病理學(xué)證實為 GME 的犬 (Cherubini

et al., 2006; Griffin et al., 2008; Wong et al., 2010;

Cornelis et al., 2017a)。57 例中有 36 例使用不同類型

的影像學(xué)檢查結(jié)果。12 例犬單獨進行了(X 線片)脊髓

造影或計算機斷層掃描 (CT) 的脊髓造影;11 例犬未

發(fā)現(xiàn)異常,1 例犬腹側(cè)硬膜外脊髓受壓 (Wong et al.,

2010)。對 25 例犬進行了 MRI 檢查,其中 3 例犬未發(fā)

現(xiàn)異常,6 例犬出現(xiàn)多灶性邊界不清晰的髓內(nèi) T2W 高

強度信號,增強程度不一,在 16 例犬的髓內(nèi) T2W 高

強度信號和 T1W 等強度信號的異常中,脊髓實質(zhì)病

變和 / 或覆蓋腦膜的不同對比度增強 (Cherubini et

al., 2006; Wong et al., 2010; Cornelis et al., 2017a)。

其他成像方式,包括 NME 的正電子發(fā)射斷層掃

描 (PET), MUO 的氟脫氧葡萄糖 PET (FDG-PET) 和

單體素質(zhì)子磁共振波譜 (1H MRS),以及 GME 的經(jīng)顱

超聲檢查結(jié)果,被研究作為診斷方式 (Eom et al.,

2008; Kang et al., 2010; Carvalho et al., 2012; Carrera et al., 2016)。然而,需要更大樣本量的進一步研究

來評估這些成像方式的臨床用途。

參考文獻:

1. Simpson S, Syring R, Otto C. Severe blunt trauma in

dogs: 235 cases (1997-2003). J Vet Emerg Crit Care (San Antonio) 2009;19(6):588–602.

2. Marioni-Henry K, Vite CH, Newton AL, et al. Prevalence

of diseases of the spinalcord of cats. J Vet Intern Med

2004;18(6):851–8.

3. Fluehmann G, Doherr MG, Jaggy A. Canine neurological

diseases in a referralhospital population between 1989 and

2000 in Switzerland. J Small Anim Pract2006;47(10):582–7.

4. Sande A, West C. Traumatic brain injury: a review of

pathophysiology and management.J Vet Emerg Crit Care (San

Antonio) 2010;20(2):177–90.

5. Dewey C. Emergency management of the head trauma

patient. Vet Clin NorthAm Small Anim Pract 2000;30?207–25.

6. Hopkins A. Head trauma. Vet Clin North Am Small Anim

Pract 1996;26?875–91.

7. Dewey C, Fletcher D. Head trauma management. In:

Dewey C, editor. A practicalguide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell;2008. p. 221–35.

8. Aries M, Czrosynka M, Budohoski K, et al. Continuous

determination of optimalcerebral perfusion pressure in traumatic brain injury. Crit Care Med 2012;40(8):2456–63.

9. Ling G, Marshall S, Moore D. Diagnosis and management of traumatic braininjury. Continuum 2010;16(6):27–40.

10. Kim J, Gean A. Imaging for the diagnosis and management of traumatic braininjury. Neurotherapeutics

2011;8(1):39–53.

11. Tsang K, Whitfield P. Traumatic brain injury: review of

current management strategies.Br J Oral Maxillofac Surg

2012;50?298–308.

12. Proulx J, Dhupa N. Severe brain injury: part I: pathophysiology. CompendContin Educ Vet 1998;20?897–905.

13. Fletcher DJ, Dewey CW. Spinal trauma management.

In: Dewey CW, editor.A practical guide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell; 2008. p.

405–17.

14. Johnson K, Vite C. Spinal cord injury. In: Silverstein D,

Hopper K, editors. Smallanimal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders;2009. p. 419–23.

15. Park EH, White GA, Tieber LM. Mechanisms of injury

and emergency care ofacute spinal cord injury in dogs and cats.

J Vet Emerg Crit Care (San Antonio)2012;22(2):160–78.

16. Olby N. The pathogenesis and treatment of acute

spinal cord injuries in dogs.Vet Clin North Am Small Anim Pract

2010;40(5):791–807.

17. Fletcher D, Syring R. Traumatic brain injury. In: Silverstein D, Hopper K, editors.Small animal critical care medicine.

1st edition. St Louis (MO): Elsevier Saunders;2009. p. 658–62.

18. Leonard SE, Kirby R. The role of glutamate, calcium

and magnesium in secondarybrain injury. J Vet Emerg Crit Care

2002;12(1):17–32.

19. McMichael M, Moore R. Ischemia and reperfusion

injury pathophysiology, part I.J Vet Emerg Crit Care (San Antonio) 2004;14(4):231–41.

20. Oyinbo C. Secondary injury mechanisms in traumatic

spinal cord injury: anugget of this multiply cascade. Acta Neurobiol Exp 2011;71(2):281–99.

21. Tator C, Fehlings M. Review of the secondary injury

theory of acute spinal cordtrauma with emphasis on vascular

mechanisms. J Neurosurg 1991;75(1):15–26.

22. Dooney N, Dagal A. Anesthetic considerations in acute

spinal cord trauma. Int JCrit Illn Inj Sci 2011;1(1):36–43.

23. Armitage-Chan E, Wetmore L, Chan D. Anesthetic

management of the headtrauma patient. J Vet Emerg Crit Care

(San Antonio) 2007;17(1):5–14.

24. Shores A. Craniocerebral trauma. In: Kirk R, editor. Current veterinary therapy X.X. Philadelphia: WB Saunders; 1983. p.

847–54.

25. Platt S, Radaelli S, McDonnell J. The prognostic value of

the Modified GlasgowComa Scale in head trauma in gods. J Vet

Intern Med 2001;15(6):581–4.

26. Levine GJ, Levine JM, Budke CM, et al. Description and

repeatability of anewly developed spinal cord injury scale for

dogs. Prev Vet Med 2009;89(1–2):121–7.

27. Olby N, De Risio L, Munana K, et al. Development of a

functional scoring systemin dogs with acute spinal cord injuries.

Am J Vet Res 2001;62(10):1624–8.

28. Smith P, Jeffery N. Spinal shock—comparative aspects

and clinical relevance.J Vet Intern Med 2005;19?788–93.

29. Boysen S, Rozanski E, Tidwell A, et al. Evaluation of a

focused assessment with sonography for trauma protocol to

detect free abdominal fluid in dogs involved in motor vehicle

accidents. J Am Vet Med Assoc 2004;225(8):1198–204.

30. Lisciandro GR. Abdominal and thoracic focused assessment with sonographyfor trauma, triage, and monitoring in small

animals. J Vet Emerg Crit Care(San Antonio) 2011;21(2):104–22.

31. Kinns J, Mai W, Seiler G, et al. Radiographic sensitivity

and negative predictive value for acute canine spinal trauma. Vet

Radiol Ultrasound 2006;47(6):563–70.

32. Vitale C, Coates J. Acute spinal injury. Compendium

Standards of Care: Emergencyand Critical Care Medicine

2007;9(7):1–11.

33. Lamb CR, Nicholls A, Targett M, et al. Accuracy of

survey radiographic diagnosis of intervertebral disc protrusion in

dogs. Vet Radiol Ultrasound 2002;43(3):222–8.

34. Brisson BA. Intervertebral disc disease in dogs. Vet Clin

North Am Small Anim Pract 2010;40(5):829–58.

35. Israel SK, Levine JM, Kerwin SC, et al. The relative sensitivity of computed tomography and myelography for identification of thoracolumbar intervertebral disk herniations in dogs. Vet

Radiol Ultrasound 2009;50(3):247–52.

36. Olby N, Dyce J, Houlton J. Correlation of plain radiographic and lumbar myelographic findings with surgical findings

in thoracolumbar disc disease. J SmallAnim Pract

1994;35(7):345–50.

37. Griffin J, Levine J, Kerwin S. Canine thoracolumbar

intervertebral disk disease:pathophysiology, neurologic examination, and emergency medical therapy.Compend Contin Educ

Vet 2009;31(3):E1–13.

38. Lewis D, Hosgood G. Complications associated with

the use of iohexol for myelographyof the cervical vertebral

column in dogs: 66 cases (1988-1990). J AmVet Med Assoc

1992;200(9):1381–4.

39. Barone G, Ziemer L, Shofer F, et al. Risk factors associated with the developmentof seizures after use of iohexol for

myelography in dogs: 182 cases(1998). J Am Vet Med Assoc

2002;220(10):1499–502.

40. Johnson P, Beltran E, Dennis R, et al. Magnetic resonance imaging characteristics of suspected vertebral instability

associated with fracture or subluxation in eleven dogs. Vet

Radiol Ultrasound 2012;53(5):552–9.

41. Rozanski EA, Rondeau MP. Respiratory pharmacotherapy in emergency and critical care medicine. Vet Clin North Am

Small Anim Pract 2002;32(5):1073–86.

42. Mazzaferro E. Oxygen therapy. In: Silverstein D, Hopper

K, editors. Small animal critical caremedicine. 1stedition. StLouis(MO): Elsevier Saunders; 2009.p. 78–81.

43. Hopper K. Basic mechanical ventilation. In: Silverstein

D, Hopper K, editors. Small animal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders; 2009. p. 900–4.

44. Zhuang J, Shackford S, Schmoker J, et al. Colloid infusion after brain injury: an effect on intracranial pressure, cerebral

blood flow, and oxygen delivery. Crit Care Med

1995;23(1):140–8.

45. Wade C, Grady J, Kramer G, et al. Individual patient

cohort analysis of the efficacy of hypertonic saline/dextran in

patients with traumatic brain injury and hypotension. J Trauma

1997;42?561–5.

46. Vassar M, Perry C, Gannaway W, et al. Analysis of

potential risks associated with 7.5% sodium chloride resuscitation of traumatic shock. Arch Surg 1990;124: 1309–15.

47. Vassar M, Perry C, Gannaway W, et al. 7.5% sodium

chloride/dextran for resuscitation of trauma patients undergoing

helicopter transport. Arch Surg 1991;126: 1065–72.

48. Vassar M, Perry C, Holcroft J. Prehospital resuscitation

of hypotensive trauma patients with 7.5% NaCl versus 7.5% NaCl

with added dextran: a controlled trial. J Trauma 1993;34?622–32.

49. Vassar M, Fisher R, O’ Brien P, et al. A multicenter trial

for resuscitation of injured patients with 7.5% sodium chloride.

Arch Surg 1993;128?1003–11.

50. Cooper J, Myles P, McDermott F, et al. Prehospital

hypertonic saline resuscitation of patients with hypotension and

severe traumatic brain injury. JAMA 2004;291?1350–7.

51. Roberts D, Hall R, Kramer A. Sedation for critically ill

adults with severe traumatic brain injury: a systematic review of

randomized controlled trials. CritCare Med 2012;39(12):2743–51.

52. Sperry R, Bailey P, Reichman M, et al. Fentanyl and

sulfentanil increase intracranial pressure in head trauma patients.

Anesthesiology 1992;77?416–20.

53. Lauer K, Connolly L, Schmeling W. Opioid sedation

does not alter intracranial pressure in head injured patients. Can

J Anaesth 1997;44?929–33.

54. Albanese J, Viviand X, Potie F, et al. Sulfentanil, fentanyl,

and alfentanil in head trauma patients: a study on cerebral

hemodynamics. Crit Care Med 1999;27?407–11.

55. de Nadal M, Munar F, Poca M, et al. Cerebral hemodynamic effects of morphine and fentanyl in patients with severe

head injury: absence of correlation to cerebral autoregulation.

Anesthesiology 2000;92?11–9.

56. Hansen B. Acute pain management. Vet Clin North Am

Small Anim Pract 2000;30(4):899–916.

57. Pascoe P. Opioid analgesics. Vet Clin North Am Small

Anim Pract 2000;30(4):757–69.

58. Keegan R, Green S, Bagley R, et al. Effects of medetomidine administration on intracranial pressure and cardiovascular variables of isoflurane-anesthetized dogs. Am J Vet Res

1996;56(2):193–8.

59. Treggiari M, Schultz N, Yanez N, et al. Role of intracranial pressure values and patterns in predicting outcome of traumatic brain injury: a systematic review. Neurocrit Care

2007;6?104–12.

60. Weed L, McKibbon P. Pressure changes in the cerebrospinal fluid following intravenous injection of solutions of various

concentrations. Am J Phys 1919;48?512–30.

61. Ropper A. Hyperosmolar therapy for raised intracranial

pressure. N Engl J Med 2012;367(8):746–52.

62. Brain Trauma Foundation, American Association of

Neurological Surgeons,Congress of Neurological Surgeons.

Guidelines for the management of severetraumatic brain injury. J

Neurotrauma 2007;24(1):S1–106.

63. Fink M. Osmotherapy for intracranial hypertension:

mannitol versus hypertonic saline. Continuum

2012;18(3):640–54.

64. Kaufmann A, Cardoso E. Aggravation of vasogenic

cerebral edema by multipledose mannitol. J Neurosurg

1992;77(4):584–9.

65. McManus M, Soriano S. Rebound swelling of astroglial

cells exposed to hypertonic mannitol. Anesthesiology

1998;88(6):1586–91.

66. Oddo M, Levine J, Frangos S, et al. Effect of mannitol

and hypertonic salineon cerebral oxygenation in patients with

severe traumatic brain injury and refractoryintracranial hypertension. J Neurol Neurosurg Psychiatr 2009;80(8):916–20.

67. Aiyagari V, Deibert E, Diringer M. Hypernatremia in the

neurologic intensive careunit: how high is too high? J Crit Care

2006;21(2):163–72.

68. Battison C, Andrews P, Graham C, et al. Randomized,

controlled trial on theeffect of a 20% mannitol solution and a

7.5% saline/6% dextran solution onincreased intracranial pressure after brain injury. Crit Care Med 2005;33(1):196–202.

69. Francony C, Fauvage B, Falcon D, et al. Equimolar

doses of mannitol and hypertonicsaline in the treatment of intracranial pressure. Crit Care Med 2008;36(3):795–800.

70. Zeng H, Wang Q, Deng Y, et al. A comparative study on

the efficacy of 10%hypertonic saline and equal volume of 20%

mannitol in the treatment of experimentallyinduced cerebral

edema in adult rats. BMC Neurosci 2010;11?153.

71. da Silva J, de Lima F, Valenca M, et al. Hypertonic saline

more efficacious thanmannitol in lethal intracranial hypertension

model. Neurol Res 2010;32(2):139–43.

72. Todd M, Cutkomp J, Brian J. Influence of mannitol and

furosemide, alone and incombination, on brain water content

after fluid percussion injury. Anesthesiology2006;105?1176–80.

73. Edwards P, Arango M, Balica L, et al. Final results of

MRC CRASH, a randomized placebo-controlled trial of intravenous corticosteroids in adults with headinjury- outcomes at 6

months. Lancet 2005;365(9475):1957–9.

74. Roberts I, Yates D, Sandercock P, et al. Effect of intravenous corticosteroids on death within 14 days in 10,008 adults

with clinically significant head injury (MRC CRASH trial): randomized placebo-controlled trial. Lancet 2004;364?9442.

75. Schierhout G, Roberts I. Withdrawn: antiepileptic drugs

for preventing seizures following acute traumatic brain injury.

Cochrane Database Syst Rev 2012;(6):CD000173.

76. Musulin S, Mariani C, Papich M. Diazepam pharmacokinetics after nasal drop and atomized nasal administration in

dogs. J Vet Pharmacol Ther 2011;34(1): 17–24.

77. Kassell N, Hitchon P, Gerk M, et al. Alterations in cerebral blood flow,oxygen metabolism, and electrical activity produced by high-dose thiopental.Neurosurgery 1980;7?598–603.

78. Hayes G. Severe seizures associated with traumatic

brain injury managed bycontrolled hypothermia, pharmacologic

coma, and mechanical ventilation in a dog. J Vet Emerg Crit Care

(San Antonio) 2009;19(6):629–34.

79. Giacino J, Whyte J, Bagiella E, et al. Placebo-controlled

trial of amantadine for severe traumatic brain injury. N Engl J

Med 2012;366?819–26.

80. Hall E. The neuroprotective pharmacology of methylprednisolone. J Neurosurg 1992;76(1):13–22.

81. Parker A, Smith C. Functional recovery from spinal cord

trauma following dexamethasone and chlorpromazine therapy in

dogs. Res Vet Sci 1976;21(2):246–7.

82. Levine J, Levine G, Boozer L, et al. Adverse effects and

outcome associatedwith dexamethasone administration in dogs

with acute thoracolumbar intervertebral disk herniation: 161

cases (2000-2006). J Am Vet Med Assoc 2008;232(3):411–7.

83. Bracken M, Shepard M, Collins W. A randomized, controlled trial of methylprednisolone or naloxone in the treatment

of acute spinal-cord injury. Results of the second national acute

spinal cord injury study. N Engl J Med 1990;322(20):1405–11.

84. Bracken M, Shepard M, Hellenbrand K. Methylprednisolone and neurologicalfunction 1 year after spinal cord injury.

Results of the National Acute Spinal Cord Injury Study. J Neurosurg 1985;63(5):704–13.

85. Bracken M, Shepard M, Holford T. Administration of

methylprednisolone for 24 or

48 hours or tirilazad mesylate for 48 hours in the treatment

of acute spinal cord injury. Results of the Third National Acute

Spinal Cord Injury Randomized Controlled Trial. National Acute

Spinal Cord Injury.JAMA 1997;277(20):1597–604.

86. Nesathurai S. Steroids and spinal cord injury: revisiting

the NASCIS 2 and NASCIS 3 trials. J Trauma Acute Care Surg

1998;45(6):1088–93.

87. Rabinowitz R, Eck J, Harper C. Urgent surgical decompression compared to methylprednisolone for the treatment of

acute spinal cord injury. Spine 2008;33(21):2260–8.

88. Coates J, Sorjonen D, Simpson S, et al. Clinicopathologic effects of a 21-aminosteroid compound (U74389G) and high

dose methylprednisolone onspinal cord function after simulated

spinal cord trauma. Vet Surg 1995;24?128–39.

89. Baltzer W, McMichael MA, Hosgood G. Randomized,

blinded, placebocontrolledclinical trial of N-acetylcysteine in

dogs with spinal cord trauma from acute intervertebral disc

disease. Spine 2008;33(13):1397–402.

90. Bains M, Hall E. Antioxidant therapies in traumatic brain

injury and spinal cord injury. Biochim Biophys Acta

2012;1822(5):675–84.

91. Hall E, Wolf D. A pharmacological analysis of the

pathophysiologicalmechanisms of posttraumatic spinal cord

ischemia. J Neurosurg 1986;64(6):951–61.

92. Ates O, Cayli S, Gurses I. Comparative neuroprotective

effect of sodium channel blockers after experimental spinal cord

injury. J Clin Neurosci 2007;14(7):658–65.

93. Kaptanoglu E, Solaroglu I, Surucu H. Blockade of

sodium channels by phenytoin protects ultrastructure and attenuates lipid peroxidation in experimental spinal cord injury. Acta

Neurochir 2005;147(4):405–12.

94. Hains B, Saab C, Lo A. Sodium channel blockade with

phenytoin protects spinal cord axons, enhances axonal conduction, and improves functional recovery after contusion SCI. Exp

Neurol 2004;188(2):365–77.

95. Schwartz G, Fehlings M. Secondary injury mechanisms

of spinal cord trauma:novel therapeutic approach for the management of secondary pathophysiology with the sodium channel blocker riluzole. Prog Brain Res 2002;137?177–90.

96. Park E, Velumian A, Fehlings M. The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with

an emphasis on the implications for white matter degeneration. J

Neurotrauma 2004;21?754–74.

97. Walters M, Kaste M, Lees K, et al. The AMPA antagonist

ZK 200775 in patients with acute ischaemic stroke: a double-blind, multi-centre, placebo-controlled safety and tolerability study. Cerebrovasc Dis 2005;20?304–9.

98. Chan P. White matter injury in spinal cord ischemia:

protection by AMPA/kainite glutamate receptor antagonism—Editoral comment. Stroke 2000;31?1952.

99. Chen HS, Lipton S. The chemical biology of clinically

tolerated NMDA receptor antagonists. J Neurochem

2006;97?1611–26.

100. Tadie M, D’ Arbigny P, Mathe J, et al. Acute spinal cord

injury. Early care and treatment in a multicenter study with

gacylidine. Soc Neurosci 1999;25?1090.

101. Kwon B, Okon E, Hillyer J. A systematic review of

non-invasive pharmacologic neuroprotective treatments for

acute spinal cord injury. J Neurotrauma 2011;28(8):1545–88.

102. Sturges B, LeCouteur R. Intracranial hypertension. In:

Silverstein D, Hopper K,editors. Small animal critical care medicine. 1st edition. St Louis (MO): ElsevierSaunders; 2009. p.

423–9.

103. Brain Trauma Foundation T, National Association of

State EMS Officials T,National Association of EMTs. Guidelines for

prehospital management of traumatic brain injury. Prehosp

Emerg Care 2007;12(1):1–52.

104. Davis D, Dunford J, Poste J, et al. The impact of hypoxia and hyperventilation on outcome after paramedic rapid

sequence intubation of severely head-injured patients. J Trauma

2004;57(1):1–8.

105. Muizelaar J, Marmarou A, Ward J, et al. Adverse effects

of prolonged hyperventilationin patients with severe head injury;

a randomized clinical trial. J Neurosurg 1991;75(5):731–9.

106. Deutschman C, Konstantinides F, Raup S. Physiological and metabolic response to isolated closed-head injury. Part i:

basal metabolic state: correlations of metabolic and physiological parameters with fasting and stressed controls. J Neurosurg

1986;64?89–98.

107. Jeremitsky E, Omert L, Dunham C, et al. The impact of

hyperglycemia on patients with severe brain injury. J Trauma

2005;58(1):47–50.

108. Syring R, Otto C, Drobatz K. Hyperglycemia in dogs

and cats with head trauma:122 cases (1997-1999). J Am Vet

Med Assoc 2001;218?1124–9.

109. Vespa P, McArthur D, Stein N, et al. Tight glycemic

control increases metabolic distress in traumatic brain injury: a

randomized controlled within subjects trial. Crit Care Med

2012;40(6):1923–9.

110. Green D, O’ Phelan K, Bassin S, et al. Intensive versus

conventional insulin therapy in critically ill neurologic patients.

Neurocrit Care 2010;13(3):299–306.

111. Bilotta F, Caramia R, Cernak I, et al. Intensive insulin

therapy after severe traumatic brain injury: randomized clinical

trial. Neurocrit Care 2008;9(2):159–66.

112. Dewey C. Urinary bladder management. In: Dewey

CW, editor. A practical guide to canine and feline neurology. St

Louis (MO): Elsevier Saunders; 2003. p. 419–26.

113. Bubenik L, Hosgood G. Urinary tract infection in dogs

with thoracolumbar intervertebral disc herniation and urinary

bladder dysfunction managed by manual expression, indwelling

catheterization or intermittent catheterization. Vet Surg

2008;37?791–800.

114. Smarick S, Haskins S, Aldrich J, et al. Incidence of

catheter-associated urinary tract infection among dogs in a

small animal intensive care unit. J Am Vet Med Assoc

2004;224(12):1936–40.

115. Ng I, Lim J, Wong H. Effects of head posture on cerebral hemodynamics its influences on intracranial pressure, cerebral perfusion pressure, and cerebral oxygenation. Neurosurgery

2004;54(3):593–7.

116. Sadaka F, Veremakis C. Therapeutic hypothermia for

the management of intracranial hypertension in severe traumatic

brain injury: a systematic review. Brain Inj 2012;26(7–8):899–908.

117. McCarthy P, Scott L, Ganta C, et al. Hypothermic protection in traumatic brain injury. Pathophysiology 2012;735–57.

118. Wijayatilake D, Shepherd S, Sherren P. Updates in the

management of intracranial pressure in traumatic brain injury.

Curr Opin Anaesthesiol 2012;25(5):540–7.

119. Hutchinson P, Corteen E, Czosnyka M, et al. Decompressive craniectomy intraumatic brain injury: the randomized

multicenter RESCUEicp study. Acta Neurochir 2006;96(S):17–20.

120. La Rosa G, Conti A, Cardali S, et al. Does early decompression improve neurological outcome of spinal cord injured

patients? Appraisal of the literature using a meta-analytical

approach. Spinal Cord 2004;42(9):503–12.

121. Croce M, Bee T, Pritchard E, et al. Does optimal timing

for spine fracture fixation exist? Ann Surg 2001;233(6):851–8.

122. Fehlings M, Perrin R. The timing of surgical intervention in the treatment of spinal cord injury: a systematic review of

recent clinical evidence. Spine 2006;31(11): S28–35.

123. Jeffery ND. Vertebral fracture and luxation in small

animals. Vet Clin North Am Small Anim Pract 2010;40(5):809–28.

124. Denis F. Spinal instability as defined by the three-column spine concept in acute spinal trauma. Clin Orthop Relat Res

1984;189?65–76.

125. Hillman R, Kengeri S, Waters D. Reevaluation of predictive factors for complete recovery in dogs with nonambulatory tetraparesis secondary to cervical disk herniation. J Am Anim

Hosp Assoc 2009;45?155–63.

126. Cherrone K, Dewey C, Coates J, et al. A retrospective

comparison of cervical intervertebral disk disease in nonchondrodystrophic large dogs versus small dogs. J Am Anim Hosp

Assoc 2004;40?316–20.

127. Gage E, Hoerlein B. Hemilaminectomy and dorsal

laminectomy for relieving compressions of the spinal cord in the

dog. J Am Vet Med Assoc 1968;152: 351–9.

128. Seim H 3rd, Prata R. Ventral decompression for the

treatment of cervical disk disease in the dog: a review of 54

cases. J Am Anim Hosp Assoc 1982;18: 233–40.

129. Gill P, Lippincott C, Anderson S. Dorsal laminectomy in

the treatment of cervical intervertebral disk disease in small

dogs: a retrospective study of 30 cases.J Am Anim Hosp Assoc

1996;32?77–80.

130. Felts J, Prata R. Cervical disk disease in the dog: intraforaminal and lateral extrusions. J Am Anim Hosp Assoc

1983;19?755–60.

131. Tanaka H, Nakayama M, Takase K. Usefulness of hemilaminectomy for cervical intervertebral disk disease in small

dogs. J Vet Med Sci 2005;67?679–83.

132. McCartney W. Comparison of recovery times and

complication rates between a modified slanted slot and the

standard ventral slot for the treatment of cervical disc disease in

20 dogs. J Small Anim Pract 2007;48?498–501.

133. Levine J, Levine G, Johnson S, et al. Evaluation of the

success of medical management for presumptive thoracolumbar

intervertebral disk herniation in dogs. Vet Surg 2007;36?482–91.

134. Kent M. Intraaxial spinal cord hemorrhage secondary

to atlantoaxial subluxationin a dog. J Am Anim Hosp Assoc

2010;46(2):132–7.

135. Cerda-Gonzalez S, Olby NJ. Fecal incontinence associated with epidural spinalhematoma and intervertebral disk

extrusion in a dog. J Am Vet Med Assoc 2006;228(2):230–5.

136. Caswell JL, Nykamp SG. Intradural vasculitis and hemorrhage in full sibling Welsh springer spaniels. Can Vet J

2003;44(2):137–9.

137. Tidwell AS, Specht A, Blaeser L, et al. Magnetic resonance imaging features ofextradural hematomas associated with

intervertebral disc herniation in a dog.Vet Radiol Ultrasound

2001;43(4):319–24.

138. Jeffery N, Lakatos A, Franklin R. Autologous olfactory

glial cell transplantation is eliable and safe in naturally occurring

spinal cord injury. J Neurotrauma 2005;22(11):1282–93.

139. Nishida H, Nakayama M, Tanaka H. Safety of autologous bone marrow stromal cell transplantation in dogs with

acute spinal cord injury. Vet Surg 2012;41?437–42.

140. Olby N, Levine J, Harris T. Long-term functional outcome of dogs with severe injuries of the thoracolumbar spinal

cord: 87 cases (1996-2001). J Am VetMed Assoc

2003;222(6):762–9.

141. Dewey CW. Myelopathies: disorders of the spinal cord.

In: Dewey CW, editor. A practical guide to canine and feline neurology. 2nd edition. Ames (IA):Wiley-Blackwell; 2008. p. 323–88.

142. Hawthorne J, Blevins W, Wallace L, et al. Cervical vertebral fractures in 56 dogs:a retrospective study. J Am Anim

Hosp Assoc 1999;35?135–46.

143. Eminaga S, Palus V, Cherubini G. Acute spinal cord

injury in the cat: causes,treatment and prognosis. J Feline Med

Surg 2011;13(11):850–62.spontaneous hyperadrenocorticism in

dogs. Part 2: Adrenal function testing and differentiating tests[J].

The Veterinary Journal, 2019, 252?105343.

第120頁

小動物臨床前沿(神經(jīng)學(xué)???- 上冊)· 腦部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 總第 12 期

- 118 -

橫斷面影像

據(jù)報道,MRI 在檢測大腦異常方面的敏感性為

94.4%,特異性為 95.5%,在腫瘤性和炎癥性疾病的分

類方面也有同樣高度的表現(xiàn)。相比之下,MRI 對腦血

管疾病分類的敏感性僅為 38.9% (Wolff et al., 2012)。

值得注意的是,在一項研究中,多達 7% 的犬 (2/25 例

,一例診斷為 GME,另一例診斷為 MUO) 在 T2W MR

圖 像 中 沒 有 顯 示 異 常 (Talarico and Schatzberg,

2010; Granger et al., 2010),如果沒有組織病理學(xué)證

據(jù),可能會導(dǎo)致類似病例不被納入前瞻性研究或回顧

性 研 究。同 樣 在 CT 成 像 方 面,研 究 顯 示 高 達

14%(5/36 例 犬,未 指 定 具 體 診 斷 ) 未 發(fā) 現(xiàn) 異 常

(Granger et al., 2010)??偟膩碚f,影像學(xué)在識別神經(jīng)

系統(tǒng)檢查懷疑的所有炎癥性異常方面的敏感性仍然

很低 (<60%; Granger et al., 2010)。此外,在一項研究

中,只有 76% 的腦脊液炎性病變病例出現(xiàn) MRI 異常

(19/25 例犬 ; Lamb et al., 2005)。雖然使用橫斷面成

像可能有助于區(qū)分不同類型的特發(fā)性腦膜腦炎

(Talarico and Schatzberg, 2010),但目前沒有關(guān)于使

用 MRI 鑒別組織病理學(xué)證實的 GME、NME 和 NLE 病

例的信息。

一項研究特別關(guān)注了 11 例組織病理學(xué)證實為

GME 的犬的 MRI 檢查結(jié)果 (Cherubini et al.,2006)。

局灶型、多灶型或彌漫型的 T2W 和 FLAIR 高強度信

號分布于前腦、腦干或小腦 ( 圖 1)。異常散在分布于

灰質(zhì)和白質(zhì),在 T1 加權(quán) (T1W) 圖像上表現(xiàn)為不同強

度 信號,增強程度不同。T2W 圖像通常提示白質(zhì)內(nèi)血

管源性水腫,腦膜強化通常不明顯,即使有也很輕微

(Cherubini et al., 2006; Talarico and Schatzberg,

2010; Coates and Jeffery, 2014)。MR 影像病變的分

布 ( 位于灰質(zhì)或白質(zhì) ) 與組織病理學(xué)結(jié)果一致

(Cherubini et al., 2006)。

圖2:組織學(xué)病理診斷為NME的2歲雌性馬爾濟斯犬丘腦間連結(jié)的T2W矢狀面(A)和T2W橫斷面(B) 以及FLAIR橫斷面(C)。T2W和FLAIR像可

見彌漫性前腦高強度信號影響皮質(zhì)灰質(zhì)和皮質(zhì)下白質(zhì),累及額葉、顳葉和頂葉??捎^察到造成腦溝紋理喪失和右側(cè)腦室閉塞的腫物效應(yīng)

。在本例中,腦深部灰質(zhì)、腦干和小腦似乎未受影響(圖片由倫敦大學(xué)皇家獸醫(yī)學(xué)院提供)。

報道的 NME 犬最常見的 MRI 異常是不對稱、多

灶性和位于前腦的病變 ( 更嚴(yán)重的病變位于頂葉和枕

葉 );T2W、FLAIR 高強度信號 ; 通常影響皮質(zhì)灰質(zhì)和

皮質(zhì)下白質(zhì),在 T1W 增強后圖像上灰質(zhì) / 白質(zhì)界限

喪失,實質(zhì)病變的對比增強程度不同 (Flegel et al.,

2008; Young et al., 2009; Talarico and Schatzberg,

2010; 圖 2)。然而,在一項研究中,分別有 4/18 例和

3/18 例發(fā)現(xiàn)小腦和腦干病變 (Young et al., 2009)。腦

膜強化也可出現(xiàn),伴有腫物效應(yīng)和不同程度的腦室增

大 (Coates and Jeffery, 2014)。

在 NLE 中,發(fā)現(xiàn)了多處不對稱的大腦白質(zhì)和腦干

病變 (von Praun et al., 2006)。這些病變在 T2W 和

FLAIR 上表現(xiàn)為典型的高強度信號,常包括多個囊性

壞死區(qū)域。在兩項已報道的研究中,實質(zhì)異常的對比

度增強很少 (Talarico and Schatzberg, 2010; Coates

and Jeffery, 2014)。第三項研究顯示未見腦膜強化和

腫物效應(yīng),但伴有不同程度的腦室增大 (Coates 和

Jeffery, 2014; 圖 3)。

已有報道 57 例犬患有不明病因性腦膜脊髓炎,

包括 3 例經(jīng)組織病理學(xué)證實為 GME 的犬 (Cherubini

et al., 2006; Griffin et al., 2008; Wong et al., 2010;

Cornelis et al., 2017a)。57 例中有 36 例使用不同類型

的影像學(xué)檢查結(jié)果。12 例犬單獨進行了(X 線片)脊髓

造影或計算機斷層掃描 (CT) 的脊髓造影;11 例犬未

發(fā)現(xiàn)異常,1 例犬腹側(cè)硬膜外脊髓受壓 (Wong et al.,

2010)。對 25 例犬進行了 MRI 檢查,其中 3 例犬未發(fā)

現(xiàn)異常,6 例犬出現(xiàn)多灶性邊界不清晰的髓內(nèi) T2W 高

強度信號,增強程度不一,在 16 例犬的髓內(nèi) T2W 高

強度信號和 T1W 等強度信號的異常中,脊髓實質(zhì)病

變和 / 或覆蓋腦膜的不同對比度增強 (Cherubini et

al., 2006; Wong et al., 2010; Cornelis et al., 2017a)。

其他成像方式,包括 NME 的正電子發(fā)射斷層掃

描 (PET), MUO 的氟脫氧葡萄糖 PET (FDG-PET) 和

單體素質(zhì)子磁共振波譜 (1H MRS),以及 GME 的經(jīng)顱

超聲檢查結(jié)果,被研究作為診斷方式 (Eom et al.,

2008; Kang et al., 2010; Carvalho et al., 2012; Carrera et al., 2016)。然而,需要更大樣本量的進一步研究

來評估這些成像方式的臨床用途。

參考文獻:

1. Simpson S, Syring R, Otto C. Severe blunt trauma in

dogs: 235 cases (1997-2003). J Vet Emerg Crit Care (San Antonio) 2009;19(6):588–602.

2. Marioni-Henry K, Vite CH, Newton AL, et al. Prevalence

of diseases of the spinalcord of cats. J Vet Intern Med

2004;18(6):851–8.

3. Fluehmann G, Doherr MG, Jaggy A. Canine neurological

diseases in a referralhospital population between 1989 and

2000 in Switzerland. J Small Anim Pract2006;47(10):582–7.

4. Sande A, West C. Traumatic brain injury: a review of

pathophysiology and management.J Vet Emerg Crit Care (San

Antonio) 2010;20(2):177–90.

5. Dewey C. Emergency management of the head trauma

patient. Vet Clin NorthAm Small Anim Pract 2000;30?207–25.

6. Hopkins A. Head trauma. Vet Clin North Am Small Anim

Pract 1996;26?875–91.

7. Dewey C, Fletcher D. Head trauma management. In:

Dewey C, editor. A practicalguide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell;2008. p. 221–35.

8. Aries M, Czrosynka M, Budohoski K, et al. Continuous

determination of optimalcerebral perfusion pressure in traumatic brain injury. Crit Care Med 2012;40(8):2456–63.

9. Ling G, Marshall S, Moore D. Diagnosis and management of traumatic braininjury. Continuum 2010;16(6):27–40.

10. Kim J, Gean A. Imaging for the diagnosis and management of traumatic braininjury. Neurotherapeutics

2011;8(1):39–53.

11. Tsang K, Whitfield P. Traumatic brain injury: review of

current management strategies.Br J Oral Maxillofac Surg

2012;50?298–308.

12. Proulx J, Dhupa N. Severe brain injury: part I: pathophysiology. CompendContin Educ Vet 1998;20?897–905.

13. Fletcher DJ, Dewey CW. Spinal trauma management.

In: Dewey CW, editor.A practical guide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell; 2008. p.

405–17.

14. Johnson K, Vite C. Spinal cord injury. In: Silverstein D,

Hopper K, editors. Smallanimal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders;2009. p. 419–23.

15. Park EH, White GA, Tieber LM. Mechanisms of injury

and emergency care ofacute spinal cord injury in dogs and cats.

J Vet Emerg Crit Care (San Antonio)2012;22(2):160–78.

16. Olby N. The pathogenesis and treatment of acute

spinal cord injuries in dogs.Vet Clin North Am Small Anim Pract

2010;40(5):791–807.

17. Fletcher D, Syring R. Traumatic brain injury. In: Silverstein D, Hopper K, editors.Small animal critical care medicine.

1st edition. St Louis (MO): Elsevier Saunders;2009. p. 658–62.

18. Leonard SE, Kirby R. The role of glutamate, calcium

and magnesium in secondarybrain injury. J Vet Emerg Crit Care

2002;12(1):17–32.

19. McMichael M, Moore R. Ischemia and reperfusion

injury pathophysiology, part I.J Vet Emerg Crit Care (San Antonio) 2004;14(4):231–41.

20. Oyinbo C. Secondary injury mechanisms in traumatic

spinal cord injury: anugget of this multiply cascade. Acta Neurobiol Exp 2011;71(2):281–99.

21. Tator C, Fehlings M. Review of the secondary injury

theory of acute spinal cordtrauma with emphasis on vascular

mechanisms. J Neurosurg 1991;75(1):15–26.

22. Dooney N, Dagal A. Anesthetic considerations in acute

spinal cord trauma. Int JCrit Illn Inj Sci 2011;1(1):36–43.

23. Armitage-Chan E, Wetmore L, Chan D. Anesthetic

management of the headtrauma patient. J Vet Emerg Crit Care

(San Antonio) 2007;17(1):5–14.

24. Shores A. Craniocerebral trauma. In: Kirk R, editor. Current veterinary therapy X.X. Philadelphia: WB Saunders; 1983. p.

847–54.

25. Platt S, Radaelli S, McDonnell J. The prognostic value of

the Modified GlasgowComa Scale in head trauma in gods. J Vet

Intern Med 2001;15(6):581–4.

26. Levine GJ, Levine JM, Budke CM, et al. Description and

repeatability of anewly developed spinal cord injury scale for

dogs. Prev Vet Med 2009;89(1–2):121–7.

27. Olby N, De Risio L, Munana K, et al. Development of a

functional scoring systemin dogs with acute spinal cord injuries.

Am J Vet Res 2001;62(10):1624–8.

28. Smith P, Jeffery N. Spinal shock—comparative aspects

and clinical relevance.J Vet Intern Med 2005;19?788–93.

29. Boysen S, Rozanski E, Tidwell A, et al. Evaluation of a

focused assessment with sonography for trauma protocol to

detect free abdominal fluid in dogs involved in motor vehicle

accidents. J Am Vet Med Assoc 2004;225(8):1198–204.

30. Lisciandro GR. Abdominal and thoracic focused assessment with sonographyfor trauma, triage, and monitoring in small

animals. J Vet Emerg Crit Care(San Antonio) 2011;21(2):104–22.

31. Kinns J, Mai W, Seiler G, et al. Radiographic sensitivity

and negative predictive value for acute canine spinal trauma. Vet

Radiol Ultrasound 2006;47(6):563–70.

32. Vitale C, Coates J. Acute spinal injury. Compendium

Standards of Care: Emergencyand Critical Care Medicine

2007;9(7):1–11.

33. Lamb CR, Nicholls A, Targett M, et al. Accuracy of

survey radiographic diagnosis of intervertebral disc protrusion in

dogs. Vet Radiol Ultrasound 2002;43(3):222–8.

34. Brisson BA. Intervertebral disc disease in dogs. Vet Clin

North Am Small Anim Pract 2010;40(5):829–58.

35. Israel SK, Levine JM, Kerwin SC, et al. The relative sensitivity of computed tomography and myelography for identification of thoracolumbar intervertebral disk herniations in dogs. Vet

Radiol Ultrasound 2009;50(3):247–52.

36. Olby N, Dyce J, Houlton J. Correlation of plain radiographic and lumbar myelographic findings with surgical findings

in thoracolumbar disc disease. J SmallAnim Pract

1994;35(7):345–50.

37. Griffin J, Levine J, Kerwin S. Canine thoracolumbar

intervertebral disk disease:pathophysiology, neurologic examination, and emergency medical therapy.Compend Contin Educ

Vet 2009;31(3):E1–13.

38. Lewis D, Hosgood G. Complications associated with

the use of iohexol for myelographyof the cervical vertebral

column in dogs: 66 cases (1988-1990). J AmVet Med Assoc

1992;200(9):1381–4.

39. Barone G, Ziemer L, Shofer F, et al. Risk factors associated with the developmentof seizures after use of iohexol for

myelography in dogs: 182 cases(1998). J Am Vet Med Assoc

2002;220(10):1499–502.

40. Johnson P, Beltran E, Dennis R, et al. Magnetic resonance imaging characteristics of suspected vertebral instability

associated with fracture or subluxation in eleven dogs. Vet

Radiol Ultrasound 2012;53(5):552–9.

41. Rozanski EA, Rondeau MP. Respiratory pharmacotherapy in emergency and critical care medicine. Vet Clin North Am

Small Anim Pract 2002;32(5):1073–86.

42. Mazzaferro E. Oxygen therapy. In: Silverstein D, Hopper

K, editors. Small animal critical caremedicine. 1stedition. StLouis(MO): Elsevier Saunders; 2009.p. 78–81.

43. Hopper K. Basic mechanical ventilation. In: Silverstein

D, Hopper K, editors. Small animal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders; 2009. p. 900–4.

44. Zhuang J, Shackford S, Schmoker J, et al. Colloid infusion after brain injury: an effect on intracranial pressure, cerebral

blood flow, and oxygen delivery. Crit Care Med

1995;23(1):140–8.

45. Wade C, Grady J, Kramer G, et al. Individual patient

cohort analysis of the efficacy of hypertonic saline/dextran in

patients with traumatic brain injury and hypotension. J Trauma

1997;42?561–5.

46. Vassar M, Perry C, Gannaway W, et al. Analysis of

potential risks associated with 7.5% sodium chloride resuscitation of traumatic shock. Arch Surg 1990;124: 1309–15.

47. Vassar M, Perry C, Gannaway W, et al. 7.5% sodium

chloride/dextran for resuscitation of trauma patients undergoing

helicopter transport. Arch Surg 1991;126: 1065–72.

48. Vassar M, Perry C, Holcroft J. Prehospital resuscitation

of hypotensive trauma patients with 7.5% NaCl versus 7.5% NaCl

with added dextran: a controlled trial. J Trauma 1993;34?622–32.

49. Vassar M, Fisher R, O’ Brien P, et al. A multicenter trial

for resuscitation of injured patients with 7.5% sodium chloride.

Arch Surg 1993;128?1003–11.

50. Cooper J, Myles P, McDermott F, et al. Prehospital

hypertonic saline resuscitation of patients with hypotension and

severe traumatic brain injury. JAMA 2004;291?1350–7.

51. Roberts D, Hall R, Kramer A. Sedation for critically ill

adults with severe traumatic brain injury: a systematic review of

randomized controlled trials. CritCare Med 2012;39(12):2743–51.

52. Sperry R, Bailey P, Reichman M, et al. Fentanyl and

sulfentanil increase intracranial pressure in head trauma patients.

Anesthesiology 1992;77?416–20.

53. Lauer K, Connolly L, Schmeling W. Opioid sedation

does not alter intracranial pressure in head injured patients. Can

J Anaesth 1997;44?929–33.

54. Albanese J, Viviand X, Potie F, et al. Sulfentanil, fentanyl,

and alfentanil in head trauma patients: a study on cerebral

hemodynamics. Crit Care Med 1999;27?407–11.

55. de Nadal M, Munar F, Poca M, et al. Cerebral hemodynamic effects of morphine and fentanyl in patients with severe

head injury: absence of correlation to cerebral autoregulation.

Anesthesiology 2000;92?11–9.

56. Hansen B. Acute pain management. Vet Clin North Am

Small Anim Pract 2000;30(4):899–916.

57. Pascoe P. Opioid analgesics. Vet Clin North Am Small

Anim Pract 2000;30(4):757–69.

58. Keegan R, Green S, Bagley R, et al. Effects of medetomidine administration on intracranial pressure and cardiovascular variables of isoflurane-anesthetized dogs. Am J Vet Res

1996;56(2):193–8.

59. Treggiari M, Schultz N, Yanez N, et al. Role of intracranial pressure values and patterns in predicting outcome of traumatic brain injury: a systematic review. Neurocrit Care

2007;6?104–12.

60. Weed L, McKibbon P. Pressure changes in the cerebrospinal fluid following intravenous injection of solutions of various

concentrations. Am J Phys 1919;48?512–30.

61. Ropper A. Hyperosmolar therapy for raised intracranial

pressure. N Engl J Med 2012;367(8):746–52.

62. Brain Trauma Foundation, American Association of

Neurological Surgeons,Congress of Neurological Surgeons.

Guidelines for the management of severetraumatic brain injury. J

Neurotrauma 2007;24(1):S1–106.

63. Fink M. Osmotherapy for intracranial hypertension:

mannitol versus hypertonic saline. Continuum

2012;18(3):640–54.

64. Kaufmann A, Cardoso E. Aggravation of vasogenic

cerebral edema by multipledose mannitol. J Neurosurg

1992;77(4):584–9.

65. McManus M, Soriano S. Rebound swelling of astroglial

cells exposed to hypertonic mannitol. Anesthesiology

1998;88(6):1586–91.

66. Oddo M, Levine J, Frangos S, et al. Effect of mannitol

and hypertonic salineon cerebral oxygenation in patients with

severe traumatic brain injury and refractoryintracranial hypertension. J Neurol Neurosurg Psychiatr 2009;80(8):916–20.

67. Aiyagari V, Deibert E, Diringer M. Hypernatremia in the

neurologic intensive careunit: how high is too high? J Crit Care

2006;21(2):163–72.

68. Battison C, Andrews P, Graham C, et al. Randomized,

controlled trial on theeffect of a 20% mannitol solution and a

7.5% saline/6% dextran solution onincreased intracranial pressure after brain injury. Crit Care Med 2005;33(1):196–202.

69. Francony C, Fauvage B, Falcon D, et al. Equimolar

doses of mannitol and hypertonicsaline in the treatment of intracranial pressure. Crit Care Med 2008;36(3):795–800.

70. Zeng H, Wang Q, Deng Y, et al. A comparative study on

the efficacy of 10%hypertonic saline and equal volume of 20%

mannitol in the treatment of experimentallyinduced cerebral

edema in adult rats. BMC Neurosci 2010;11?153.

71. da Silva J, de Lima F, Valenca M, et al. Hypertonic saline

more efficacious thanmannitol in lethal intracranial hypertension

model. Neurol Res 2010;32(2):139–43.

72. Todd M, Cutkomp J, Brian J. Influence of mannitol and

furosemide, alone and incombination, on brain water content

after fluid percussion injury. Anesthesiology2006;105?1176–80.

73. Edwards P, Arango M, Balica L, et al. Final results of

MRC CRASH, a randomized placebo-controlled trial of intravenous corticosteroids in adults with headinjury- outcomes at 6

months. Lancet 2005;365(9475):1957–9.

74. Roberts I, Yates D, Sandercock P, et al. Effect of intravenous corticosteroids on death within 14 days in 10,008 adults

with clinically significant head injury (MRC CRASH trial): randomized placebo-controlled trial. Lancet 2004;364?9442.

75. Schierhout G, Roberts I. Withdrawn: antiepileptic drugs

for preventing seizures following acute traumatic brain injury.

Cochrane Database Syst Rev 2012;(6):CD000173.

76. Musulin S, Mariani C, Papich M. Diazepam pharmacokinetics after nasal drop and atomized nasal administration in

dogs. J Vet Pharmacol Ther 2011;34(1): 17–24.

77. Kassell N, Hitchon P, Gerk M, et al. Alterations in cerebral blood flow,oxygen metabolism, and electrical activity produced by high-dose thiopental.Neurosurgery 1980;7?598–603.

78. Hayes G. Severe seizures associated with traumatic

brain injury managed bycontrolled hypothermia, pharmacologic

coma, and mechanical ventilation in a dog. J Vet Emerg Crit Care

(San Antonio) 2009;19(6):629–34.

79. Giacino J, Whyte J, Bagiella E, et al. Placebo-controlled

trial of amantadine for severe traumatic brain injury. N Engl J

Med 2012;366?819–26.

80. Hall E. The neuroprotective pharmacology of methylprednisolone. J Neurosurg 1992;76(1):13–22.

81. Parker A, Smith C. Functional recovery from spinal cord

trauma following dexamethasone and chlorpromazine therapy in

dogs. Res Vet Sci 1976;21(2):246–7.

82. Levine J, Levine G, Boozer L, et al. Adverse effects and

outcome associatedwith dexamethasone administration in dogs

with acute thoracolumbar intervertebral disk herniation: 161

cases (2000-2006). J Am Vet Med Assoc 2008;232(3):411–7.

83. Bracken M, Shepard M, Collins W. A randomized, controlled trial of methylprednisolone or naloxone in the treatment

of acute spinal-cord injury. Results of the second national acute

spinal cord injury study. N Engl J Med 1990;322(20):1405–11.

84. Bracken M, Shepard M, Hellenbrand K. Methylprednisolone and neurologicalfunction 1 year after spinal cord injury.

Results of the National Acute Spinal Cord Injury Study. J Neurosurg 1985;63(5):704–13.

85. Bracken M, Shepard M, Holford T. Administration of

methylprednisolone for 24 or

48 hours or tirilazad mesylate for 48 hours in the treatment

of acute spinal cord injury. Results of the Third National Acute

Spinal Cord Injury Randomized Controlled Trial. National Acute

Spinal Cord Injury.JAMA 1997;277(20):1597–604.

86. Nesathurai S. Steroids and spinal cord injury: revisiting

the NASCIS 2 and NASCIS 3 trials. J Trauma Acute Care Surg

1998;45(6):1088–93.

87. Rabinowitz R, Eck J, Harper C. Urgent surgical decompression compared to methylprednisolone for the treatment of

acute spinal cord injury. Spine 2008;33(21):2260–8.

88. Coates J, Sorjonen D, Simpson S, et al. Clinicopathologic effects of a 21-aminosteroid compound (U74389G) and high

dose methylprednisolone onspinal cord function after simulated

spinal cord trauma. Vet Surg 1995;24?128–39.

89. Baltzer W, McMichael MA, Hosgood G. Randomized,

blinded, placebocontrolledclinical trial of N-acetylcysteine in

dogs with spinal cord trauma from acute intervertebral disc

disease. Spine 2008;33(13):1397–402.

90. Bains M, Hall E. Antioxidant therapies in traumatic brain

injury and spinal cord injury. Biochim Biophys Acta

2012;1822(5):675–84.

91. Hall E, Wolf D. A pharmacological analysis of the

pathophysiologicalmechanisms of posttraumatic spinal cord

ischemia. J Neurosurg 1986;64(6):951–61.

92. Ates O, Cayli S, Gurses I. Comparative neuroprotective

effect of sodium channel blockers after experimental spinal cord

injury. J Clin Neurosci 2007;14(7):658–65.

93. Kaptanoglu E, Solaroglu I, Surucu H. Blockade of

sodium channels by phenytoin protects ultrastructure and attenuates lipid peroxidation in experimental spinal cord injury. Acta

Neurochir 2005;147(4):405–12.

94. Hains B, Saab C, Lo A. Sodium channel blockade with

phenytoin protects spinal cord axons, enhances axonal conduction, and improves functional recovery after contusion SCI. Exp

Neurol 2004;188(2):365–77.

95. Schwartz G, Fehlings M. Secondary injury mechanisms

of spinal cord trauma:novel therapeutic approach for the management of secondary pathophysiology with the sodium channel blocker riluzole. Prog Brain Res 2002;137?177–90.

96. Park E, Velumian A, Fehlings M. The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with

an emphasis on the implications for white matter degeneration. J

Neurotrauma 2004;21?754–74.

97. Walters M, Kaste M, Lees K, et al. The AMPA antagonist

ZK 200775 in patients with acute ischaemic stroke: a double-blind, multi-centre, placebo-controlled safety and tolerability study. Cerebrovasc Dis 2005;20?304–9.

98. Chan P. White matter injury in spinal cord ischemia:

protection by AMPA/kainite glutamate receptor antagonism—Editoral comment. Stroke 2000;31?1952.

99. Chen HS, Lipton S. The chemical biology of clinically

tolerated NMDA receptor antagonists. J Neurochem

2006;97?1611–26.

100. Tadie M, D’ Arbigny P, Mathe J, et al. Acute spinal cord

injury. Early care and treatment in a multicenter study with

gacylidine. Soc Neurosci 1999;25?1090.

101. Kwon B, Okon E, Hillyer J. A systematic review of

non-invasive pharmacologic neuroprotective treatments for

acute spinal cord injury. J Neurotrauma 2011;28(8):1545–88.

102. Sturges B, LeCouteur R. Intracranial hypertension. In:

Silverstein D, Hopper K,editors. Small animal critical care medicine. 1st edition. St Louis (MO): ElsevierSaunders; 2009. p.

423–9.

103. Brain Trauma Foundation T, National Association of

State EMS Officials T,National Association of EMTs. Guidelines for

prehospital management of traumatic brain injury. Prehosp

Emerg Care 2007;12(1):1–52.

104. Davis D, Dunford J, Poste J, et al. The impact of hypoxia and hyperventilation on outcome after paramedic rapid

sequence intubation of severely head-injured patients. J Trauma

2004;57(1):1–8.

105. Muizelaar J, Marmarou A, Ward J, et al. Adverse effects

of prolonged hyperventilationin patients with severe head injury;

a randomized clinical trial. J Neurosurg 1991;75(5):731–9.

106. Deutschman C, Konstantinides F, Raup S. Physiological and metabolic response to isolated closed-head injury. Part i:

basal metabolic state: correlations of metabolic and physiological parameters with fasting and stressed controls. J Neurosurg

1986;64?89–98.

107. Jeremitsky E, Omert L, Dunham C, et al. The impact of

hyperglycemia on patients with severe brain injury. J Trauma

2005;58(1):47–50.

108. Syring R, Otto C, Drobatz K. Hyperglycemia in dogs

and cats with head trauma:122 cases (1997-1999). J Am Vet

Med Assoc 2001;218?1124–9.

109. Vespa P, McArthur D, Stein N, et al. Tight glycemic

control increases metabolic distress in traumatic brain injury: a

randomized controlled within subjects trial. Crit Care Med

2012;40(6):1923–9.

110. Green D, O’ Phelan K, Bassin S, et al. Intensive versus

conventional insulin therapy in critically ill neurologic patients.

Neurocrit Care 2010;13(3):299–306.

111. Bilotta F, Caramia R, Cernak I, et al. Intensive insulin

therapy after severe traumatic brain injury: randomized clinical

trial. Neurocrit Care 2008;9(2):159–66.

112. Dewey C. Urinary bladder management. In: Dewey

CW, editor. A practical guide to canine and feline neurology. St

Louis (MO): Elsevier Saunders; 2003. p. 419–26.

113. Bubenik L, Hosgood G. Urinary tract infection in dogs

with thoracolumbar intervertebral disc herniation and urinary

bladder dysfunction managed by manual expression, indwelling

catheterization or intermittent catheterization. Vet Surg

2008;37?791–800.

114. Smarick S, Haskins S, Aldrich J, et al. Incidence of

catheter-associated urinary tract infection among dogs in a

small animal intensive care unit. J Am Vet Med Assoc

2004;224(12):1936–40.

115. Ng I, Lim J, Wong H. Effects of head posture on cerebral hemodynamics its influences on intracranial pressure, cerebral perfusion pressure, and cerebral oxygenation. Neurosurgery

2004;54(3):593–7.

116. Sadaka F, Veremakis C. Therapeutic hypothermia for

the management of intracranial hypertension in severe traumatic

brain injury: a systematic review. Brain Inj 2012;26(7–8):899–908.

117. McCarthy P, Scott L, Ganta C, et al. Hypothermic protection in traumatic brain injury. Pathophysiology 2012;735–57.

118. Wijayatilake D, Shepherd S, Sherren P. Updates in the

management of intracranial pressure in traumatic brain injury.

Curr Opin Anaesthesiol 2012;25(5):540–7.

119. Hutchinson P, Corteen E, Czosnyka M, et al. Decompressive craniectomy intraumatic brain injury: the randomized

multicenter RESCUEicp study. Acta Neurochir 2006;96(S):17–20.

120. La Rosa G, Conti A, Cardali S, et al. Does early decompression improve neurological outcome of spinal cord injured

patients? Appraisal of the literature using a meta-analytical

approach. Spinal Cord 2004;42(9):503–12.

121. Croce M, Bee T, Pritchard E, et al. Does optimal timing

for spine fracture fixation exist? Ann Surg 2001;233(6):851–8.

122. Fehlings M, Perrin R. The timing of surgical intervention in the treatment of spinal cord injury: a systematic review of

recent clinical evidence. Spine 2006;31(11): S28–35.

123. Jeffery ND. Vertebral fracture and luxation in small

animals. Vet Clin North Am Small Anim Pract 2010;40(5):809–28.

124. Denis F. Spinal instability as defined by the three-column spine concept in acute spinal trauma. Clin Orthop Relat Res

1984;189?65–76.

125. Hillman R, Kengeri S, Waters D. Reevaluation of predictive factors for complete recovery in dogs with nonambulatory tetraparesis secondary to cervical disk herniation. J Am Anim

Hosp Assoc 2009;45?155–63.

126. Cherrone K, Dewey C, Coates J, et al. A retrospective

comparison of cervical intervertebral disk disease in nonchondrodystrophic large dogs versus small dogs. J Am Anim Hosp

Assoc 2004;40?316–20.

127. Gage E, Hoerlein B. Hemilaminectomy and dorsal

laminectomy for relieving compressions of the spinal cord in the

dog. J Am Vet Med Assoc 1968;152: 351–9.

128. Seim H 3rd, Prata R. Ventral decompression for the

treatment of cervical disk disease in the dog: a review of 54

cases. J Am Anim Hosp Assoc 1982;18: 233–40.

129. Gill P, Lippincott C, Anderson S. Dorsal laminectomy in

the treatment of cervical intervertebral disk disease in small

dogs: a retrospective study of 30 cases.J Am Anim Hosp Assoc

1996;32?77–80.

130. Felts J, Prata R. Cervical disk disease in the dog: intraforaminal and lateral extrusions. J Am Anim Hosp Assoc

1983;19?755–60.

131. Tanaka H, Nakayama M, Takase K. Usefulness of hemilaminectomy for cervical intervertebral disk disease in small

dogs. J Vet Med Sci 2005;67?679–83.

132. McCartney W. Comparison of recovery times and

complication rates between a modified slanted slot and the

standard ventral slot for the treatment of cervical disc disease in

20 dogs. J Small Anim Pract 2007;48?498–501.

133. Levine J, Levine G, Johnson S, et al. Evaluation of the

success of medical management for presumptive thoracolumbar

intervertebral disk herniation in dogs. Vet Surg 2007;36?482–91.

134. Kent M. Intraaxial spinal cord hemorrhage secondary

to atlantoaxial subluxationin a dog. J Am Anim Hosp Assoc

2010;46(2):132–7.

135. Cerda-Gonzalez S, Olby NJ. Fecal incontinence associated with epidural spinalhematoma and intervertebral disk

extrusion in a dog. J Am Vet Med Assoc 2006;228(2):230–5.

136. Caswell JL, Nykamp SG. Intradural vasculitis and hemorrhage in full sibling Welsh springer spaniels. Can Vet J

2003;44(2):137–9.

137. Tidwell AS, Specht A, Blaeser L, et al. Magnetic resonance imaging features ofextradural hematomas associated with

intervertebral disc herniation in a dog.Vet Radiol Ultrasound

2001;43(4):319–24.

138. Jeffery N, Lakatos A, Franklin R. Autologous olfactory

glial cell transplantation is eliable and safe in naturally occurring

spinal cord injury. J Neurotrauma 2005;22(11):1282–93.

139. Nishida H, Nakayama M, Tanaka H. Safety of autologous bone marrow stromal cell transplantation in dogs with

acute spinal cord injury. Vet Surg 2012;41?437–42.

140. Olby N, Levine J, Harris T. Long-term functional outcome of dogs with severe injuries of the thoracolumbar spinal

cord: 87 cases (1996-2001). J Am VetMed Assoc

2003;222(6):762–9.

141. Dewey CW. Myelopathies: disorders of the spinal cord.

In: Dewey CW, editor. A practical guide to canine and feline neurology. 2nd edition. Ames (IA):Wiley-Blackwell; 2008. p. 323–88.

142. Hawthorne J, Blevins W, Wallace L, et al. Cervical vertebral fractures in 56 dogs:a retrospective study. J Am Anim

Hosp Assoc 1999;35?135–46.

143. Eminaga S, Palus V, Cherubini G. Acute spinal cord

injury in the cat: causes,treatment and prognosis. J Feline Med

Surg 2011;13(11):850–62.spontaneous hyperadrenocorticism in

dogs. Part 2: Adrenal function testing and differentiating tests[J].

The Veterinary Journal, 2019, 252?105343.

第121頁

小動物臨床前沿(神經(jīng)學(xué)???- 上冊)· 腦部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 總第 12 期

- 119 -

圖3:組織學(xué)病理診斷為NLE的4歲雄性已絕育拉布拉多犬丘腦間連結(jié)的T2W矢狀面(A)和T2W橫斷面(B) 和FLAIR橫斷面(C)。注意多發(fā)性高

強度信號,主要影響了腦白質(zhì)和腦干。囊性區(qū)域遍布前腦白質(zhì)(圖片由倫敦大學(xué)皇家獸醫(yī)學(xué)院提供)。

橫斷面影像

據(jù)報道,MRI 在檢測大腦異常方面的敏感性為

94.4%,特異性為 95.5%,在腫瘤性和炎癥性疾病的分

類方面也有同樣高度的表現(xiàn)。相比之下,MRI 對腦血

管疾病分類的敏感性僅為 38.9% (Wolff et al., 2012)。

值得注意的是,在一項研究中,多達 7% 的犬 (2/25 例

,一例診斷為 GME,另一例診斷為 MUO) 在 T2W MR

圖 像 中 沒 有 顯 示 異 常 (Talarico and Schatzberg,

2010; Granger et al., 2010),如果沒有組織病理學(xué)證

據(jù),可能會導(dǎo)致類似病例不被納入前瞻性研究或回顧

性 研 究。同 樣 在 CT 成 像 方 面,研 究 顯 示 高 達

14%(5/36 例 犬,未 指 定 具 體 診 斷 ) 未 發(fā) 現(xiàn) 異 常

(Granger et al., 2010)??偟膩碚f,影像學(xué)在識別神經(jīng)

系統(tǒng)檢查懷疑的所有炎癥性異常方面的敏感性仍然

很低 (<60%; Granger et al., 2010)。此外,在一項研究

中,只有 76% 的腦脊液炎性病變病例出現(xiàn) MRI 異常

(19/25 例犬 ; Lamb et al., 2005)。雖然使用橫斷面成

像可能有助于區(qū)分不同類型的特發(fā)性腦膜腦炎

(Talarico and Schatzberg, 2010),但目前沒有關(guān)于使

用 MRI 鑒別組織病理學(xué)證實的 GME、NME 和 NLE 病

例的信息。

一項研究特別關(guān)注了 11 例組織病理學(xué)證實為

GME 的犬的 MRI 檢查結(jié)果 (Cherubini et al.,2006)。

局灶型、多灶型或彌漫型的 T2W 和 FLAIR 高強度信

號分布于前腦、腦干或小腦 ( 圖 1)。異常散在分布于

灰質(zhì)和白質(zhì),在 T1 加權(quán) (T1W) 圖像上表現(xiàn)為不同強

度 信號,增強程度不同。T2W 圖像通常提示白質(zhì)內(nèi)血

管源性水腫,腦膜強化通常不明顯,即使有也很輕微

(Cherubini et al., 2006; Talarico and Schatzberg,

2010; Coates and Jeffery, 2014)。MR 影像病變的分

布 ( 位于灰質(zhì)或白質(zhì) ) 與組織病理學(xué)結(jié)果一致

(Cherubini et al., 2006)。

報道的 NME 犬最常見的 MRI 異常是不對稱、多

灶性和位于前腦的病變 ( 更嚴(yán)重的病變位于頂葉和枕

葉 );T2W、FLAIR 高強度信號 ; 通常影響皮質(zhì)灰質(zhì)和

皮質(zhì)下白質(zhì),在 T1W 增強后圖像上灰質(zhì) / 白質(zhì)界限

喪失,實質(zhì)病變的對比增強程度不同 (Flegel et al.,

2008; Young et al., 2009; Talarico and Schatzberg,

2010; 圖 2)。然而,在一項研究中,分別有 4/18 例和

3/18 例發(fā)現(xiàn)小腦和腦干病變 (Young et al., 2009)。腦

膜強化也可出現(xiàn),伴有腫物效應(yīng)和不同程度的腦室增

大 (Coates and Jeffery, 2014)。

在 NLE 中,發(fā)現(xiàn)了多處不對稱的大腦白質(zhì)和腦干

病變 (von Praun et al., 2006)。這些病變在 T2W 和

FLAIR 上表現(xiàn)為典型的高強度信號,常包括多個囊性

壞死區(qū)域。在兩項已報道的研究中,實質(zhì)異常的對比

度增強很少 (Talarico and Schatzberg, 2010; Coates

and Jeffery, 2014)。第三項研究顯示未見腦膜強化和

腫物效應(yīng),但伴有不同程度的腦室增大 (Coates 和

Jeffery, 2014; 圖 3)。

已有報道 57 例犬患有不明病因性腦膜脊髓炎,

包括 3 例經(jīng)組織病理學(xué)證實為 GME 的犬 (Cherubini

et al., 2006; Griffin et al., 2008; Wong et al., 2010;

Cornelis et al., 2017a)。57 例中有 36 例使用不同類型

的影像學(xué)檢查結(jié)果。12 例犬單獨進行了(X 線片)脊髓

造影或計算機斷層掃描 (CT) 的脊髓造影;11 例犬未

發(fā)現(xiàn)異常,1 例犬腹側(cè)硬膜外脊髓受壓 (Wong et al.,

2010)。對 25 例犬進行了 MRI 檢查,其中 3 例犬未發(fā)

現(xiàn)異常,6 例犬出現(xiàn)多灶性邊界不清晰的髓內(nèi) T2W 高

強度信號,增強程度不一,在 16 例犬的髓內(nèi) T2W 高

強度信號和 T1W 等強度信號的異常中,脊髓實質(zhì)病

變和 / 或覆蓋腦膜的不同對比度增強 (Cherubini et

al., 2006; Wong et al., 2010; Cornelis et al., 2017a)。

其他成像方式,包括 NME 的正電子發(fā)射斷層掃

描 (PET), MUO 的氟脫氧葡萄糖 PET (FDG-PET) 和

單體素質(zhì)子磁共振波譜 (1H MRS),以及 GME 的經(jīng)顱

超聲檢查結(jié)果,被研究作為診斷方式 (Eom et al.,

2008; Kang et al., 2010; Carvalho et al., 2012; Carrera et al., 2016)。然而,需要更大樣本量的進一步研究

來評估這些成像方式的臨床用途。

腦脊液分析

腦脊液細(xì)胞增多(pleocytosis),定義為腦脊液

中有核細(xì)胞總數(shù)的增加(total nucleated cell count,

TNCC;參考范圍為<5個白細(xì)胞(WBC)/mL),是

假設(shè)性MUO診斷標(biāo)準(zhǔn)之一(Granger et al., 2010)。然

而,腦脊液細(xì)胞學(xué)異常的患病率在不同的文獻中差

異很大,可能是由于采用的方法和納入標(biāo)準(zhǔn)的主要

差異。此外,3-57%的MUO病患的腦脊液細(xì)胞學(xué)正

常(Menaut et al., 2008; Granger et al., 2010),這與

一項GME和NE犬的研究結(jié)果類似,此研究的CSF分

析顯示,16%的GME犬和12.5%的NE犬的細(xì)胞計數(shù)

正常(Granger et al., 2010)。白蛋白-細(xì)胞學(xué)不匹配

(Albumino-cytological dissociation)可發(fā)生在細(xì)

胞計數(shù)正常和腦脊液蛋白濃度增加的情況下(Tipold,

1995; Granger et al., 2010)。GME組和MUO組以淋

巴細(xì)胞為主,分別占42%和71%,NE組以單核細(xì)胞

和淋巴細(xì)胞為主;各組中<10%的病例中,中性粒細(xì)

胞是主要的細(xì)胞類型(Granger et al., 2010)。綜上所

述,大多數(shù)病例出現(xiàn)腦脊液單核細(xì)胞數(shù)量增多,因

此,>50%單核細(xì)胞數(shù)量增多已被建議納入MUO犬

的診斷標(biāo)準(zhǔn)(Smith et al., 2009; Granger et al., 2010;

Lowrie et al., 2013; Coates and Jeffery, 2014)。然

而,MRI異常提示顱內(nèi)壓升高但未進行腦脊液收集

的犬通常被排除在腦脊液研究之外,這可能造成所

研究的病例群體疾病嚴(yán)重程度較輕的傾向(Cornelis

et al. 2016a)。

在 51 例報道的不明原因的腦膜脊髓炎犬中,只

有 22 例 犬 的 腦 脊 液 發(fā) 現(xiàn) (Cherubini et al., 2006;

Griffin et al., 2008; Cornelis et al., 2017a)。雖然所有

的犬都出現(xiàn)了腦脊液細(xì)胞增多,但由于其中 21 例犬

的腦脊液中存在炎癥,因此無法得出明確的結(jié)論

(Cornelis et al., 2017a)。對 19 例犬進行了總蛋白檢

測,發(fā) 現(xiàn) 17 例 犬 的 總 蛋 白 濃 度 升 高 ( 范 圍 為

31-1630 mg/dL;Cherubini et al., 2006; Cornelis et

al., 2017a)。

活組織檢查程序

立體定向 CT 引導(dǎo)下的腦活檢程序 (Koblik et al.,

1999) 和通過迷你鉆孔進行的徒手活檢 (Flegel et al.,

2012) 都曾在炎癥性中樞神經(jīng)系統(tǒng)疾病的犬中有描

述過,但這些都不容易在臨床上應(yīng)用。診斷準(zhǔn)確度為

82% (n = 17; Flegel et al., 2012) 到 100% (n = 3;

Koblik et al., 1999),但是由于相對較小的樣本量,這

些結(jié)果應(yīng)謹(jǐn)慎解釋。在手術(shù)過程中,沒有一例犬死亡。

12-29% 的犬出現(xiàn)并發(fā)癥,包括短暫鼻出血、神經(jīng)癥

狀短暫加重、遲鈍漸進性發(fā)展至昏迷、藥物無法控制

的抽搐發(fā)作、四肢輕癱、半身偏癱、共濟失調(diào)和意識性

本 體 感 覺 喪 失 (Koblik et al.,1999; Flegel et al.,

2012)。大多數(shù)癥狀在 3-14 天內(nèi)得到緩解 (Flegel et

al., 2012)。

治療

雖然理想的臨床試驗應(yīng)該是隨機的、安慰劑對照

的、雙盲的、前瞻性的研究,但人們普遍認(rèn)為使用安慰

劑對照治療組是不道德的,因為患有 MUO 的犬不經(jīng)

治療的結(jié)果會很差 (Coates et al., 2007; Smith et al.,

2009; Coates and Jeffery, 2014)。歷史上使用了不同

的納入標(biāo)準(zhǔn),而且由于在一些研究中,免疫介導(dǎo)藥物

只在已知傳染病檢測結(jié)果后才開始,導(dǎo)致治療結(jié)果延

遲,治療反應(yīng)和結(jié)果難以比較 (Adamo et al., 2007;

Coates et al., 2007; Wong et al., 2010)。此外,在診斷

數(shù)小時內(nèi)死亡的犬 ( 無論是否進行免疫抑制治療 ) 有

時會被排除在登記或進一步分析之外,這必然會導(dǎo)致

生 存 時 間 增 加 (Lowrie et al., 2013; Cornelis et al.,

2016a; Lowrie et al., 2016)。另外,基于臨床懷疑 ( 缺

乏全面的診斷檢查 ) 進行治療的犬也不符合大多數(shù)研

究的納入標(biāo)準(zhǔn),因此可能會低估生存時間。此外,值得

注意的是,麻醉和腦脊液收集可能與副作用有關(guān),這

些副作用可能會影響完全診斷檢查結(jié)果的情況。

如前所述,MUO 的確切病因和病理生理仍不清

楚,但基本的治療方式通常認(rèn)為是免疫抑制治療。結(jié)

果,使用不同納入標(biāo)準(zhǔn)的幾種治療方案導(dǎo)致了不同的

長 期 生 存 時 間 (Sisson et al. 1989; Gregory et al.,

1998; Munana and Luttgen, 1998; Adamo and

O’ Brien, 2004; Gnirs, 2006; Zarfoss et al., 2006;

Adamo et al., 2007; Coates et al., 2007; de Stefani et

al., 2007; Feliu-Pascual et al., 2007; Uriarte et al.,

2007; Jung et al., 2007; Menaut et al., 2008; Pakozdy et al., 2009; Smith et al., 2009; Granger et al.,

2010; Kang et al., 2010; Wong et al., 2010; Flegel et

al., 2011; Jung et al., 2011; Jung et al., 2013; Lowrie

et al., 2013; Beckmann et al., 2015; Mercier and

Barnes Heller, 2015; Barnoon et al., 2016; Cornelis

et al., 2016a; Lowrie et al., 2016; Cornelis et al.,

2017b)。

總的來說,治療效果是通過臨床反應(yīng)和神經(jīng)功能

缺陷的好轉(zhuǎn)來監(jiān)測的,偶爾也通過反復(fù)腦脊液分析和

磁 共 振 成 像 來 判 斷 (Coates and Jeffrey, 2014)。

Lowrie et al. (2013) 在一組犬的研究中指出,MR 成像

和腦脊液分析相結(jié)合比單獨使用一種方法更能預(yù)測

復(fù)發(fā)的發(fā)展。然而,由于與麻醉和腦脊液收集相關(guān)的

風(fēng)險,重復(fù)這些檢查可能很難證明是合理的。

糖皮質(zhì)激素,如潑尼松龍 prednisolone 仍然是

主要的最初治療和長期治療,多數(shù)還需要聯(lián)合其他

免疫抑制藥物,如阿糖胞苷 cytosine arabinoside 或

環(huán)孢素 ciclosporine 。這些治療方案的總結(jié)見表1。

參考文獻:

1. Simpson S, Syring R, Otto C. Severe blunt trauma in

dogs: 235 cases (1997-2003). J Vet Emerg Crit Care (San Antonio) 2009;19(6):588–602.

2. Marioni-Henry K, Vite CH, Newton AL, et al. Prevalence

of diseases of the spinalcord of cats. J Vet Intern Med

2004;18(6):851–8.

3. Fluehmann G, Doherr MG, Jaggy A. Canine neurological

diseases in a referralhospital population between 1989 and

2000 in Switzerland. J Small Anim Pract2006;47(10):582–7.

4. Sande A, West C. Traumatic brain injury: a review of

pathophysiology and management.J Vet Emerg Crit Care (San

Antonio) 2010;20(2):177–90.

5. Dewey C. Emergency management of the head trauma

patient. Vet Clin NorthAm Small Anim Pract 2000;30?207–25.

6. Hopkins A. Head trauma. Vet Clin North Am Small Anim

Pract 1996;26?875–91.

7. Dewey C, Fletcher D. Head trauma management. In:

Dewey C, editor. A practicalguide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell;2008. p. 221–35.

8. Aries M, Czrosynka M, Budohoski K, et al. Continuous

determination of optimalcerebral perfusion pressure in traumatic brain injury. Crit Care Med 2012;40(8):2456–63.

9. Ling G, Marshall S, Moore D. Diagnosis and management of traumatic braininjury. Continuum 2010;16(6):27–40.

10. Kim J, Gean A. Imaging for the diagnosis and management of traumatic braininjury. Neurotherapeutics

2011;8(1):39–53.

11. Tsang K, Whitfield P. Traumatic brain injury: review of

current management strategies.Br J Oral Maxillofac Surg

2012;50?298–308.

12. Proulx J, Dhupa N. Severe brain injury: part I: pathophysiology. CompendContin Educ Vet 1998;20?897–905.

13. Fletcher DJ, Dewey CW. Spinal trauma management.

In: Dewey CW, editor.A practical guide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell; 2008. p.

405–17.

14. Johnson K, Vite C. Spinal cord injury. In: Silverstein D,

Hopper K, editors. Smallanimal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders;2009. p. 419–23.

15. Park EH, White GA, Tieber LM. Mechanisms of injury

and emergency care ofacute spinal cord injury in dogs and cats.

J Vet Emerg Crit Care (San Antonio)2012;22(2):160–78.

16. Olby N. The pathogenesis and treatment of acute

spinal cord injuries in dogs.Vet Clin North Am Small Anim Pract

2010;40(5):791–807.

17. Fletcher D, Syring R. Traumatic brain injury. In: Silverstein D, Hopper K, editors.Small animal critical care medicine.

1st edition. St Louis (MO): Elsevier Saunders;2009. p. 658–62.

18. Leonard SE, Kirby R. The role of glutamate, calcium

and magnesium in secondarybrain injury. J Vet Emerg Crit Care

2002;12(1):17–32.

19. McMichael M, Moore R. Ischemia and reperfusion

injury pathophysiology, part I.J Vet Emerg Crit Care (San Antonio) 2004;14(4):231–41.

20. Oyinbo C. Secondary injury mechanisms in traumatic

spinal cord injury: anugget of this multiply cascade. Acta Neurobiol Exp 2011;71(2):281–99.

21. Tator C, Fehlings M. Review of the secondary injury

theory of acute spinal cordtrauma with emphasis on vascular

mechanisms. J Neurosurg 1991;75(1):15–26.

22. Dooney N, Dagal A. Anesthetic considerations in acute

spinal cord trauma. Int JCrit Illn Inj Sci 2011;1(1):36–43.

23. Armitage-Chan E, Wetmore L, Chan D. Anesthetic

management of the headtrauma patient. J Vet Emerg Crit Care

(San Antonio) 2007;17(1):5–14.

24. Shores A. Craniocerebral trauma. In: Kirk R, editor. Current veterinary therapy X.X. Philadelphia: WB Saunders; 1983. p.

847–54.

25. Platt S, Radaelli S, McDonnell J. The prognostic value of

the Modified GlasgowComa Scale in head trauma in gods. J Vet

Intern Med 2001;15(6):581–4.

26. Levine GJ, Levine JM, Budke CM, et al. Description and

repeatability of anewly developed spinal cord injury scale for

dogs. Prev Vet Med 2009;89(1–2):121–7.

27. Olby N, De Risio L, Munana K, et al. Development of a

functional scoring systemin dogs with acute spinal cord injuries.

Am J Vet Res 2001;62(10):1624–8.

28. Smith P, Jeffery N. Spinal shock—comparative aspects

and clinical relevance.J Vet Intern Med 2005;19?788–93.

29. Boysen S, Rozanski E, Tidwell A, et al. Evaluation of a

focused assessment with sonography for trauma protocol to

detect free abdominal fluid in dogs involved in motor vehicle

accidents. J Am Vet Med Assoc 2004;225(8):1198–204.

30. Lisciandro GR. Abdominal and thoracic focused assessment with sonographyfor trauma, triage, and monitoring in small

animals. J Vet Emerg Crit Care(San Antonio) 2011;21(2):104–22.

31. Kinns J, Mai W, Seiler G, et al. Radiographic sensitivity

and negative predictive value for acute canine spinal trauma. Vet

Radiol Ultrasound 2006;47(6):563–70.

32. Vitale C, Coates J. Acute spinal injury. Compendium

Standards of Care: Emergencyand Critical Care Medicine

2007;9(7):1–11.

33. Lamb CR, Nicholls A, Targett M, et al. Accuracy of

survey radiographic diagnosis of intervertebral disc protrusion in

dogs. Vet Radiol Ultrasound 2002;43(3):222–8.

34. Brisson BA. Intervertebral disc disease in dogs. Vet Clin

North Am Small Anim Pract 2010;40(5):829–58.

35. Israel SK, Levine JM, Kerwin SC, et al. The relative sensitivity of computed tomography and myelography for identification of thoracolumbar intervertebral disk herniations in dogs. Vet

Radiol Ultrasound 2009;50(3):247–52.

36. Olby N, Dyce J, Houlton J. Correlation of plain radiographic and lumbar myelographic findings with surgical findings

in thoracolumbar disc disease. J SmallAnim Pract

1994;35(7):345–50.

37. Griffin J, Levine J, Kerwin S. Canine thoracolumbar

intervertebral disk disease:pathophysiology, neurologic examination, and emergency medical therapy.Compend Contin Educ

Vet 2009;31(3):E1–13.

38. Lewis D, Hosgood G. Complications associated with

the use of iohexol for myelographyof the cervical vertebral

column in dogs: 66 cases (1988-1990). J AmVet Med Assoc

1992;200(9):1381–4.

39. Barone G, Ziemer L, Shofer F, et al. Risk factors associated with the developmentof seizures after use of iohexol for

myelography in dogs: 182 cases(1998). J Am Vet Med Assoc

2002;220(10):1499–502.

40. Johnson P, Beltran E, Dennis R, et al. Magnetic resonance imaging characteristics of suspected vertebral instability

associated with fracture or subluxation in eleven dogs. Vet

Radiol Ultrasound 2012;53(5):552–9.

41. Rozanski EA, Rondeau MP. Respiratory pharmacotherapy in emergency and critical care medicine. Vet Clin North Am

Small Anim Pract 2002;32(5):1073–86.

42. Mazzaferro E. Oxygen therapy. In: Silverstein D, Hopper

K, editors. Small animal critical caremedicine. 1stedition. StLouis(MO): Elsevier Saunders; 2009.p. 78–81.

43. Hopper K. Basic mechanical ventilation. In: Silverstein

D, Hopper K, editors. Small animal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders; 2009. p. 900–4.

44. Zhuang J, Shackford S, Schmoker J, et al. Colloid infusion after brain injury: an effect on intracranial pressure, cerebral

blood flow, and oxygen delivery. Crit Care Med

1995;23(1):140–8.

45. Wade C, Grady J, Kramer G, et al. Individual patient

cohort analysis of the efficacy of hypertonic saline/dextran in

patients with traumatic brain injury and hypotension. J Trauma

1997;42?561–5.

46. Vassar M, Perry C, Gannaway W, et al. Analysis of

potential risks associated with 7.5% sodium chloride resuscitation of traumatic shock. Arch Surg 1990;124: 1309–15.

47. Vassar M, Perry C, Gannaway W, et al. 7.5% sodium

chloride/dextran for resuscitation of trauma patients undergoing

helicopter transport. Arch Surg 1991;126: 1065–72.

48. Vassar M, Perry C, Holcroft J. Prehospital resuscitation

of hypotensive trauma patients with 7.5% NaCl versus 7.5% NaCl

with added dextran: a controlled trial. J Trauma 1993;34?622–32.

49. Vassar M, Fisher R, O’ Brien P, et al. A multicenter trial

for resuscitation of injured patients with 7.5% sodium chloride.

Arch Surg 1993;128?1003–11.

50. Cooper J, Myles P, McDermott F, et al. Prehospital

hypertonic saline resuscitation of patients with hypotension and

severe traumatic brain injury. JAMA 2004;291?1350–7.

51. Roberts D, Hall R, Kramer A. Sedation for critically ill

adults with severe traumatic brain injury: a systematic review of

randomized controlled trials. CritCare Med 2012;39(12):2743–51.

52. Sperry R, Bailey P, Reichman M, et al. Fentanyl and

sulfentanil increase intracranial pressure in head trauma patients.

Anesthesiology 1992;77?416–20.

53. Lauer K, Connolly L, Schmeling W. Opioid sedation

does not alter intracranial pressure in head injured patients. Can

J Anaesth 1997;44?929–33.

54. Albanese J, Viviand X, Potie F, et al. Sulfentanil, fentanyl,

and alfentanil in head trauma patients: a study on cerebral

hemodynamics. Crit Care Med 1999;27?407–11.

55. de Nadal M, Munar F, Poca M, et al. Cerebral hemodynamic effects of morphine and fentanyl in patients with severe

head injury: absence of correlation to cerebral autoregulation.

Anesthesiology 2000;92?11–9.

56. Hansen B. Acute pain management. Vet Clin North Am

Small Anim Pract 2000;30(4):899–916.

57. Pascoe P. Opioid analgesics. Vet Clin North Am Small

Anim Pract 2000;30(4):757–69.

58. Keegan R, Green S, Bagley R, et al. Effects of medetomidine administration on intracranial pressure and cardiovascular variables of isoflurane-anesthetized dogs. Am J Vet Res

1996;56(2):193–8.

59. Treggiari M, Schultz N, Yanez N, et al. Role of intracranial pressure values and patterns in predicting outcome of traumatic brain injury: a systematic review. Neurocrit Care

2007;6?104–12.

60. Weed L, McKibbon P. Pressure changes in the cerebrospinal fluid following intravenous injection of solutions of various

concentrations. Am J Phys 1919;48?512–30.

61. Ropper A. Hyperosmolar therapy for raised intracranial

pressure. N Engl J Med 2012;367(8):746–52.

62. Brain Trauma Foundation, American Association of

Neurological Surgeons,Congress of Neurological Surgeons.

Guidelines for the management of severetraumatic brain injury. J

Neurotrauma 2007;24(1):S1–106.

63. Fink M. Osmotherapy for intracranial hypertension:

mannitol versus hypertonic saline. Continuum

2012;18(3):640–54.

64. Kaufmann A, Cardoso E. Aggravation of vasogenic

cerebral edema by multipledose mannitol. J Neurosurg

1992;77(4):584–9.

65. McManus M, Soriano S. Rebound swelling of astroglial

cells exposed to hypertonic mannitol. Anesthesiology

1998;88(6):1586–91.

66. Oddo M, Levine J, Frangos S, et al. Effect of mannitol

and hypertonic salineon cerebral oxygenation in patients with

severe traumatic brain injury and refractoryintracranial hypertension. J Neurol Neurosurg Psychiatr 2009;80(8):916–20.

67. Aiyagari V, Deibert E, Diringer M. Hypernatremia in the

neurologic intensive careunit: how high is too high? J Crit Care

2006;21(2):163–72.

68. Battison C, Andrews P, Graham C, et al. Randomized,

controlled trial on theeffect of a 20% mannitol solution and a

7.5% saline/6% dextran solution onincreased intracranial pressure after brain injury. Crit Care Med 2005;33(1):196–202.

69. Francony C, Fauvage B, Falcon D, et al. Equimolar

doses of mannitol and hypertonicsaline in the treatment of intracranial pressure. Crit Care Med 2008;36(3):795–800.

70. Zeng H, Wang Q, Deng Y, et al. A comparative study on

the efficacy of 10%hypertonic saline and equal volume of 20%

mannitol in the treatment of experimentallyinduced cerebral

edema in adult rats. BMC Neurosci 2010;11?153.

71. da Silva J, de Lima F, Valenca M, et al. Hypertonic saline

more efficacious thanmannitol in lethal intracranial hypertension

model. Neurol Res 2010;32(2):139–43.

72. Todd M, Cutkomp J, Brian J. Influence of mannitol and

furosemide, alone and incombination, on brain water content

after fluid percussion injury. Anesthesiology2006;105?1176–80.

73. Edwards P, Arango M, Balica L, et al. Final results of

MRC CRASH, a randomized placebo-controlled trial of intravenous corticosteroids in adults with headinjury- outcomes at 6

months. Lancet 2005;365(9475):1957–9.

74. Roberts I, Yates D, Sandercock P, et al. Effect of intravenous corticosteroids on death within 14 days in 10,008 adults

with clinically significant head injury (MRC CRASH trial): randomized placebo-controlled trial. Lancet 2004;364?9442.

75. Schierhout G, Roberts I. Withdrawn: antiepileptic drugs

for preventing seizures following acute traumatic brain injury.

Cochrane Database Syst Rev 2012;(6):CD000173.

76. Musulin S, Mariani C, Papich M. Diazepam pharmacokinetics after nasal drop and atomized nasal administration in

dogs. J Vet Pharmacol Ther 2011;34(1): 17–24.

77. Kassell N, Hitchon P, Gerk M, et al. Alterations in cerebral blood flow,oxygen metabolism, and electrical activity produced by high-dose thiopental.Neurosurgery 1980;7?598–603.

78. Hayes G. Severe seizures associated with traumatic

brain injury managed bycontrolled hypothermia, pharmacologic

coma, and mechanical ventilation in a dog. J Vet Emerg Crit Care

(San Antonio) 2009;19(6):629–34.

79. Giacino J, Whyte J, Bagiella E, et al. Placebo-controlled

trial of amantadine for severe traumatic brain injury. N Engl J

Med 2012;366?819–26.

80. Hall E. The neuroprotective pharmacology of methylprednisolone. J Neurosurg 1992;76(1):13–22.

81. Parker A, Smith C. Functional recovery from spinal cord

trauma following dexamethasone and chlorpromazine therapy in

dogs. Res Vet Sci 1976;21(2):246–7.

82. Levine J, Levine G, Boozer L, et al. Adverse effects and

outcome associatedwith dexamethasone administration in dogs

with acute thoracolumbar intervertebral disk herniation: 161

cases (2000-2006). J Am Vet Med Assoc 2008;232(3):411–7.

83. Bracken M, Shepard M, Collins W. A randomized, controlled trial of methylprednisolone or naloxone in the treatment

of acute spinal-cord injury. Results of the second national acute

spinal cord injury study. N Engl J Med 1990;322(20):1405–11.

84. Bracken M, Shepard M, Hellenbrand K. Methylprednisolone and neurologicalfunction 1 year after spinal cord injury.

Results of the National Acute Spinal Cord Injury Study. J Neurosurg 1985;63(5):704–13.

85. Bracken M, Shepard M, Holford T. Administration of

methylprednisolone for 24 or

48 hours or tirilazad mesylate for 48 hours in the treatment

of acute spinal cord injury. Results of the Third National Acute

Spinal Cord Injury Randomized Controlled Trial. National Acute

Spinal Cord Injury.JAMA 1997;277(20):1597–604.

86. Nesathurai S. Steroids and spinal cord injury: revisiting

the NASCIS 2 and NASCIS 3 trials. J Trauma Acute Care Surg

1998;45(6):1088–93.

87. Rabinowitz R, Eck J, Harper C. Urgent surgical decompression compared to methylprednisolone for the treatment of

acute spinal cord injury. Spine 2008;33(21):2260–8.

88. Coates J, Sorjonen D, Simpson S, et al. Clinicopathologic effects of a 21-aminosteroid compound (U74389G) and high

dose methylprednisolone onspinal cord function after simulated

spinal cord trauma. Vet Surg 1995;24?128–39.

89. Baltzer W, McMichael MA, Hosgood G. Randomized,

blinded, placebocontrolledclinical trial of N-acetylcysteine in

dogs with spinal cord trauma from acute intervertebral disc

disease. Spine 2008;33(13):1397–402.

90. Bains M, Hall E. Antioxidant therapies in traumatic brain

injury and spinal cord injury. Biochim Biophys Acta

2012;1822(5):675–84.

91. Hall E, Wolf D. A pharmacological analysis of the

pathophysiologicalmechanisms of posttraumatic spinal cord

ischemia. J Neurosurg 1986;64(6):951–61.

92. Ates O, Cayli S, Gurses I. Comparative neuroprotective

effect of sodium channel blockers after experimental spinal cord

injury. J Clin Neurosci 2007;14(7):658–65.

93. Kaptanoglu E, Solaroglu I, Surucu H. Blockade of

sodium channels by phenytoin protects ultrastructure and attenuates lipid peroxidation in experimental spinal cord injury. Acta

Neurochir 2005;147(4):405–12.

94. Hains B, Saab C, Lo A. Sodium channel blockade with

phenytoin protects spinal cord axons, enhances axonal conduction, and improves functional recovery after contusion SCI. Exp

Neurol 2004;188(2):365–77.

95. Schwartz G, Fehlings M. Secondary injury mechanisms

of spinal cord trauma:novel therapeutic approach for the management of secondary pathophysiology with the sodium channel blocker riluzole. Prog Brain Res 2002;137?177–90.

96. Park E, Velumian A, Fehlings M. The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with

an emphasis on the implications for white matter degeneration. J

Neurotrauma 2004;21?754–74.

97. Walters M, Kaste M, Lees K, et al. The AMPA antagonist

ZK 200775 in patients with acute ischaemic stroke: a double-blind, multi-centre, placebo-controlled safety and tolerability study. Cerebrovasc Dis 2005;20?304–9.

98. Chan P. White matter injury in spinal cord ischemia:

protection by AMPA/kainite glutamate receptor antagonism—Editoral comment. Stroke 2000;31?1952.

99. Chen HS, Lipton S. The chemical biology of clinically

tolerated NMDA receptor antagonists. J Neurochem

2006;97?1611–26.

100. Tadie M, D’ Arbigny P, Mathe J, et al. Acute spinal cord

injury. Early care and treatment in a multicenter study with

gacylidine. Soc Neurosci 1999;25?1090.

101. Kwon B, Okon E, Hillyer J. A systematic review of

non-invasive pharmacologic neuroprotective treatments for

acute spinal cord injury. J Neurotrauma 2011;28(8):1545–88.

102. Sturges B, LeCouteur R. Intracranial hypertension. In:

Silverstein D, Hopper K,editors. Small animal critical care medicine. 1st edition. St Louis (MO): ElsevierSaunders; 2009. p.

423–9.

103. Brain Trauma Foundation T, National Association of

State EMS Officials T,National Association of EMTs. Guidelines for

prehospital management of traumatic brain injury. Prehosp

Emerg Care 2007;12(1):1–52.

104. Davis D, Dunford J, Poste J, et al. The impact of hypoxia and hyperventilation on outcome after paramedic rapid

sequence intubation of severely head-injured patients. J Trauma

2004;57(1):1–8.

105. Muizelaar J, Marmarou A, Ward J, et al. Adverse effects

of prolonged hyperventilationin patients with severe head injury;

a randomized clinical trial. J Neurosurg 1991;75(5):731–9.

106. Deutschman C, Konstantinides F, Raup S. Physiological and metabolic response to isolated closed-head injury. Part i:

basal metabolic state: correlations of metabolic and physiological parameters with fasting and stressed controls. J Neurosurg

1986;64?89–98.

107. Jeremitsky E, Omert L, Dunham C, et al. The impact of

hyperglycemia on patients with severe brain injury. J Trauma

2005;58(1):47–50.

108. Syring R, Otto C, Drobatz K. Hyperglycemia in dogs

and cats with head trauma:122 cases (1997-1999). J Am Vet

Med Assoc 2001;218?1124–9.

109. Vespa P, McArthur D, Stein N, et al. Tight glycemic

control increases metabolic distress in traumatic brain injury: a

randomized controlled within subjects trial. Crit Care Med

2012;40(6):1923–9.

110. Green D, O’ Phelan K, Bassin S, et al. Intensive versus

conventional insulin therapy in critically ill neurologic patients.

Neurocrit Care 2010;13(3):299–306.

111. Bilotta F, Caramia R, Cernak I, et al. Intensive insulin

therapy after severe traumatic brain injury: randomized clinical

trial. Neurocrit Care 2008;9(2):159–66.

112. Dewey C. Urinary bladder management. In: Dewey

CW, editor. A practical guide to canine and feline neurology. St

Louis (MO): Elsevier Saunders; 2003. p. 419–26.

113. Bubenik L, Hosgood G. Urinary tract infection in dogs

with thoracolumbar intervertebral disc herniation and urinary

bladder dysfunction managed by manual expression, indwelling

catheterization or intermittent catheterization. Vet Surg

2008;37?791–800.

114. Smarick S, Haskins S, Aldrich J, et al. Incidence of

catheter-associated urinary tract infection among dogs in a

small animal intensive care unit. J Am Vet Med Assoc

2004;224(12):1936–40.

115. Ng I, Lim J, Wong H. Effects of head posture on cerebral hemodynamics its influences on intracranial pressure, cerebral perfusion pressure, and cerebral oxygenation. Neurosurgery

2004;54(3):593–7.

116. Sadaka F, Veremakis C. Therapeutic hypothermia for

the management of intracranial hypertension in severe traumatic

brain injury: a systematic review. Brain Inj 2012;26(7–8):899–908.

117. McCarthy P, Scott L, Ganta C, et al. Hypothermic protection in traumatic brain injury. Pathophysiology 2012;735–57.

118. Wijayatilake D, Shepherd S, Sherren P. Updates in the

management of intracranial pressure in traumatic brain injury.

Curr Opin Anaesthesiol 2012;25(5):540–7.

119. Hutchinson P, Corteen E, Czosnyka M, et al. Decompressive craniectomy intraumatic brain injury: the randomized

multicenter RESCUEicp study. Acta Neurochir 2006;96(S):17–20.

120. La Rosa G, Conti A, Cardali S, et al. Does early decompression improve neurological outcome of spinal cord injured

patients? Appraisal of the literature using a meta-analytical

approach. Spinal Cord 2004;42(9):503–12.

121. Croce M, Bee T, Pritchard E, et al. Does optimal timing

for spine fracture fixation exist? Ann Surg 2001;233(6):851–8.

122. Fehlings M, Perrin R. The timing of surgical intervention in the treatment of spinal cord injury: a systematic review of

recent clinical evidence. Spine 2006;31(11): S28–35.

123. Jeffery ND. Vertebral fracture and luxation in small

animals. Vet Clin North Am Small Anim Pract 2010;40(5):809–28.

124. Denis F. Spinal instability as defined by the three-column spine concept in acute spinal trauma. Clin Orthop Relat Res

1984;189?65–76.

125. Hillman R, Kengeri S, Waters D. Reevaluation of predictive factors for complete recovery in dogs with nonambulatory tetraparesis secondary to cervical disk herniation. J Am Anim

Hosp Assoc 2009;45?155–63.

126. Cherrone K, Dewey C, Coates J, et al. A retrospective

comparison of cervical intervertebral disk disease in nonchondrodystrophic large dogs versus small dogs. J Am Anim Hosp

Assoc 2004;40?316–20.

127. Gage E, Hoerlein B. Hemilaminectomy and dorsal

laminectomy for relieving compressions of the spinal cord in the

dog. J Am Vet Med Assoc 1968;152: 351–9.

128. Seim H 3rd, Prata R. Ventral decompression for the

treatment of cervical disk disease in the dog: a review of 54

cases. J Am Anim Hosp Assoc 1982;18: 233–40.

129. Gill P, Lippincott C, Anderson S. Dorsal laminectomy in

the treatment of cervical intervertebral disk disease in small

dogs: a retrospective study of 30 cases.J Am Anim Hosp Assoc

1996;32?77–80.

130. Felts J, Prata R. Cervical disk disease in the dog: intraforaminal and lateral extrusions. J Am Anim Hosp Assoc

1983;19?755–60.

131. Tanaka H, Nakayama M, Takase K. Usefulness of hemilaminectomy for cervical intervertebral disk disease in small

dogs. J Vet Med Sci 2005;67?679–83.

132. McCartney W. Comparison of recovery times and

complication rates between a modified slanted slot and the

standard ventral slot for the treatment of cervical disc disease in

20 dogs. J Small Anim Pract 2007;48?498–501.

133. Levine J, Levine G, Johnson S, et al. Evaluation of the

success of medical management for presumptive thoracolumbar

intervertebral disk herniation in dogs. Vet Surg 2007;36?482–91.

134. Kent M. Intraaxial spinal cord hemorrhage secondary

to atlantoaxial subluxationin a dog. J Am Anim Hosp Assoc

2010;46(2):132–7.

135. Cerda-Gonzalez S, Olby NJ. Fecal incontinence associated with epidural spinalhematoma and intervertebral disk

extrusion in a dog. J Am Vet Med Assoc 2006;228(2):230–5.

136. Caswell JL, Nykamp SG. Intradural vasculitis and hemorrhage in full sibling Welsh springer spaniels. Can Vet J

2003;44(2):137–9.

137. Tidwell AS, Specht A, Blaeser L, et al. Magnetic resonance imaging features ofextradural hematomas associated with

intervertebral disc herniation in a dog.Vet Radiol Ultrasound

2001;43(4):319–24.

138. Jeffery N, Lakatos A, Franklin R. Autologous olfactory

glial cell transplantation is eliable and safe in naturally occurring

spinal cord injury. J Neurotrauma 2005;22(11):1282–93.

139. Nishida H, Nakayama M, Tanaka H. Safety of autologous bone marrow stromal cell transplantation in dogs with

acute spinal cord injury. Vet Surg 2012;41?437–42.

140. Olby N, Levine J, Harris T. Long-term functional outcome of dogs with severe injuries of the thoracolumbar spinal

cord: 87 cases (1996-2001). J Am VetMed Assoc

2003;222(6):762–9.

141. Dewey CW. Myelopathies: disorders of the spinal cord.

In: Dewey CW, editor. A practical guide to canine and feline neurology. 2nd edition. Ames (IA):Wiley-Blackwell; 2008. p. 323–88.

142. Hawthorne J, Blevins W, Wallace L, et al. Cervical vertebral fractures in 56 dogs:a retrospective study. J Am Anim

Hosp Assoc 1999;35?135–46.

143. Eminaga S, Palus V, Cherubini G. Acute spinal cord

injury in the cat: causes,treatment and prognosis. J Feline Med

Surg 2011;13(11):850–62.spontaneous hyperadrenocorticism in

dogs. Part 2: Adrenal function testing and differentiating tests[J].

The Veterinary Journal, 2019, 252?105343.

第122頁

小動物臨床前沿(神經(jīng)學(xué)專刊 - 上冊)· 腦部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 總第 12 期

- 120 -

腦脊液分析

腦脊液細(xì)胞增多(pleocytosis),定義為腦脊液

中有核細(xì)胞總數(shù)的增加(total nucleated cell count,

TNCC;參考范圍為<5個白細(xì)胞(WBC)/mL),是

假設(shè)性MUO診斷標(biāo)準(zhǔn)之一(Granger et al., 2010)。然

而,腦脊液細(xì)胞學(xué)異常的患病率在不同的文獻中差

異很大,可能是由于采用的方法和納入標(biāo)準(zhǔn)的主要

差異。此外,3-57%的MUO病患的腦脊液細(xì)胞學(xué)正

常(Menaut et al., 2008; Granger et al., 2010),這與

一項GME和NE犬的研究結(jié)果類似,此研究的CSF分

析顯示,16%的GME犬和12.5%的NE犬的細(xì)胞計數(shù)

正常(Granger et al., 2010)。白蛋白-細(xì)胞學(xué)不匹配

(Albumino-cytological dissociation)可發(fā)生在細(xì)

胞計數(shù)正常和腦脊液蛋白濃度增加的情況下(Tipold,

1995; Granger et al., 2010)。GME組和MUO組以淋

巴細(xì)胞為主,分別占42%和71%,NE組以單核細(xì)胞

和淋巴細(xì)胞為主;各組中<10%的病例中,中性粒細(xì)

胞是主要的細(xì)胞類型(Granger et al., 2010)。綜上所

述,大多數(shù)病例出現(xiàn)腦脊液單核細(xì)胞數(shù)量增多,因

此,>50%單核細(xì)胞數(shù)量增多已被建議納入MUO犬

的診斷標(biāo)準(zhǔn)(Smith et al., 2009; Granger et al., 2010;

Lowrie et al., 2013; Coates and Jeffery, 2014)。然

而,MRI異常提示顱內(nèi)壓升高但未進行腦脊液收集

的犬通常被排除在腦脊液研究之外,這可能造成所

研究的病例群體疾病嚴(yán)重程度較輕的傾向(Cornelis

et al. 2016a)。

在 51 例報道的不明原因的腦膜脊髓炎犬中,只

有 22 例 犬 的 腦 脊 液 發(fā) 現(xiàn) (Cherubini et al., 2006;

Griffin et al., 2008; Cornelis et al., 2017a)。雖然所有

的犬都出現(xiàn)了腦脊液細(xì)胞增多,但由于其中 21 例犬

的腦脊液中存在炎癥,因此無法得出明確的結(jié)論

(Cornelis et al., 2017a)。對 19 例犬進行了總蛋白檢

測,發(fā) 現(xiàn) 17 例 犬 的 總 蛋 白 濃 度 升 高 ( 范 圍 為

31-1630 mg/dL;Cherubini et al., 2006; Cornelis et

al., 2017a)。

活組織檢查程序

立體定向 CT 引導(dǎo)下的腦活檢程序 (Koblik et al.,

1999) 和通過迷你鉆孔進行的徒手活檢 (Flegel et al.,

2012) 都曾在炎癥性中樞神經(jīng)系統(tǒng)疾病的犬中有描

述過,但這些都不容易在臨床上應(yīng)用。診斷準(zhǔn)確度為

82% (n = 17; Flegel et al., 2012) 到 100% (n = 3;

Koblik et al., 1999),但是由于相對較小的樣本量,這

些結(jié)果應(yīng)謹(jǐn)慎解釋。在手術(shù)過程中,沒有一例犬死亡。

12-29% 的犬出現(xiàn)并發(fā)癥,包括短暫鼻出血、神經(jīng)癥

狀短暫加重、遲鈍漸進性發(fā)展至昏迷、藥物無法控制

的抽搐發(fā)作、四肢輕癱、半身偏癱、共濟失調(diào)和意識性

本 體 感 覺 喪 失 (Koblik et al.,1999; Flegel et al.,

2012)。大多數(shù)癥狀在 3-14 天內(nèi)得到緩解 (Flegel et

al., 2012)。

治療

雖然理想的臨床試驗應(yīng)該是隨機的、安慰劑對照

的、雙盲的、前瞻性的研究,但人們普遍認(rèn)為使用安慰

劑對照治療組是不道德的,因為患有 MUO 的犬不經(jīng)

治療的結(jié)果會很差 (Coates et al., 2007; Smith et al.,

2009; Coates and Jeffery, 2014)。歷史上使用了不同

的納入標(biāo)準(zhǔn),而且由于在一些研究中,免疫介導(dǎo)藥物

只在已知傳染病檢測結(jié)果后才開始,導(dǎo)致治療結(jié)果延

遲,治療反應(yīng)和結(jié)果難以比較 (Adamo et al., 2007;

Coates et al., 2007; Wong et al., 2010)。此外,在診斷

數(shù)小時內(nèi)死亡的犬 ( 無論是否進行免疫抑制治療 ) 有

時會被排除在登記或進一步分析之外,這必然會導(dǎo)致

生 存 時 間 增 加 (Lowrie et al., 2013; Cornelis et al.,

2016a; Lowrie et al., 2016)。另外,基于臨床懷疑 ( 缺

乏全面的診斷檢查 ) 進行治療的犬也不符合大多數(shù)研

究的納入標(biāo)準(zhǔn),因此可能會低估生存時間。此外,值得

注意的是,麻醉和腦脊液收集可能與副作用有關(guān),這

些副作用可能會影響完全診斷檢查結(jié)果的情況。

如前所述,MUO 的確切病因和病理生理仍不清

楚,但基本的治療方式通常認(rèn)為是免疫抑制治療。結(jié)

果,使用不同納入標(biāo)準(zhǔn)的幾種治療方案導(dǎo)致了不同的

長 期 生 存 時 間 (Sisson et al. 1989; Gregory et al.,

1998; Munana and Luttgen, 1998; Adamo and

O’ Brien, 2004; Gnirs, 2006; Zarfoss et al., 2006;

Adamo et al., 2007; Coates et al., 2007; de Stefani et

al., 2007; Feliu-Pascual et al., 2007; Uriarte et al.,

2007; Jung et al., 2007; Menaut et al., 2008; Pakozdy et al., 2009; Smith et al., 2009; Granger et al.,

2010; Kang et al., 2010; Wong et al., 2010; Flegel et

al., 2011; Jung et al., 2011; Jung et al., 2013; Lowrie

et al., 2013; Beckmann et al., 2015; Mercier and

Barnes Heller, 2015; Barnoon et al., 2016; Cornelis

et al., 2016a; Lowrie et al., 2016; Cornelis et al.,

2017b)。

總的來說,治療效果是通過臨床反應(yīng)和神經(jīng)功能

缺陷的好轉(zhuǎn)來監(jiān)測的,偶爾也通過反復(fù)腦脊液分析和

磁 共 振 成 像 來 判 斷 (Coates and Jeffrey, 2014)。

Lowrie et al. (2013) 在一組犬的研究中指出,MR 成像

和腦脊液分析相結(jié)合比單獨使用一種方法更能預(yù)測

復(fù)發(fā)的發(fā)展。然而,由于與麻醉和腦脊液收集相關(guān)的

風(fēng)險,重復(fù)這些檢查可能很難證明是合理的。

糖皮質(zhì)激素,如潑尼松龍 prednisolone 仍然是

主要的最初治療和長期治療,多數(shù)還需要聯(lián)合其他

免疫抑制藥物,如阿糖胞苷 cytosine arabinoside 或

環(huán)孢素 ciclosporine 。這些治療方案的總結(jié)見表1。

參考文獻:

1. Simpson S, Syring R, Otto C. Severe blunt trauma in

dogs: 235 cases (1997-2003). J Vet Emerg Crit Care (San Antonio) 2009;19(6):588–602.

2. Marioni-Henry K, Vite CH, Newton AL, et al. Prevalence

of diseases of the spinalcord of cats. J Vet Intern Med

2004;18(6):851–8.

3. Fluehmann G, Doherr MG, Jaggy A. Canine neurological

diseases in a referralhospital population between 1989 and

2000 in Switzerland. J Small Anim Pract2006;47(10):582–7.

4. Sande A, West C. Traumatic brain injury: a review of

pathophysiology and management.J Vet Emerg Crit Care (San

Antonio) 2010;20(2):177–90.

5. Dewey C. Emergency management of the head trauma

patient. Vet Clin NorthAm Small Anim Pract 2000;30?207–25.

6. Hopkins A. Head trauma. Vet Clin North Am Small Anim

Pract 1996;26?875–91.

7. Dewey C, Fletcher D. Head trauma management. In:

Dewey C, editor. A practicalguide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell;2008. p. 221–35.

8. Aries M, Czrosynka M, Budohoski K, et al. Continuous

determination of optimalcerebral perfusion pressure in traumatic brain injury. Crit Care Med 2012;40(8):2456–63.

9. Ling G, Marshall S, Moore D. Diagnosis and management of traumatic braininjury. Continuum 2010;16(6):27–40.

10. Kim J, Gean A. Imaging for the diagnosis and management of traumatic braininjury. Neurotherapeutics

2011;8(1):39–53.

11. Tsang K, Whitfield P. Traumatic brain injury: review of

current management strategies.Br J Oral Maxillofac Surg

2012;50?298–308.

12. Proulx J, Dhupa N. Severe brain injury: part I: pathophysiology. CompendContin Educ Vet 1998;20?897–905.

13. Fletcher DJ, Dewey CW. Spinal trauma management.

In: Dewey CW, editor.A practical guide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell; 2008. p.

405–17.

14. Johnson K, Vite C. Spinal cord injury. In: Silverstein D,

Hopper K, editors. Smallanimal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders;2009. p. 419–23.

15. Park EH, White GA, Tieber LM. Mechanisms of injury

and emergency care ofacute spinal cord injury in dogs and cats.

J Vet Emerg Crit Care (San Antonio)2012;22(2):160–78.

16. Olby N. The pathogenesis and treatment of acute

spinal cord injuries in dogs.Vet Clin North Am Small Anim Pract

2010;40(5):791–807.

17. Fletcher D, Syring R. Traumatic brain injury. In: Silverstein D, Hopper K, editors.Small animal critical care medicine.

1st edition. St Louis (MO): Elsevier Saunders;2009. p. 658–62.

18. Leonard SE, Kirby R. The role of glutamate, calcium

and magnesium in secondarybrain injury. J Vet Emerg Crit Care

2002;12(1):17–32.

19. McMichael M, Moore R. Ischemia and reperfusion

injury pathophysiology, part I.J Vet Emerg Crit Care (San Antonio) 2004;14(4):231–41.

20. Oyinbo C. Secondary injury mechanisms in traumatic

spinal cord injury: anugget of this multiply cascade. Acta Neurobiol Exp 2011;71(2):281–99.

21. Tator C, Fehlings M. Review of the secondary injury

theory of acute spinal cordtrauma with emphasis on vascular

mechanisms. J Neurosurg 1991;75(1):15–26.

22. Dooney N, Dagal A. Anesthetic considerations in acute

spinal cord trauma. Int JCrit Illn Inj Sci 2011;1(1):36–43.

23. Armitage-Chan E, Wetmore L, Chan D. Anesthetic

management of the headtrauma patient. J Vet Emerg Crit Care

(San Antonio) 2007;17(1):5–14.

24. Shores A. Craniocerebral trauma. In: Kirk R, editor. Current veterinary therapy X.X. Philadelphia: WB Saunders; 1983. p.

847–54.

25. Platt S, Radaelli S, McDonnell J. The prognostic value of

the Modified GlasgowComa Scale in head trauma in gods. J Vet

Intern Med 2001;15(6):581–4.

26. Levine GJ, Levine JM, Budke CM, et al. Description and

repeatability of anewly developed spinal cord injury scale for

dogs. Prev Vet Med 2009;89(1–2):121–7.

27. Olby N, De Risio L, Munana K, et al. Development of a

functional scoring systemin dogs with acute spinal cord injuries.

Am J Vet Res 2001;62(10):1624–8.

28. Smith P, Jeffery N. Spinal shock—comparative aspects

and clinical relevance.J Vet Intern Med 2005;19?788–93.

29. Boysen S, Rozanski E, Tidwell A, et al. Evaluation of a

focused assessment with sonography for trauma protocol to

detect free abdominal fluid in dogs involved in motor vehicle

accidents. J Am Vet Med Assoc 2004;225(8):1198–204.

30. Lisciandro GR. Abdominal and thoracic focused assessment with sonographyfor trauma, triage, and monitoring in small

animals. J Vet Emerg Crit Care(San Antonio) 2011;21(2):104–22.

31. Kinns J, Mai W, Seiler G, et al. Radiographic sensitivity

and negative predictive value for acute canine spinal trauma. Vet

Radiol Ultrasound 2006;47(6):563–70.

32. Vitale C, Coates J. Acute spinal injury. Compendium

Standards of Care: Emergencyand Critical Care Medicine

2007;9(7):1–11.

33. Lamb CR, Nicholls A, Targett M, et al. Accuracy of

survey radiographic diagnosis of intervertebral disc protrusion in

dogs. Vet Radiol Ultrasound 2002;43(3):222–8.

34. Brisson BA. Intervertebral disc disease in dogs. Vet Clin

North Am Small Anim Pract 2010;40(5):829–58.

35. Israel SK, Levine JM, Kerwin SC, et al. The relative sensitivity of computed tomography and myelography for identification of thoracolumbar intervertebral disk herniations in dogs. Vet

Radiol Ultrasound 2009;50(3):247–52.

36. Olby N, Dyce J, Houlton J. Correlation of plain radiographic and lumbar myelographic findings with surgical findings

in thoracolumbar disc disease. J SmallAnim Pract

1994;35(7):345–50.

37. Griffin J, Levine J, Kerwin S. Canine thoracolumbar

intervertebral disk disease:pathophysiology, neurologic examination, and emergency medical therapy.Compend Contin Educ

Vet 2009;31(3):E1–13.

38. Lewis D, Hosgood G. Complications associated with

the use of iohexol for myelographyof the cervical vertebral

column in dogs: 66 cases (1988-1990). J AmVet Med Assoc

1992;200(9):1381–4.

39. Barone G, Ziemer L, Shofer F, et al. Risk factors associated with the developmentof seizures after use of iohexol for

myelography in dogs: 182 cases(1998). J Am Vet Med Assoc

2002;220(10):1499–502.

40. Johnson P, Beltran E, Dennis R, et al. Magnetic resonance imaging characteristics of suspected vertebral instability

associated with fracture or subluxation in eleven dogs. Vet

Radiol Ultrasound 2012;53(5):552–9.

41. Rozanski EA, Rondeau MP. Respiratory pharmacotherapy in emergency and critical care medicine. Vet Clin North Am

Small Anim Pract 2002;32(5):1073–86.

42. Mazzaferro E. Oxygen therapy. In: Silverstein D, Hopper

K, editors. Small animal critical caremedicine. 1stedition. StLouis(MO): Elsevier Saunders; 2009.p. 78–81.

43. Hopper K. Basic mechanical ventilation. In: Silverstein

D, Hopper K, editors. Small animal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders; 2009. p. 900–4.

44. Zhuang J, Shackford S, Schmoker J, et al. Colloid infusion after brain injury: an effect on intracranial pressure, cerebral

blood flow, and oxygen delivery. Crit Care Med

1995;23(1):140–8.

45. Wade C, Grady J, Kramer G, et al. Individual patient

cohort analysis of the efficacy of hypertonic saline/dextran in

patients with traumatic brain injury and hypotension. J Trauma

1997;42?561–5.

46. Vassar M, Perry C, Gannaway W, et al. Analysis of

potential risks associated with 7.5% sodium chloride resuscitation of traumatic shock. Arch Surg 1990;124: 1309–15.

47. Vassar M, Perry C, Gannaway W, et al. 7.5% sodium

chloride/dextran for resuscitation of trauma patients undergoing

helicopter transport. Arch Surg 1991;126: 1065–72.

48. Vassar M, Perry C, Holcroft J. Prehospital resuscitation

of hypotensive trauma patients with 7.5% NaCl versus 7.5% NaCl

with added dextran: a controlled trial. J Trauma 1993;34?622–32.

49. Vassar M, Fisher R, O’ Brien P, et al. A multicenter trial

for resuscitation of injured patients with 7.5% sodium chloride.

Arch Surg 1993;128?1003–11.

50. Cooper J, Myles P, McDermott F, et al. Prehospital

hypertonic saline resuscitation of patients with hypotension and

severe traumatic brain injury. JAMA 2004;291?1350–7.

51. Roberts D, Hall R, Kramer A. Sedation for critically ill

adults with severe traumatic brain injury: a systematic review of

randomized controlled trials. CritCare Med 2012;39(12):2743–51.

52. Sperry R, Bailey P, Reichman M, et al. Fentanyl and

sulfentanil increase intracranial pressure in head trauma patients.

Anesthesiology 1992;77?416–20.

53. Lauer K, Connolly L, Schmeling W. Opioid sedation

does not alter intracranial pressure in head injured patients. Can

J Anaesth 1997;44?929–33.

54. Albanese J, Viviand X, Potie F, et al. Sulfentanil, fentanyl,

and alfentanil in head trauma patients: a study on cerebral

hemodynamics. Crit Care Med 1999;27?407–11.

55. de Nadal M, Munar F, Poca M, et al. Cerebral hemodynamic effects of morphine and fentanyl in patients with severe

head injury: absence of correlation to cerebral autoregulation.

Anesthesiology 2000;92?11–9.

56. Hansen B. Acute pain management. Vet Clin North Am

Small Anim Pract 2000;30(4):899–916.

57. Pascoe P. Opioid analgesics. Vet Clin North Am Small

Anim Pract 2000;30(4):757–69.

58. Keegan R, Green S, Bagley R, et al. Effects of medetomidine administration on intracranial pressure and cardiovascular variables of isoflurane-anesthetized dogs. Am J Vet Res

1996;56(2):193–8.

59. Treggiari M, Schultz N, Yanez N, et al. Role of intracranial pressure values and patterns in predicting outcome of traumatic brain injury: a systematic review. Neurocrit Care

2007;6?104–12.

60. Weed L, McKibbon P. Pressure changes in the cerebrospinal fluid following intravenous injection of solutions of various

concentrations. Am J Phys 1919;48?512–30.

61. Ropper A. Hyperosmolar therapy for raised intracranial

pressure. N Engl J Med 2012;367(8):746–52.

62. Brain Trauma Foundation, American Association of

Neurological Surgeons,Congress of Neurological Surgeons.

Guidelines for the management of severetraumatic brain injury. J

Neurotrauma 2007;24(1):S1–106.

63. Fink M. Osmotherapy for intracranial hypertension:

mannitol versus hypertonic saline. Continuum

2012;18(3):640–54.

64. Kaufmann A, Cardoso E. Aggravation of vasogenic

cerebral edema by multipledose mannitol. J Neurosurg

1992;77(4):584–9.

65. McManus M, Soriano S. Rebound swelling of astroglial

cells exposed to hypertonic mannitol. Anesthesiology

1998;88(6):1586–91.

66. Oddo M, Levine J, Frangos S, et al. Effect of mannitol

and hypertonic salineon cerebral oxygenation in patients with

severe traumatic brain injury and refractoryintracranial hypertension. J Neurol Neurosurg Psychiatr 2009;80(8):916–20.

67. Aiyagari V, Deibert E, Diringer M. Hypernatremia in the

neurologic intensive careunit: how high is too high? J Crit Care

2006;21(2):163–72.

68. Battison C, Andrews P, Graham C, et al. Randomized,

controlled trial on theeffect of a 20% mannitol solution and a

7.5% saline/6% dextran solution onincreased intracranial pressure after brain injury. Crit Care Med 2005;33(1):196–202.

69. Francony C, Fauvage B, Falcon D, et al. Equimolar

doses of mannitol and hypertonicsaline in the treatment of intracranial pressure. Crit Care Med 2008;36(3):795–800.

70. Zeng H, Wang Q, Deng Y, et al. A comparative study on

the efficacy of 10%hypertonic saline and equal volume of 20%

mannitol in the treatment of experimentallyinduced cerebral

edema in adult rats. BMC Neurosci 2010;11?153.

71. da Silva J, de Lima F, Valenca M, et al. Hypertonic saline

more efficacious thanmannitol in lethal intracranial hypertension

model. Neurol Res 2010;32(2):139–43.

72. Todd M, Cutkomp J, Brian J. Influence of mannitol and

furosemide, alone and incombination, on brain water content

after fluid percussion injury. Anesthesiology2006;105?1176–80.

73. Edwards P, Arango M, Balica L, et al. Final results of

MRC CRASH, a randomized placebo-controlled trial of intravenous corticosteroids in adults with headinjury- outcomes at 6

months. Lancet 2005;365(9475):1957–9.

74. Roberts I, Yates D, Sandercock P, et al. Effect of intravenous corticosteroids on death within 14 days in 10,008 adults

with clinically significant head injury (MRC CRASH trial): randomized placebo-controlled trial. Lancet 2004;364?9442.

75. Schierhout G, Roberts I. Withdrawn: antiepileptic drugs

for preventing seizures following acute traumatic brain injury.

Cochrane Database Syst Rev 2012;(6):CD000173.

76. Musulin S, Mariani C, Papich M. Diazepam pharmacokinetics after nasal drop and atomized nasal administration in

dogs. J Vet Pharmacol Ther 2011;34(1): 17–24.

77. Kassell N, Hitchon P, Gerk M, et al. Alterations in cerebral blood flow,oxygen metabolism, and electrical activity produced by high-dose thiopental.Neurosurgery 1980;7?598–603.

78. Hayes G. Severe seizures associated with traumatic

brain injury managed bycontrolled hypothermia, pharmacologic

coma, and mechanical ventilation in a dog. J Vet Emerg Crit Care

(San Antonio) 2009;19(6):629–34.

79. Giacino J, Whyte J, Bagiella E, et al. Placebo-controlled

trial of amantadine for severe traumatic brain injury. N Engl J

Med 2012;366?819–26.

80. Hall E. The neuroprotective pharmacology of methylprednisolone. J Neurosurg 1992;76(1):13–22.

81. Parker A, Smith C. Functional recovery from spinal cord

trauma following dexamethasone and chlorpromazine therapy in

dogs. Res Vet Sci 1976;21(2):246–7.

82. Levine J, Levine G, Boozer L, et al. Adverse effects and

outcome associatedwith dexamethasone administration in dogs

with acute thoracolumbar intervertebral disk herniation: 161

cases (2000-2006). J Am Vet Med Assoc 2008;232(3):411–7.

83. Bracken M, Shepard M, Collins W. A randomized, controlled trial of methylprednisolone or naloxone in the treatment

of acute spinal-cord injury. Results of the second national acute

spinal cord injury study. N Engl J Med 1990;322(20):1405–11.

84. Bracken M, Shepard M, Hellenbrand K. Methylprednisolone and neurologicalfunction 1 year after spinal cord injury.

Results of the National Acute Spinal Cord Injury Study. J Neurosurg 1985;63(5):704–13.

85. Bracken M, Shepard M, Holford T. Administration of

methylprednisolone for 24 or

48 hours or tirilazad mesylate for 48 hours in the treatment

of acute spinal cord injury. Results of the Third National Acute

Spinal Cord Injury Randomized Controlled Trial. National Acute

Spinal Cord Injury.JAMA 1997;277(20):1597–604.

86. Nesathurai S. Steroids and spinal cord injury: revisiting

the NASCIS 2 and NASCIS 3 trials. J Trauma Acute Care Surg

1998;45(6):1088–93.

87. Rabinowitz R, Eck J, Harper C. Urgent surgical decompression compared to methylprednisolone for the treatment of

acute spinal cord injury. Spine 2008;33(21):2260–8.

88. Coates J, Sorjonen D, Simpson S, et al. Clinicopathologic effects of a 21-aminosteroid compound (U74389G) and high

dose methylprednisolone onspinal cord function after simulated

spinal cord trauma. Vet Surg 1995;24?128–39.

89. Baltzer W, McMichael MA, Hosgood G. Randomized,

blinded, placebocontrolledclinical trial of N-acetylcysteine in

dogs with spinal cord trauma from acute intervertebral disc

disease. Spine 2008;33(13):1397–402.

90. Bains M, Hall E. Antioxidant therapies in traumatic brain

injury and spinal cord injury. Biochim Biophys Acta

2012;1822(5):675–84.

91. Hall E, Wolf D. A pharmacological analysis of the

pathophysiologicalmechanisms of posttraumatic spinal cord

ischemia. J Neurosurg 1986;64(6):951–61.

92. Ates O, Cayli S, Gurses I. Comparative neuroprotective

effect of sodium channel blockers after experimental spinal cord

injury. J Clin Neurosci 2007;14(7):658–65.

93. Kaptanoglu E, Solaroglu I, Surucu H. Blockade of

sodium channels by phenytoin protects ultrastructure and attenuates lipid peroxidation in experimental spinal cord injury. Acta

Neurochir 2005;147(4):405–12.

94. Hains B, Saab C, Lo A. Sodium channel blockade with

phenytoin protects spinal cord axons, enhances axonal conduction, and improves functional recovery after contusion SCI. Exp

Neurol 2004;188(2):365–77.

95. Schwartz G, Fehlings M. Secondary injury mechanisms

of spinal cord trauma:novel therapeutic approach for the management of secondary pathophysiology with the sodium channel blocker riluzole. Prog Brain Res 2002;137?177–90.

96. Park E, Velumian A, Fehlings M. The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with

an emphasis on the implications for white matter degeneration. J

Neurotrauma 2004;21?754–74.

97. Walters M, Kaste M, Lees K, et al. The AMPA antagonist

ZK 200775 in patients with acute ischaemic stroke: a double-blind, multi-centre, placebo-controlled safety and tolerability study. Cerebrovasc Dis 2005;20?304–9.

98. Chan P. White matter injury in spinal cord ischemia:

protection by AMPA/kainite glutamate receptor antagonism—Editoral comment. Stroke 2000;31?1952.

99. Chen HS, Lipton S. The chemical biology of clinically

tolerated NMDA receptor antagonists. J Neurochem

2006;97?1611–26.

100. Tadie M, D’ Arbigny P, Mathe J, et al. Acute spinal cord

injury. Early care and treatment in a multicenter study with

gacylidine. Soc Neurosci 1999;25?1090.

101. Kwon B, Okon E, Hillyer J. A systematic review of

non-invasive pharmacologic neuroprotective treatments for

acute spinal cord injury. J Neurotrauma 2011;28(8):1545–88.

102. Sturges B, LeCouteur R. Intracranial hypertension. In:

Silverstein D, Hopper K,editors. Small animal critical care medicine. 1st edition. St Louis (MO): ElsevierSaunders; 2009. p.

423–9.

103. Brain Trauma Foundation T, National Association of

State EMS Officials T,National Association of EMTs. Guidelines for

prehospital management of traumatic brain injury. Prehosp

Emerg Care 2007;12(1):1–52.

104. Davis D, Dunford J, Poste J, et al. The impact of hypoxia and hyperventilation on outcome after paramedic rapid

sequence intubation of severely head-injured patients. J Trauma

2004;57(1):1–8.

105. Muizelaar J, Marmarou A, Ward J, et al. Adverse effects

of prolonged hyperventilationin patients with severe head injury;

a randomized clinical trial. J Neurosurg 1991;75(5):731–9.

106. Deutschman C, Konstantinides F, Raup S. Physiological and metabolic response to isolated closed-head injury. Part i:

basal metabolic state: correlations of metabolic and physiological parameters with fasting and stressed controls. J Neurosurg

1986;64?89–98.

107. Jeremitsky E, Omert L, Dunham C, et al. The impact of

hyperglycemia on patients with severe brain injury. J Trauma

2005;58(1):47–50.

108. Syring R, Otto C, Drobatz K. Hyperglycemia in dogs

and cats with head trauma:122 cases (1997-1999). J Am Vet

Med Assoc 2001;218?1124–9.

109. Vespa P, McArthur D, Stein N, et al. Tight glycemic

control increases metabolic distress in traumatic brain injury: a

randomized controlled within subjects trial. Crit Care Med

2012;40(6):1923–9.

110. Green D, O’ Phelan K, Bassin S, et al. Intensive versus

conventional insulin therapy in critically ill neurologic patients.

Neurocrit Care 2010;13(3):299–306.

111. Bilotta F, Caramia R, Cernak I, et al. Intensive insulin

therapy after severe traumatic brain injury: randomized clinical

trial. Neurocrit Care 2008;9(2):159–66.

112. Dewey C. Urinary bladder management. In: Dewey

CW, editor. A practical guide to canine and feline neurology. St

Louis (MO): Elsevier Saunders; 2003. p. 419–26.

113. Bubenik L, Hosgood G. Urinary tract infection in dogs

with thoracolumbar intervertebral disc herniation and urinary

bladder dysfunction managed by manual expression, indwelling

catheterization or intermittent catheterization. Vet Surg

2008;37?791–800.

114. Smarick S, Haskins S, Aldrich J, et al. Incidence of

catheter-associated urinary tract infection among dogs in a

small animal intensive care unit. J Am Vet Med Assoc

2004;224(12):1936–40.

115. Ng I, Lim J, Wong H. Effects of head posture on cerebral hemodynamics its influences on intracranial pressure, cerebral perfusion pressure, and cerebral oxygenation. Neurosurgery

2004;54(3):593–7.

116. Sadaka F, Veremakis C. Therapeutic hypothermia for

the management of intracranial hypertension in severe traumatic

brain injury: a systematic review. Brain Inj 2012;26(7–8):899–908.

117. McCarthy P, Scott L, Ganta C, et al. Hypothermic protection in traumatic brain injury. Pathophysiology 2012;735–57.

118. Wijayatilake D, Shepherd S, Sherren P. Updates in the

management of intracranial pressure in traumatic brain injury.

Curr Opin Anaesthesiol 2012;25(5):540–7.

119. Hutchinson P, Corteen E, Czosnyka M, et al. Decompressive craniectomy intraumatic brain injury: the randomized

multicenter RESCUEicp study. Acta Neurochir 2006;96(S):17–20.

120. La Rosa G, Conti A, Cardali S, et al. Does early decompression improve neurological outcome of spinal cord injured

patients? Appraisal of the literature using a meta-analytical

approach. Spinal Cord 2004;42(9):503–12.

121. Croce M, Bee T, Pritchard E, et al. Does optimal timing

for spine fracture fixation exist? Ann Surg 2001;233(6):851–8.

122. Fehlings M, Perrin R. The timing of surgical intervention in the treatment of spinal cord injury: a systematic review of

recent clinical evidence. Spine 2006;31(11): S28–35.

123. Jeffery ND. Vertebral fracture and luxation in small

animals. Vet Clin North Am Small Anim Pract 2010;40(5):809–28.

124. Denis F. Spinal instability as defined by the three-column spine concept in acute spinal trauma. Clin Orthop Relat Res

1984;189?65–76.

125. Hillman R, Kengeri S, Waters D. Reevaluation of predictive factors for complete recovery in dogs with nonambulatory tetraparesis secondary to cervical disk herniation. J Am Anim

Hosp Assoc 2009;45?155–63.

126. Cherrone K, Dewey C, Coates J, et al. A retrospective

comparison of cervical intervertebral disk disease in nonchondrodystrophic large dogs versus small dogs. J Am Anim Hosp

Assoc 2004;40?316–20.

127. Gage E, Hoerlein B. Hemilaminectomy and dorsal

laminectomy for relieving compressions of the spinal cord in the

dog. J Am Vet Med Assoc 1968;152: 351–9.

128. Seim H 3rd, Prata R. Ventral decompression for the

treatment of cervical disk disease in the dog: a review of 54

cases. J Am Anim Hosp Assoc 1982;18: 233–40.

129. Gill P, Lippincott C, Anderson S. Dorsal laminectomy in

the treatment of cervical intervertebral disk disease in small

dogs: a retrospective study of 30 cases.J Am Anim Hosp Assoc

1996;32?77–80.

130. Felts J, Prata R. Cervical disk disease in the dog: intraforaminal and lateral extrusions. J Am Anim Hosp Assoc

1983;19?755–60.

131. Tanaka H, Nakayama M, Takase K. Usefulness of hemilaminectomy for cervical intervertebral disk disease in small

dogs. J Vet Med Sci 2005;67?679–83.

132. McCartney W. Comparison of recovery times and

complication rates between a modified slanted slot and the

standard ventral slot for the treatment of cervical disc disease in

20 dogs. J Small Anim Pract 2007;48?498–501.

133. Levine J, Levine G, Johnson S, et al. Evaluation of the

success of medical management for presumptive thoracolumbar

intervertebral disk herniation in dogs. Vet Surg 2007;36?482–91.

134. Kent M. Intraaxial spinal cord hemorrhage secondary

to atlantoaxial subluxationin a dog. J Am Anim Hosp Assoc

2010;46(2):132–7.

135. Cerda-Gonzalez S, Olby NJ. Fecal incontinence associated with epidural spinalhematoma and intervertebral disk

extrusion in a dog. J Am Vet Med Assoc 2006;228(2):230–5.

136. Caswell JL, Nykamp SG. Intradural vasculitis and hemorrhage in full sibling Welsh springer spaniels. Can Vet J

2003;44(2):137–9.

137. Tidwell AS, Specht A, Blaeser L, et al. Magnetic resonance imaging features ofextradural hematomas associated with

intervertebral disc herniation in a dog.Vet Radiol Ultrasound

2001;43(4):319–24.

138. Jeffery N, Lakatos A, Franklin R. Autologous olfactory

glial cell transplantation is eliable and safe in naturally occurring

spinal cord injury. J Neurotrauma 2005;22(11):1282–93.

139. Nishida H, Nakayama M, Tanaka H. Safety of autologous bone marrow stromal cell transplantation in dogs with

acute spinal cord injury. Vet Surg 2012;41?437–42.

140. Olby N, Levine J, Harris T. Long-term functional outcome of dogs with severe injuries of the thoracolumbar spinal

cord: 87 cases (1996-2001). J Am VetMed Assoc

2003;222(6):762–9.

141. Dewey CW. Myelopathies: disorders of the spinal cord.

In: Dewey CW, editor. A practical guide to canine and feline neurology. 2nd edition. Ames (IA):Wiley-Blackwell; 2008. p. 323–88.

142. Hawthorne J, Blevins W, Wallace L, et al. Cervical vertebral fractures in 56 dogs:a retrospective study. J Am Anim

Hosp Assoc 1999;35?135–46.

143. Eminaga S, Palus V, Cherubini G. Acute spinal cord

injury in the cat: causes,treatment and prognosis. J Feline Med

Surg 2011;13(11):850–62.spontaneous hyperadrenocorticism in

dogs. Part 2: Adrenal function testing and differentiating tests[J].

The Veterinary Journal, 2019, 252?105343.

第123頁

小動物臨床前沿(神經(jīng)學(xué)專刊 - 上冊)· 腦部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 總第 12 期

- 121 -

其他免疫抑制劑

其他免疫抑制劑與潑尼松龍聯(lián)合治療MUO已有

報道,包括硫唑嘌呤 azathioprine (Wong et al.,

2010)、丙卡巴嗪 procarbazine (Cuddon, 2002;

Coates et al., 2007),洛莫司汀 lomustine (Uriarte et

al., 2007; Flegel et al., 2011)、長春新堿 vincristine 和

環(huán)磷酰胺 cyclophosphamide (Smith et al., 2009)、來

氟米特 leflunomide (Gregory et al., 1998)和嗎替麥考

酚酯 mycophenolate mofetil (Feliu-Pascual et al.,

2007; Barnoon et al., 2016)。

表1:對不明原因腦膜脊髓炎(MUO)犬的最常用治療方案的總結(jié)

在這些研究中描述了以下副作用: 使用丙卡巴嗪

可出現(xiàn)骨髓抑制(19%)和出血性腸炎(15%)(Coates et

al., 2007);洛莫司汀引起白細(xì)胞減少癥、嚴(yán)重血小板

減少癥和出血性胃腸炎(Flegel et al., 2011);長春新堿

和環(huán)磷酰胺可能導(dǎo)致骨髓抑制、出血性膀胱炎和子

宮積膿(Smith et al., 2009);在使用嗎替麥考酚酯治療

的前2周內(nèi)出現(xiàn)出血性腹瀉(Feliu-Pascual et al., 2007;

Barnoon et al., 2016)。該作者不能接受長春新堿和

環(huán)磷酰胺聯(lián)合使用的副作用,并將該方案排除在進

一步研究之外(Smith et al., 2009)。用硫唑嘌呤(n=

40)治療時,主要不良事件不常見,但包括皮膚變薄

或被毛不佳(13/40)、尿路感染(3/40)、嘔吐(3/40)、

角膜潰瘍(2/40)、糖尿病(2/40)、腎功能衰竭、角膜

結(jié)膜炎、前十字韌帶撕裂、肝腫物、乳腺腺瘤、淋

巴瘤、蠕形螨管理和單一關(guān)節(jié)的化膿/敗血性關(guān)節(jié)

炎。然而,許多不良反應(yīng),包括體重增加、被毛不

佳、高甘油三酯血癥、血小板增多癥和肝酶活性升

高,可能與同時給藥糖皮質(zhì)激素有關(guān)(Wong et al.,

2010)。

在一些研究中,中位生存時間(MSTs)如下:丙卡

巴嗪425天(Coates et al., 2007),洛莫司汀150-740

天(Uriarte et al., 2007; Flegel et al., 2011),長春新

堿和環(huán)磷酰胺198天(Smith et al., 2009),嗎替麥考

酚酯250天(Barnoon et al., 2016),硫唑嘌呤1834天

(Wong et al., 2010)。

放射療法

包括17例犬在內(nèi)的三項研究檢查了放射治療的

額外效果(Sisson et al., 1989; Munana and Luttgen,

1998; Beckmann et al., 2015)。其結(jié)果是MSTs為

404-476天,沒有任何早期或晚期放療反應(yīng)(Munana

and Luttgen, 1998; Beckmann et al., 2015)。

預(yù)后因素

由 于 MUO 通 常 被 認(rèn) 為 是 一 種 致 命 性 疾 病

(Munana and Luttgen, 1998),已有多項研究試圖確

定被診斷為 MUO 犬的預(yù)后因素。不幸的是,由于大多

數(shù)研究只包括數(shù)量相對較少的犬只,它們接受了不同

的治療方案,因此報告的結(jié)果相互矛盾,使得大多數(shù)

研究結(jié)果難以應(yīng)用于臨床。

在 52 例患有 MUO 犬中,較年輕的診斷年齡與

生存率的提高顯著相關(guān) (Oliphant et al., 2017)。在 42

例患有 GME 的犬中,Munana 和 Luttgen(1998) 報告

了局灶性 (21 只 ) 相對于多灶性 (21 只 ) 神經(jīng)癥狀的

STs 明顯更長。此外,與中樞神經(jīng)系統(tǒng)其他區(qū)域有局灶

性前腦癥狀的犬相比,有局灶性前腦信號的犬的 STs

明顯更長。有局灶性前腦癥狀的犬接受了放射治療,

與沒有接受放射治療的犬相比,接收放療的犬 ST 明

顯更長 (Munana and Luttgen, 1998)。然而,有局灶性

神經(jīng)癥狀的犬的存活率提高的發(fā)現(xiàn)在最近的研究中

沒有得到重復(fù),包括 187 例患有 MUO 的犬 (Coates

et al., 2007; Lowrie et al., 2013; Cornelis et al.,

2016a)。特別表現(xiàn)為抽搐發(fā)作或精神狀態(tài)改變的犬的

STs 明顯較短 (Bateman and Parent, 1999; Coates et

al., 2007; Granger et al., 2010),診斷后第一周內(nèi)死亡

的風(fēng)險明顯更高 (Cornelis et al., 2016a)。25 例 7 天

內(nèi)出現(xiàn)出現(xiàn)臨床癥狀的犬的 MST 明顯長于出現(xiàn)臨床

癥狀后 7 天以上出現(xiàn)的犬,這表明早期診斷和治療可

能會影響生存時間 (Barnoon et al., 2016)。

一項研究發(fā)現(xiàn),較低的腦脊液 TNCC 與 52 例

MUO 犬 的 生 存 率 改 善 顯 著 相 關(guān) (Oliphant et al.,

2017),而其他研究發(fā)現(xiàn),在 148 例 MUO 犬中,腦脊

液 TNCC 和蛋白濃度均對生存時間沒有影響 (Coates

et al., 2007; Cornelis et al., 2016a)。Lowrie 等 人

(2013) 的研究未能證明正常的腦脊液分析與預(yù)后改

善之間的關(guān)聯(lián),但在 39 例患有 MUO 的犬中發(fā)現(xiàn)了

異常的腦脊液分析與復(fù)發(fā)或不良預(yù)后之間的關(guān)聯(lián)

(Lowrie et al., 2013)。Mercier 和 Barnes Heller (2015)

的研究,16 例 MUO 犬在診斷后一個月重復(fù) CSF 分

析 MUO,結(jié)果表明,連續(xù) CSF 分析可能是一個監(jiān)測

MUO 犬糖皮質(zhì)激素單藥治療成功或失敗的有效工

具。需要注意的是,腦脊液分析總是帶有并發(fā)癥的風(fēng)

險的,包括神經(jīng)功能惡化和 / 或死亡,臨床醫(yī)生應(yīng)該權(quán)

衡任何好處與潛在風(fēng)險。此外,重復(fù)腦脊液分析需要

在全身麻醉下進行的,費用高昂。

MR 成像上的各種研究已經(jīng)評估了其可能的預(yù)后

價值,但迄今為止在 52 例 MUO 犬的大腦中線移位

(Oliphant et al., 2017),在 T1W 圖像上的增強,和 18

例 NME 巴哥犬的病變 (Young et al., 2009),和局灶

性,多灶狀或彌漫性異常的存在,包括 116 例 MUO

犬解剖定位、腫物效應(yīng)、腦疝、腦實質(zhì)和腦膜造影增強

(Cornelis et al., 2016a) 均與生存率無關(guān)。然而,腫物

效應(yīng)、可識別的腦溝缺失和枕骨大孔疝均與 MUO 犬

的死亡風(fēng)險增加顯著相關(guān),但這些發(fā)現(xiàn)與預(yù)后的相關(guān)

性較差,且不能預(yù)測長期結(jié)局 (Lowrie et al., 2013;

Lowrie et al., 2016)。39 例 MUO 犬在診斷 3 個月后

MRI 異常的完全好轉(zhuǎn)與良好的預(yù)后相關(guān) (Lowrie et

al., 2013)。

在一項研究中,39 例犬中有 65% 在診斷后 210

天內(nèi)復(fù)發(fā) (Lowrie et al., 2013)。此研究發(fā)現(xiàn) 3 個月時

腦脊液分析異常與復(fù)發(fā)風(fēng)險較高相關(guān),但 MRI 和腦脊

液分析聯(lián)合預(yù)測復(fù)發(fā)的敏感性高于單獨其中一種方

式。MRI 異常解完全好轉(zhuǎn)前停止治療往往會導(dǎo)致復(fù)發(fā)

(Lowrie et al.,2013)。

參考文獻:

1. Simpson S, Syring R, Otto C. Severe blunt trauma in

dogs: 235 cases (1997-2003). J Vet Emerg Crit Care (San Antonio) 2009;19(6):588–602.

2. Marioni-Henry K, Vite CH, Newton AL, et al. Prevalence

of diseases of the spinalcord of cats. J Vet Intern Med

2004;18(6):851–8.

3. Fluehmann G, Doherr MG, Jaggy A. Canine neurological

diseases in a referralhospital population between 1989 and

2000 in Switzerland. J Small Anim Pract2006;47(10):582–7.

4. Sande A, West C. Traumatic brain injury: a review of

pathophysiology and management.J Vet Emerg Crit Care (San

Antonio) 2010;20(2):177–90.

5. Dewey C. Emergency management of the head trauma

patient. Vet Clin NorthAm Small Anim Pract 2000;30?207–25.

6. Hopkins A. Head trauma. Vet Clin North Am Small Anim

Pract 1996;26?875–91.

7. Dewey C, Fletcher D. Head trauma management. In:

Dewey C, editor. A practicalguide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell;2008. p. 221–35.

8. Aries M, Czrosynka M, Budohoski K, et al. Continuous

determination of optimalcerebral perfusion pressure in traumatic brain injury. Crit Care Med 2012;40(8):2456–63.

9. Ling G, Marshall S, Moore D. Diagnosis and management of traumatic braininjury. Continuum 2010;16(6):27–40.

10. Kim J, Gean A. Imaging for the diagnosis and management of traumatic braininjury. Neurotherapeutics

2011;8(1):39–53.

11. Tsang K, Whitfield P. Traumatic brain injury: review of

current management strategies.Br J Oral Maxillofac Surg

2012;50?298–308.

12. Proulx J, Dhupa N. Severe brain injury: part I: pathophysiology. CompendContin Educ Vet 1998;20?897–905.

13. Fletcher DJ, Dewey CW. Spinal trauma management.

In: Dewey CW, editor.A practical guide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell; 2008. p.

405–17.

14. Johnson K, Vite C. Spinal cord injury. In: Silverstein D,

Hopper K, editors. Smallanimal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders;2009. p. 419–23.

15. Park EH, White GA, Tieber LM. Mechanisms of injury

and emergency care ofacute spinal cord injury in dogs and cats.

J Vet Emerg Crit Care (San Antonio)2012;22(2):160–78.

16. Olby N. The pathogenesis and treatment of acute

spinal cord injuries in dogs.Vet Clin North Am Small Anim Pract

2010;40(5):791–807.

17. Fletcher D, Syring R. Traumatic brain injury. In: Silverstein D, Hopper K, editors.Small animal critical care medicine.

1st edition. St Louis (MO): Elsevier Saunders;2009. p. 658–62.

18. Leonard SE, Kirby R. The role of glutamate, calcium

and magnesium in secondarybrain injury. J Vet Emerg Crit Care

2002;12(1):17–32.

19. McMichael M, Moore R. Ischemia and reperfusion

injury pathophysiology, part I.J Vet Emerg Crit Care (San Antonio) 2004;14(4):231–41.

20. Oyinbo C. Secondary injury mechanisms in traumatic

spinal cord injury: anugget of this multiply cascade. Acta Neurobiol Exp 2011;71(2):281–99.

21. Tator C, Fehlings M. Review of the secondary injury

theory of acute spinal cordtrauma with emphasis on vascular

mechanisms. J Neurosurg 1991;75(1):15–26.

22. Dooney N, Dagal A. Anesthetic considerations in acute

spinal cord trauma. Int JCrit Illn Inj Sci 2011;1(1):36–43.

23. Armitage-Chan E, Wetmore L, Chan D. Anesthetic

management of the headtrauma patient. J Vet Emerg Crit Care

(San Antonio) 2007;17(1):5–14.

24. Shores A. Craniocerebral trauma. In: Kirk R, editor. Current veterinary therapy X.X. Philadelphia: WB Saunders; 1983. p.

847–54.

25. Platt S, Radaelli S, McDonnell J. The prognostic value of

the Modified GlasgowComa Scale in head trauma in gods. J Vet

Intern Med 2001;15(6):581–4.

26. Levine GJ, Levine JM, Budke CM, et al. Description and

repeatability of anewly developed spinal cord injury scale for

dogs. Prev Vet Med 2009;89(1–2):121–7.

27. Olby N, De Risio L, Munana K, et al. Development of a

functional scoring systemin dogs with acute spinal cord injuries.

Am J Vet Res 2001;62(10):1624–8.

28. Smith P, Jeffery N. Spinal shock—comparative aspects

and clinical relevance.J Vet Intern Med 2005;19?788–93.

29. Boysen S, Rozanski E, Tidwell A, et al. Evaluation of a

focused assessment with sonography for trauma protocol to

detect free abdominal fluid in dogs involved in motor vehicle

accidents. J Am Vet Med Assoc 2004;225(8):1198–204.

30. Lisciandro GR. Abdominal and thoracic focused assessment with sonographyfor trauma, triage, and monitoring in small

animals. J Vet Emerg Crit Care(San Antonio) 2011;21(2):104–22.

31. Kinns J, Mai W, Seiler G, et al. Radiographic sensitivity

and negative predictive value for acute canine spinal trauma. Vet

Radiol Ultrasound 2006;47(6):563–70.

32. Vitale C, Coates J. Acute spinal injury. Compendium

Standards of Care: Emergencyand Critical Care Medicine

2007;9(7):1–11.

33. Lamb CR, Nicholls A, Targett M, et al. Accuracy of

survey radiographic diagnosis of intervertebral disc protrusion in

dogs. Vet Radiol Ultrasound 2002;43(3):222–8.

34. Brisson BA. Intervertebral disc disease in dogs. Vet Clin

North Am Small Anim Pract 2010;40(5):829–58.

35. Israel SK, Levine JM, Kerwin SC, et al. The relative sensitivity of computed tomography and myelography for identification of thoracolumbar intervertebral disk herniations in dogs. Vet

Radiol Ultrasound 2009;50(3):247–52.

36. Olby N, Dyce J, Houlton J. Correlation of plain radiographic and lumbar myelographic findings with surgical findings

in thoracolumbar disc disease. J SmallAnim Pract

1994;35(7):345–50.

37. Griffin J, Levine J, Kerwin S. Canine thoracolumbar

intervertebral disk disease:pathophysiology, neurologic examination, and emergency medical therapy.Compend Contin Educ

Vet 2009;31(3):E1–13.

38. Lewis D, Hosgood G. Complications associated with

the use of iohexol for myelographyof the cervical vertebral

column in dogs: 66 cases (1988-1990). J AmVet Med Assoc

1992;200(9):1381–4.

39. Barone G, Ziemer L, Shofer F, et al. Risk factors associated with the developmentof seizures after use of iohexol for

myelography in dogs: 182 cases(1998). J Am Vet Med Assoc

2002;220(10):1499–502.

40. Johnson P, Beltran E, Dennis R, et al. Magnetic resonance imaging characteristics of suspected vertebral instability

associated with fracture or subluxation in eleven dogs. Vet

Radiol Ultrasound 2012;53(5):552–9.

41. Rozanski EA, Rondeau MP. Respiratory pharmacotherapy in emergency and critical care medicine. Vet Clin North Am

Small Anim Pract 2002;32(5):1073–86.

42. Mazzaferro E. Oxygen therapy. In: Silverstein D, Hopper

K, editors. Small animal critical caremedicine. 1stedition. StLouis(MO): Elsevier Saunders; 2009.p. 78–81.

43. Hopper K. Basic mechanical ventilation. In: Silverstein

D, Hopper K, editors. Small animal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders; 2009. p. 900–4.

44. Zhuang J, Shackford S, Schmoker J, et al. Colloid infusion after brain injury: an effect on intracranial pressure, cerebral

blood flow, and oxygen delivery. Crit Care Med

1995;23(1):140–8.

45. Wade C, Grady J, Kramer G, et al. Individual patient

cohort analysis of the efficacy of hypertonic saline/dextran in

patients with traumatic brain injury and hypotension. J Trauma

1997;42?561–5.

46. Vassar M, Perry C, Gannaway W, et al. Analysis of

potential risks associated with 7.5% sodium chloride resuscitation of traumatic shock. Arch Surg 1990;124: 1309–15.

47. Vassar M, Perry C, Gannaway W, et al. 7.5% sodium

chloride/dextran for resuscitation of trauma patients undergoing

helicopter transport. Arch Surg 1991;126: 1065–72.

48. Vassar M, Perry C, Holcroft J. Prehospital resuscitation

of hypotensive trauma patients with 7.5% NaCl versus 7.5% NaCl

with added dextran: a controlled trial. J Trauma 1993;34?622–32.

49. Vassar M, Fisher R, O’ Brien P, et al. A multicenter trial

for resuscitation of injured patients with 7.5% sodium chloride.

Arch Surg 1993;128?1003–11.

50. Cooper J, Myles P, McDermott F, et al. Prehospital

hypertonic saline resuscitation of patients with hypotension and

severe traumatic brain injury. JAMA 2004;291?1350–7.

51. Roberts D, Hall R, Kramer A. Sedation for critically ill

adults with severe traumatic brain injury: a systematic review of

randomized controlled trials. CritCare Med 2012;39(12):2743–51.

52. Sperry R, Bailey P, Reichman M, et al. Fentanyl and

sulfentanil increase intracranial pressure in head trauma patients.

Anesthesiology 1992;77?416–20.

53. Lauer K, Connolly L, Schmeling W. Opioid sedation

does not alter intracranial pressure in head injured patients. Can

J Anaesth 1997;44?929–33.

54. Albanese J, Viviand X, Potie F, et al. Sulfentanil, fentanyl,

and alfentanil in head trauma patients: a study on cerebral

hemodynamics. Crit Care Med 1999;27?407–11.

55. de Nadal M, Munar F, Poca M, et al. Cerebral hemodynamic effects of morphine and fentanyl in patients with severe

head injury: absence of correlation to cerebral autoregulation.

Anesthesiology 2000;92?11–9.

56. Hansen B. Acute pain management. Vet Clin North Am

Small Anim Pract 2000;30(4):899–916.

57. Pascoe P. Opioid analgesics. Vet Clin North Am Small

Anim Pract 2000;30(4):757–69.

58. Keegan R, Green S, Bagley R, et al. Effects of medetomidine administration on intracranial pressure and cardiovascular variables of isoflurane-anesthetized dogs. Am J Vet Res

1996;56(2):193–8.

59. Treggiari M, Schultz N, Yanez N, et al. Role of intracranial pressure values and patterns in predicting outcome of traumatic brain injury: a systematic review. Neurocrit Care

2007;6?104–12.

60. Weed L, McKibbon P. Pressure changes in the cerebrospinal fluid following intravenous injection of solutions of various

concentrations. Am J Phys 1919;48?512–30.

61. Ropper A. Hyperosmolar therapy for raised intracranial

pressure. N Engl J Med 2012;367(8):746–52.

62. Brain Trauma Foundation, American Association of

Neurological Surgeons,Congress of Neurological Surgeons.

Guidelines for the management of severetraumatic brain injury. J

Neurotrauma 2007;24(1):S1–106.

63. Fink M. Osmotherapy for intracranial hypertension:

mannitol versus hypertonic saline. Continuum

2012;18(3):640–54.

64. Kaufmann A, Cardoso E. Aggravation of vasogenic

cerebral edema by multipledose mannitol. J Neurosurg

1992;77(4):584–9.

65. McManus M, Soriano S. Rebound swelling of astroglial

cells exposed to hypertonic mannitol. Anesthesiology

1998;88(6):1586–91.

66. Oddo M, Levine J, Frangos S, et al. Effect of mannitol

and hypertonic salineon cerebral oxygenation in patients with

severe traumatic brain injury and refractoryintracranial hypertension. J Neurol Neurosurg Psychiatr 2009;80(8):916–20.

67. Aiyagari V, Deibert E, Diringer M. Hypernatremia in the

neurologic intensive careunit: how high is too high? J Crit Care

2006;21(2):163–72.

68. Battison C, Andrews P, Graham C, et al. Randomized,

controlled trial on theeffect of a 20% mannitol solution and a

7.5% saline/6% dextran solution onincreased intracranial pressure after brain injury. Crit Care Med 2005;33(1):196–202.

69. Francony C, Fauvage B, Falcon D, et al. Equimolar

doses of mannitol and hypertonicsaline in the treatment of intracranial pressure. Crit Care Med 2008;36(3):795–800.

70. Zeng H, Wang Q, Deng Y, et al. A comparative study on

the efficacy of 10%hypertonic saline and equal volume of 20%

mannitol in the treatment of experimentallyinduced cerebral

edema in adult rats. BMC Neurosci 2010;11?153.

71. da Silva J, de Lima F, Valenca M, et al. Hypertonic saline

more efficacious thanmannitol in lethal intracranial hypertension

model. Neurol Res 2010;32(2):139–43.

72. Todd M, Cutkomp J, Brian J. Influence of mannitol and

furosemide, alone and incombination, on brain water content

after fluid percussion injury. Anesthesiology2006;105?1176–80.

73. Edwards P, Arango M, Balica L, et al. Final results of

MRC CRASH, a randomized placebo-controlled trial of intravenous corticosteroids in adults with headinjury- outcomes at 6

months. Lancet 2005;365(9475):1957–9.

74. Roberts I, Yates D, Sandercock P, et al. Effect of intravenous corticosteroids on death within 14 days in 10,008 adults

with clinically significant head injury (MRC CRASH trial): randomized placebo-controlled trial. Lancet 2004;364?9442.

75. Schierhout G, Roberts I. Withdrawn: antiepileptic drugs

for preventing seizures following acute traumatic brain injury.

Cochrane Database Syst Rev 2012;(6):CD000173.

76. Musulin S, Mariani C, Papich M. Diazepam pharmacokinetics after nasal drop and atomized nasal administration in

dogs. J Vet Pharmacol Ther 2011;34(1): 17–24.

77. Kassell N, Hitchon P, Gerk M, et al. Alterations in cerebral blood flow,oxygen metabolism, and electrical activity produced by high-dose thiopental.Neurosurgery 1980;7?598–603.

78. Hayes G. Severe seizures associated with traumatic

brain injury managed bycontrolled hypothermia, pharmacologic

coma, and mechanical ventilation in a dog. J Vet Emerg Crit Care

(San Antonio) 2009;19(6):629–34.

79. Giacino J, Whyte J, Bagiella E, et al. Placebo-controlled

trial of amantadine for severe traumatic brain injury. N Engl J

Med 2012;366?819–26.

80. Hall E. The neuroprotective pharmacology of methylprednisolone. J Neurosurg 1992;76(1):13–22.

81. Parker A, Smith C. Functional recovery from spinal cord

trauma following dexamethasone and chlorpromazine therapy in

dogs. Res Vet Sci 1976;21(2):246–7.

82. Levine J, Levine G, Boozer L, et al. Adverse effects and

outcome associatedwith dexamethasone administration in dogs

with acute thoracolumbar intervertebral disk herniation: 161

cases (2000-2006). J Am Vet Med Assoc 2008;232(3):411–7.

83. Bracken M, Shepard M, Collins W. A randomized, controlled trial of methylprednisolone or naloxone in the treatment

of acute spinal-cord injury. Results of the second national acute

spinal cord injury study. N Engl J Med 1990;322(20):1405–11.

84. Bracken M, Shepard M, Hellenbrand K. Methylprednisolone and neurologicalfunction 1 year after spinal cord injury.

Results of the National Acute Spinal Cord Injury Study. J Neurosurg 1985;63(5):704–13.

85. Bracken M, Shepard M, Holford T. Administration of

methylprednisolone for 24 or

48 hours or tirilazad mesylate for 48 hours in the treatment

of acute spinal cord injury. Results of the Third National Acute

Spinal Cord Injury Randomized Controlled Trial. National Acute

Spinal Cord Injury.JAMA 1997;277(20):1597–604.

86. Nesathurai S. Steroids and spinal cord injury: revisiting

the NASCIS 2 and NASCIS 3 trials. J Trauma Acute Care Surg

1998;45(6):1088–93.

87. Rabinowitz R, Eck J, Harper C. Urgent surgical decompression compared to methylprednisolone for the treatment of

acute spinal cord injury. Spine 2008;33(21):2260–8.

88. Coates J, Sorjonen D, Simpson S, et al. Clinicopathologic effects of a 21-aminosteroid compound (U74389G) and high

dose methylprednisolone onspinal cord function after simulated

spinal cord trauma. Vet Surg 1995;24?128–39.

89. Baltzer W, McMichael MA, Hosgood G. Randomized,

blinded, placebocontrolledclinical trial of N-acetylcysteine in

dogs with spinal cord trauma from acute intervertebral disc

disease. Spine 2008;33(13):1397–402.

90. Bains M, Hall E. Antioxidant therapies in traumatic brain

injury and spinal cord injury. Biochim Biophys Acta

2012;1822(5):675–84.

91. Hall E, Wolf D. A pharmacological analysis of the

pathophysiologicalmechanisms of posttraumatic spinal cord

ischemia. J Neurosurg 1986;64(6):951–61.

92. Ates O, Cayli S, Gurses I. Comparative neuroprotective

effect of sodium channel blockers after experimental spinal cord

injury. J Clin Neurosci 2007;14(7):658–65.

93. Kaptanoglu E, Solaroglu I, Surucu H. Blockade of

sodium channels by phenytoin protects ultrastructure and attenuates lipid peroxidation in experimental spinal cord injury. Acta

Neurochir 2005;147(4):405–12.

94. Hains B, Saab C, Lo A. Sodium channel blockade with

phenytoin protects spinal cord axons, enhances axonal conduction, and improves functional recovery after contusion SCI. Exp

Neurol 2004;188(2):365–77.

95. Schwartz G, Fehlings M. Secondary injury mechanisms

of spinal cord trauma:novel therapeutic approach for the management of secondary pathophysiology with the sodium channel blocker riluzole. Prog Brain Res 2002;137?177–90.

96. Park E, Velumian A, Fehlings M. The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with

an emphasis on the implications for white matter degeneration. J

Neurotrauma 2004;21?754–74.

97. Walters M, Kaste M, Lees K, et al. The AMPA antagonist

ZK 200775 in patients with acute ischaemic stroke: a double-blind, multi-centre, placebo-controlled safety and tolerability study. Cerebrovasc Dis 2005;20?304–9.

98. Chan P. White matter injury in spinal cord ischemia:

protection by AMPA/kainite glutamate receptor antagonism—Editoral comment. Stroke 2000;31?1952.

99. Chen HS, Lipton S. The chemical biology of clinically

tolerated NMDA receptor antagonists. J Neurochem

2006;97?1611–26.

100. Tadie M, D’ Arbigny P, Mathe J, et al. Acute spinal cord

injury. Early care and treatment in a multicenter study with

gacylidine. Soc Neurosci 1999;25?1090.

101. Kwon B, Okon E, Hillyer J. A systematic review of

non-invasive pharmacologic neuroprotective treatments for

acute spinal cord injury. J Neurotrauma 2011;28(8):1545–88.

102. Sturges B, LeCouteur R. Intracranial hypertension. In:

Silverstein D, Hopper K,editors. Small animal critical care medicine. 1st edition. St Louis (MO): ElsevierSaunders; 2009. p.

423–9.

103. Brain Trauma Foundation T, National Association of

State EMS Officials T,National Association of EMTs. Guidelines for

prehospital management of traumatic brain injury. Prehosp

Emerg Care 2007;12(1):1–52.

104. Davis D, Dunford J, Poste J, et al. The impact of hypoxia and hyperventilation on outcome after paramedic rapid

sequence intubation of severely head-injured patients. J Trauma

2004;57(1):1–8.

105. Muizelaar J, Marmarou A, Ward J, et al. Adverse effects

of prolonged hyperventilationin patients with severe head injury;

a randomized clinical trial. J Neurosurg 1991;75(5):731–9.

106. Deutschman C, Konstantinides F, Raup S. Physiological and metabolic response to isolated closed-head injury. Part i:

basal metabolic state: correlations of metabolic and physiological parameters with fasting and stressed controls. J Neurosurg

1986;64?89–98.

107. Jeremitsky E, Omert L, Dunham C, et al. The impact of

hyperglycemia on patients with severe brain injury. J Trauma

2005;58(1):47–50.

108. Syring R, Otto C, Drobatz K. Hyperglycemia in dogs

and cats with head trauma:122 cases (1997-1999). J Am Vet

Med Assoc 2001;218?1124–9.

109. Vespa P, McArthur D, Stein N, et al. Tight glycemic

control increases metabolic distress in traumatic brain injury: a

randomized controlled within subjects trial. Crit Care Med

2012;40(6):1923–9.

110. Green D, O’ Phelan K, Bassin S, et al. Intensive versus

conventional insulin therapy in critically ill neurologic patients.

Neurocrit Care 2010;13(3):299–306.

111. Bilotta F, Caramia R, Cernak I, et al. Intensive insulin

therapy after severe traumatic brain injury: randomized clinical

trial. Neurocrit Care 2008;9(2):159–66.

112. Dewey C. Urinary bladder management. In: Dewey

CW, editor. A practical guide to canine and feline neurology. St

Louis (MO): Elsevier Saunders; 2003. p. 419–26.

113. Bubenik L, Hosgood G. Urinary tract infection in dogs

with thoracolumbar intervertebral disc herniation and urinary

bladder dysfunction managed by manual expression, indwelling

catheterization or intermittent catheterization. Vet Surg

2008;37?791–800.

114. Smarick S, Haskins S, Aldrich J, et al. Incidence of

catheter-associated urinary tract infection among dogs in a

small animal intensive care unit. J Am Vet Med Assoc

2004;224(12):1936–40.

115. Ng I, Lim J, Wong H. Effects of head posture on cerebral hemodynamics its influences on intracranial pressure, cerebral perfusion pressure, and cerebral oxygenation. Neurosurgery

2004;54(3):593–7.

116. Sadaka F, Veremakis C. Therapeutic hypothermia for

the management of intracranial hypertension in severe traumatic

brain injury: a systematic review. Brain Inj 2012;26(7–8):899–908.

117. McCarthy P, Scott L, Ganta C, et al. Hypothermic protection in traumatic brain injury. Pathophysiology 2012;735–57.

118. Wijayatilake D, Shepherd S, Sherren P. Updates in the

management of intracranial pressure in traumatic brain injury.

Curr Opin Anaesthesiol 2012;25(5):540–7.

119. Hutchinson P, Corteen E, Czosnyka M, et al. Decompressive craniectomy intraumatic brain injury: the randomized

multicenter RESCUEicp study. Acta Neurochir 2006;96(S):17–20.

120. La Rosa G, Conti A, Cardali S, et al. Does early decompression improve neurological outcome of spinal cord injured

patients? Appraisal of the literature using a meta-analytical

approach. Spinal Cord 2004;42(9):503–12.

121. Croce M, Bee T, Pritchard E, et al. Does optimal timing

for spine fracture fixation exist? Ann Surg 2001;233(6):851–8.

122. Fehlings M, Perrin R. The timing of surgical intervention in the treatment of spinal cord injury: a systematic review of

recent clinical evidence. Spine 2006;31(11): S28–35.

123. Jeffery ND. Vertebral fracture and luxation in small

animals. Vet Clin North Am Small Anim Pract 2010;40(5):809–28.

124. Denis F. Spinal instability as defined by the three-column spine concept in acute spinal trauma. Clin Orthop Relat Res

1984;189?65–76.

125. Hillman R, Kengeri S, Waters D. Reevaluation of predictive factors for complete recovery in dogs with nonambulatory tetraparesis secondary to cervical disk herniation. J Am Anim

Hosp Assoc 2009;45?155–63.

126. Cherrone K, Dewey C, Coates J, et al. A retrospective

comparison of cervical intervertebral disk disease in nonchondrodystrophic large dogs versus small dogs. J Am Anim Hosp

Assoc 2004;40?316–20.

127. Gage E, Hoerlein B. Hemilaminectomy and dorsal

laminectomy for relieving compressions of the spinal cord in the

dog. J Am Vet Med Assoc 1968;152: 351–9.

128. Seim H 3rd, Prata R. Ventral decompression for the

treatment of cervical disk disease in the dog: a review of 54

cases. J Am Anim Hosp Assoc 1982;18: 233–40.

129. Gill P, Lippincott C, Anderson S. Dorsal laminectomy in

the treatment of cervical intervertebral disk disease in small

dogs: a retrospective study of 30 cases.J Am Anim Hosp Assoc

1996;32?77–80.

130. Felts J, Prata R. Cervical disk disease in the dog: intraforaminal and lateral extrusions. J Am Anim Hosp Assoc

1983;19?755–60.

131. Tanaka H, Nakayama M, Takase K. Usefulness of hemilaminectomy for cervical intervertebral disk disease in small

dogs. J Vet Med Sci 2005;67?679–83.

132. McCartney W. Comparison of recovery times and

complication rates between a modified slanted slot and the

standard ventral slot for the treatment of cervical disc disease in

20 dogs. J Small Anim Pract 2007;48?498–501.

133. Levine J, Levine G, Johnson S, et al. Evaluation of the

success of medical management for presumptive thoracolumbar

intervertebral disk herniation in dogs. Vet Surg 2007;36?482–91.

134. Kent M. Intraaxial spinal cord hemorrhage secondary

to atlantoaxial subluxationin a dog. J Am Anim Hosp Assoc

2010;46(2):132–7.

135. Cerda-Gonzalez S, Olby NJ. Fecal incontinence associated with epidural spinalhematoma and intervertebral disk

extrusion in a dog. J Am Vet Med Assoc 2006;228(2):230–5.

136. Caswell JL, Nykamp SG. Intradural vasculitis and hemorrhage in full sibling Welsh springer spaniels. Can Vet J

2003;44(2):137–9.

137. Tidwell AS, Specht A, Blaeser L, et al. Magnetic resonance imaging features ofextradural hematomas associated with

intervertebral disc herniation in a dog.Vet Radiol Ultrasound

2001;43(4):319–24.

138. Jeffery N, Lakatos A, Franklin R. Autologous olfactory

glial cell transplantation is eliable and safe in naturally occurring

spinal cord injury. J Neurotrauma 2005;22(11):1282–93.

139. Nishida H, Nakayama M, Tanaka H. Safety of autologous bone marrow stromal cell transplantation in dogs with

acute spinal cord injury. Vet Surg 2012;41?437–42.

140. Olby N, Levine J, Harris T. Long-term functional outcome of dogs with severe injuries of the thoracolumbar spinal

cord: 87 cases (1996-2001). J Am VetMed Assoc

2003;222(6):762–9.

141. Dewey CW. Myelopathies: disorders of the spinal cord.

In: Dewey CW, editor. A practical guide to canine and feline neurology. 2nd edition. Ames (IA):Wiley-Blackwell; 2008. p. 323–88.

142. Hawthorne J, Blevins W, Wallace L, et al. Cervical vertebral fractures in 56 dogs:a retrospective study. J Am Anim

Hosp Assoc 1999;35?135–46.

143. Eminaga S, Palus V, Cherubini G. Acute spinal cord

injury in the cat: causes,treatment and prognosis. J Feline Med

Surg 2011;13(11):850–62.spontaneous hyperadrenocorticism in

dogs. Part 2: Adrenal function testing and differentiating tests[J].

The Veterinary Journal, 2019, 252?105343.

Drug

藥物

Number of dogs included

納入犬病例數(shù)

Dose

劑量

References

參考文獻

單純潑尼松龍 116 0.5 –30 mg/kg/day

0.5 –30 mg/kg/ 天

Coates et al., 2007; Pakozdy et al.,

2009; Granger et al., 2010; Flegel et al.,

2011; Mercier and Barnes Heller, 2015;

Cornelis et al., 2017b

阿糖胞苷 158

CRI: 100 – 300 mg/m

緩慢輸注 8–24 小時

SC:48 小時內(nèi) 4次皮下注射 ,

50 mg/m

Cuddon, 2002; Zarfoss et al., 2006; de

Stefani et al., 2007; Menaut et al., 2008;

Smith et al., 2009; Lowrie et al., 2013;

Lowrie et al., 2016

環(huán)孢素 26 3–15 mg/kg PO

每 12 h一次

Adamo and O’Brien, 2004; Gnirs, 2006;

Adamo et al., 2007; Jung et al., 2007;

Pakozdy et al., 2009; Kang et al., 2010;

Jung et al., 2013

Drug

藥物

Side effects

副作用

Median survival

中位存活時間

References

參考文獻

單純潑尼松龍

多尿 、多飲 、氣喘 、肌肉

無力 、皮膚病變 、易感染

傾向 、肌肉萎縮 、胰島素

抵抗 、高血糖 、空泡性肝

病和血液高凝狀態(tài)

28 – 602 天

Coates et al., 2007; Pakozdy et al.,

2009; Granger et al., 2010; Flegel et al.,

2011; Mercier and Barnes Heller, 2015;

Cornelis et al., 2017b

阿糖胞苷

骨髓抑制 ,胃腸道不適 ,

治療后短暫嗜睡 ,吞咽困

難或肢體震顫 ; 輕度被毛和

皮膚變化 (脫毛增多 ,輕度

局灶性皮炎 ; 一過性至間歇

性后肢無力 ; 浸潤性的肺部

疾病 ; 前葡萄膜炎 ; 注射部

位皮膚鈣質(zhì)沉著和深部膿

皮病

26 – 1063 days

26 – 1063 天

Cuddon, 2002; Zarfoss et al., 2006; de

Stefani et al., 2007; Menaut et al., 2008;

Smith et al., 2009; Lowrie et al., 2013;

Lowrie et al., 2016

環(huán)孢素

多毛癥 ; 一過性淋巴細(xì)胞減

少癥 ; 嘔吐 ; 嚴(yán)重的胃腸道

不良反應(yīng) ,伴可能危及生

命的貧血

236 – 930 天

Adamo and O’Brien, 2004; Gnirs, 2006;

Adamo et al., 2007; Jung et al., 2007;

Pakozdy et al., 2009; Kang et al., 2010;

Jung et al., 2013

2

2

第124頁

小動物臨床前沿(神經(jīng)學(xué)專刊 - 上冊)· 腦部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 總第 12 期

- 122 -

其他免疫抑制劑

其他免疫抑制劑與潑尼松龍聯(lián)合治療MUO已有

報道,包括硫唑嘌呤 azathioprine (Wong et al.,

2010)、丙卡巴嗪 procarbazine (Cuddon, 2002;

Coates et al., 2007),洛莫司汀 lomustine (Uriarte et

al., 2007; Flegel et al., 2011)、長春新堿 vincristine 和

環(huán)磷酰胺 cyclophosphamide (Smith et al., 2009)、來

氟米特 leflunomide (Gregory et al., 1998)和嗎替麥考

酚酯 mycophenolate mofetil (Feliu-Pascual et al.,

2007; Barnoon et al., 2016)。

在這些研究中描述了以下副作用: 使用丙卡巴嗪

可出現(xiàn)骨髓抑制(19%)和出血性腸炎(15%)(Coates et

al., 2007);洛莫司汀引起白細(xì)胞減少癥、嚴(yán)重血小板

減少癥和出血性胃腸炎(Flegel et al., 2011);長春新堿

和環(huán)磷酰胺可能導(dǎo)致骨髓抑制、出血性膀胱炎和子

宮積膿(Smith et al., 2009);在使用嗎替麥考酚酯治療

的前2周內(nèi)出現(xiàn)出血性腹瀉(Feliu-Pascual et al., 2007;

Barnoon et al., 2016)。該作者不能接受長春新堿和

環(huán)磷酰胺聯(lián)合使用的副作用,并將該方案排除在進

一步研究之外(Smith et al., 2009)。用硫唑嘌呤(n=

40)治療時,主要不良事件不常見,但包括皮膚變薄

或被毛不佳(13/40)、尿路感染(3/40)、嘔吐(3/40)、

角膜潰瘍(2/40)、糖尿病(2/40)、腎功能衰竭、角膜

結(jié)膜炎、前十字韌帶撕裂、肝腫物、乳腺腺瘤、淋

巴瘤、蠕形螨管理和單一關(guān)節(jié)的化膿/敗血性關(guān)節(jié)

炎。然而,許多不良反應(yīng),包括體重增加、被毛不

佳、高甘油三酯血癥、血小板增多癥和肝酶活性升

高,可能與同時給藥糖皮質(zhì)激素有關(guān)(Wong et al.,

2010)。

在一些研究中,中位生存時間(MSTs)如下:丙卡

巴嗪425天(Coates et al., 2007),洛莫司汀150-740

天(Uriarte et al., 2007; Flegel et al., 2011),長春新

堿和環(huán)磷酰胺198天(Smith et al., 2009),嗎替麥考

酚酯250天(Barnoon et al., 2016),硫唑嘌呤1834天

(Wong et al., 2010)。

放射療法

包括17例犬在內(nèi)的三項研究檢查了放射治療的

額外效果(Sisson et al., 1989; Munana and Luttgen,

1998; Beckmann et al., 2015)。其結(jié)果是MSTs為

404-476天,沒有任何早期或晚期放療反應(yīng)(Munana

and Luttgen, 1998; Beckmann et al., 2015)。

預(yù)后因素

由 于 MUO 通 常 被 認(rèn) 為 是 一 種 致 命 性 疾 病

(Munana and Luttgen, 1998),已有多項研究試圖確

定被診斷為 MUO 犬的預(yù)后因素。不幸的是,由于大多

數(shù)研究只包括數(shù)量相對較少的犬只,它們接受了不同

的治療方案,因此報告的結(jié)果相互矛盾,使得大多數(shù)

研究結(jié)果難以應(yīng)用于臨床。

在 52 例患有 MUO 犬中,較年輕的診斷年齡與

生存率的提高顯著相關(guān) (Oliphant et al., 2017)。在 42

例患有 GME 的犬中,Munana 和 Luttgen(1998) 報告

了局灶性 (21 只 ) 相對于多灶性 (21 只 ) 神經(jīng)癥狀的

STs 明顯更長。此外,與中樞神經(jīng)系統(tǒng)其他區(qū)域有局灶

性前腦癥狀的犬相比,有局灶性前腦信號的犬的 STs

明顯更長。有局灶性前腦癥狀的犬接受了放射治療,

與沒有接受放射治療的犬相比,接收放療的犬 ST 明

顯更長 (Munana and Luttgen, 1998)。然而,有局灶性

神經(jīng)癥狀的犬的存活率提高的發(fā)現(xiàn)在最近的研究中

沒有得到重復(fù),包括 187 例患有 MUO 的犬 (Coates

et al., 2007; Lowrie et al., 2013; Cornelis et al.,

2016a)。特別表現(xiàn)為抽搐發(fā)作或精神狀態(tài)改變的犬的

STs 明顯較短 (Bateman and Parent, 1999; Coates et

al., 2007; Granger et al., 2010),診斷后第一周內(nèi)死亡

的風(fēng)險明顯更高 (Cornelis et al., 2016a)。25 例 7 天

內(nèi)出現(xiàn)出現(xiàn)臨床癥狀的犬的 MST 明顯長于出現(xiàn)臨床

癥狀后 7 天以上出現(xiàn)的犬,這表明早期診斷和治療可

能會影響生存時間 (Barnoon et al., 2016)。

一項研究發(fā)現(xiàn),較低的腦脊液 TNCC 與 52 例

MUO 犬 的 生 存 率 改 善 顯 著 相 關(guān) (Oliphant et al.,

2017),而其他研究發(fā)現(xiàn),在 148 例 MUO 犬中,腦脊

液 TNCC 和蛋白濃度均對生存時間沒有影響 (Coates

et al., 2007; Cornelis et al., 2016a)。Lowrie 等 人

(2013) 的研究未能證明正常的腦脊液分析與預(yù)后改

善之間的關(guān)聯(lián),但在 39 例患有 MUO 的犬中發(fā)現(xiàn)了

異常的腦脊液分析與復(fù)發(fā)或不良預(yù)后之間的關(guān)聯(lián)

(Lowrie et al., 2013)。Mercier 和 Barnes Heller (2015)

的研究,16 例 MUO 犬在診斷后一個月重復(fù) CSF 分

析 MUO,結(jié)果表明,連續(xù) CSF 分析可能是一個監(jiān)測

MUO 犬糖皮質(zhì)激素單藥治療成功或失敗的有效工

具。需要注意的是,腦脊液分析總是帶有并發(fā)癥的風(fēng)

險的,包括神經(jīng)功能惡化和 / 或死亡,臨床醫(yī)生應(yīng)該權(quán)

衡任何好處與潛在風(fēng)險。此外,重復(fù)腦脊液分析需要

在全身麻醉下進行的,費用高昂。

MR 成像上的各種研究已經(jīng)評估了其可能的預(yù)后

價值,但迄今為止在 52 例 MUO 犬的大腦中線移位

(Oliphant et al., 2017),在 T1W 圖像上的增強,和 18

例 NME 巴哥犬的病變 (Young et al., 2009),和局灶

性,多灶狀或彌漫性異常的存在,包括 116 例 MUO

犬解剖定位、腫物效應(yīng)、腦疝、腦實質(zhì)和腦膜造影增強

(Cornelis et al., 2016a) 均與生存率無關(guān)。然而,腫物

效應(yīng)、可識別的腦溝缺失和枕骨大孔疝均與 MUO 犬

的死亡風(fēng)險增加顯著相關(guān),但這些發(fā)現(xiàn)與預(yù)后的相關(guān)

性較差,且不能預(yù)測長期結(jié)局 (Lowrie et al., 2013;

Lowrie et al., 2016)。39 例 MUO 犬在診斷 3 個月后

MRI 異常的完全好轉(zhuǎn)與良好的預(yù)后相關(guān) (Lowrie et

al., 2013)。

在一項研究中,39 例犬中有 65% 在診斷后 210

天內(nèi)復(fù)發(fā) (Lowrie et al., 2013)。此研究發(fā)現(xiàn) 3 個月時

腦脊液分析異常與復(fù)發(fā)風(fēng)險較高相關(guān),但 MRI 和腦脊

液分析聯(lián)合預(yù)測復(fù)發(fā)的敏感性高于單獨其中一種方

式。MRI 異常解完全好轉(zhuǎn)前停止治療往往會導(dǎo)致復(fù)發(fā)

(Lowrie et al.,2013)。

參考文獻:

1. Simpson S, Syring R, Otto C. Severe blunt trauma in

dogs: 235 cases (1997-2003). J Vet Emerg Crit Care (San Antonio) 2009;19(6):588–602.

2. Marioni-Henry K, Vite CH, Newton AL, et al. Prevalence

of diseases of the spinalcord of cats. J Vet Intern Med

2004;18(6):851–8.

3. Fluehmann G, Doherr MG, Jaggy A. Canine neurological

diseases in a referralhospital population between 1989 and

2000 in Switzerland. J Small Anim Pract2006;47(10):582–7.

4. Sande A, West C. Traumatic brain injury: a review of

pathophysiology and management.J Vet Emerg Crit Care (San

Antonio) 2010;20(2):177–90.

5. Dewey C. Emergency management of the head trauma

patient. Vet Clin NorthAm Small Anim Pract 2000;30?207–25.

6. Hopkins A. Head trauma. Vet Clin North Am Small Anim

Pract 1996;26?875–91.

7. Dewey C, Fletcher D. Head trauma management. In:

Dewey C, editor. A practicalguide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell;2008. p. 221–35.

8. Aries M, Czrosynka M, Budohoski K, et al. Continuous

determination of optimalcerebral perfusion pressure in traumatic brain injury. Crit Care Med 2012;40(8):2456–63.

9. Ling G, Marshall S, Moore D. Diagnosis and management of traumatic braininjury. Continuum 2010;16(6):27–40.

10. Kim J, Gean A. Imaging for the diagnosis and management of traumatic braininjury. Neurotherapeutics

2011;8(1):39–53.

11. Tsang K, Whitfield P. Traumatic brain injury: review of

current management strategies.Br J Oral Maxillofac Surg

2012;50?298–308.

12. Proulx J, Dhupa N. Severe brain injury: part I: pathophysiology. CompendContin Educ Vet 1998;20?897–905.

13. Fletcher DJ, Dewey CW. Spinal trauma management.

In: Dewey CW, editor.A practical guide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell; 2008. p.

405–17.

14. Johnson K, Vite C. Spinal cord injury. In: Silverstein D,

Hopper K, editors. Smallanimal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders;2009. p. 419–23.

15. Park EH, White GA, Tieber LM. Mechanisms of injury

and emergency care ofacute spinal cord injury in dogs and cats.

J Vet Emerg Crit Care (San Antonio)2012;22(2):160–78.

16. Olby N. The pathogenesis and treatment of acute

spinal cord injuries in dogs.Vet Clin North Am Small Anim Pract

2010;40(5):791–807.

17. Fletcher D, Syring R. Traumatic brain injury. In: Silverstein D, Hopper K, editors.Small animal critical care medicine.

1st edition. St Louis (MO): Elsevier Saunders;2009. p. 658–62.

18. Leonard SE, Kirby R. The role of glutamate, calcium

and magnesium in secondarybrain injury. J Vet Emerg Crit Care

2002;12(1):17–32.

19. McMichael M, Moore R. Ischemia and reperfusion

injury pathophysiology, part I.J Vet Emerg Crit Care (San Antonio) 2004;14(4):231–41.

20. Oyinbo C. Secondary injury mechanisms in traumatic

spinal cord injury: anugget of this multiply cascade. Acta Neurobiol Exp 2011;71(2):281–99.

21. Tator C, Fehlings M. Review of the secondary injury

theory of acute spinal cordtrauma with emphasis on vascular

mechanisms. J Neurosurg 1991;75(1):15–26.

22. Dooney N, Dagal A. Anesthetic considerations in acute

spinal cord trauma. Int JCrit Illn Inj Sci 2011;1(1):36–43.

23. Armitage-Chan E, Wetmore L, Chan D. Anesthetic

management of the headtrauma patient. J Vet Emerg Crit Care

(San Antonio) 2007;17(1):5–14.

24. Shores A. Craniocerebral trauma. In: Kirk R, editor. Current veterinary therapy X.X. Philadelphia: WB Saunders; 1983. p.

847–54.

25. Platt S, Radaelli S, McDonnell J. The prognostic value of

the Modified GlasgowComa Scale in head trauma in gods. J Vet

Intern Med 2001;15(6):581–4.

26. Levine GJ, Levine JM, Budke CM, et al. Description and

repeatability of anewly developed spinal cord injury scale for

dogs. Prev Vet Med 2009;89(1–2):121–7.

27. Olby N, De Risio L, Munana K, et al. Development of a

functional scoring systemin dogs with acute spinal cord injuries.

Am J Vet Res 2001;62(10):1624–8.

28. Smith P, Jeffery N. Spinal shock—comparative aspects

and clinical relevance.J Vet Intern Med 2005;19?788–93.

29. Boysen S, Rozanski E, Tidwell A, et al. Evaluation of a

focused assessment with sonography for trauma protocol to

detect free abdominal fluid in dogs involved in motor vehicle

accidents. J Am Vet Med Assoc 2004;225(8):1198–204.

30. Lisciandro GR. Abdominal and thoracic focused assessment with sonographyfor trauma, triage, and monitoring in small

animals. J Vet Emerg Crit Care(San Antonio) 2011;21(2):104–22.

31. Kinns J, Mai W, Seiler G, et al. Radiographic sensitivity

and negative predictive value for acute canine spinal trauma. Vet

Radiol Ultrasound 2006;47(6):563–70.

32. Vitale C, Coates J. Acute spinal injury. Compendium

Standards of Care: Emergencyand Critical Care Medicine

2007;9(7):1–11.

33. Lamb CR, Nicholls A, Targett M, et al. Accuracy of

survey radiographic diagnosis of intervertebral disc protrusion in

dogs. Vet Radiol Ultrasound 2002;43(3):222–8.

34. Brisson BA. Intervertebral disc disease in dogs. Vet Clin

North Am Small Anim Pract 2010;40(5):829–58.

35. Israel SK, Levine JM, Kerwin SC, et al. The relative sensitivity of computed tomography and myelography for identification of thoracolumbar intervertebral disk herniations in dogs. Vet

Radiol Ultrasound 2009;50(3):247–52.

36. Olby N, Dyce J, Houlton J. Correlation of plain radiographic and lumbar myelographic findings with surgical findings

in thoracolumbar disc disease. J SmallAnim Pract

1994;35(7):345–50.

37. Griffin J, Levine J, Kerwin S. Canine thoracolumbar

intervertebral disk disease:pathophysiology, neurologic examination, and emergency medical therapy.Compend Contin Educ

Vet 2009;31(3):E1–13.

38. Lewis D, Hosgood G. Complications associated with

the use of iohexol for myelographyof the cervical vertebral

column in dogs: 66 cases (1988-1990). J AmVet Med Assoc

1992;200(9):1381–4.

39. Barone G, Ziemer L, Shofer F, et al. Risk factors associated with the developmentof seizures after use of iohexol for

myelography in dogs: 182 cases(1998). J Am Vet Med Assoc

2002;220(10):1499–502.

40. Johnson P, Beltran E, Dennis R, et al. Magnetic resonance imaging characteristics of suspected vertebral instability

associated with fracture or subluxation in eleven dogs. Vet

Radiol Ultrasound 2012;53(5):552–9.

41. Rozanski EA, Rondeau MP. Respiratory pharmacotherapy in emergency and critical care medicine. Vet Clin North Am

Small Anim Pract 2002;32(5):1073–86.

42. Mazzaferro E. Oxygen therapy. In: Silverstein D, Hopper

K, editors. Small animal critical caremedicine. 1stedition. StLouis(MO): Elsevier Saunders; 2009.p. 78–81.

43. Hopper K. Basic mechanical ventilation. In: Silverstein

D, Hopper K, editors. Small animal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders; 2009. p. 900–4.

44. Zhuang J, Shackford S, Schmoker J, et al. Colloid infusion after brain injury: an effect on intracranial pressure, cerebral

blood flow, and oxygen delivery. Crit Care Med

1995;23(1):140–8.

45. Wade C, Grady J, Kramer G, et al. Individual patient

cohort analysis of the efficacy of hypertonic saline/dextran in

patients with traumatic brain injury and hypotension. J Trauma

1997;42?561–5.

46. Vassar M, Perry C, Gannaway W, et al. Analysis of

potential risks associated with 7.5% sodium chloride resuscitation of traumatic shock. Arch Surg 1990;124: 1309–15.

47. Vassar M, Perry C, Gannaway W, et al. 7.5% sodium

chloride/dextran for resuscitation of trauma patients undergoing

helicopter transport. Arch Surg 1991;126: 1065–72.

48. Vassar M, Perry C, Holcroft J. Prehospital resuscitation

of hypotensive trauma patients with 7.5% NaCl versus 7.5% NaCl

with added dextran: a controlled trial. J Trauma 1993;34?622–32.

49. Vassar M, Fisher R, O’ Brien P, et al. A multicenter trial

for resuscitation of injured patients with 7.5% sodium chloride.

Arch Surg 1993;128?1003–11.

50. Cooper J, Myles P, McDermott F, et al. Prehospital

hypertonic saline resuscitation of patients with hypotension and

severe traumatic brain injury. JAMA 2004;291?1350–7.

51. Roberts D, Hall R, Kramer A. Sedation for critically ill

adults with severe traumatic brain injury: a systematic review of

randomized controlled trials. CritCare Med 2012;39(12):2743–51.

52. Sperry R, Bailey P, Reichman M, et al. Fentanyl and

sulfentanil increase intracranial pressure in head trauma patients.

Anesthesiology 1992;77?416–20.

53. Lauer K, Connolly L, Schmeling W. Opioid sedation

does not alter intracranial pressure in head injured patients. Can

J Anaesth 1997;44?929–33.

54. Albanese J, Viviand X, Potie F, et al. Sulfentanil, fentanyl,

and alfentanil in head trauma patients: a study on cerebral

hemodynamics. Crit Care Med 1999;27?407–11.

55. de Nadal M, Munar F, Poca M, et al. Cerebral hemodynamic effects of morphine and fentanyl in patients with severe

head injury: absence of correlation to cerebral autoregulation.

Anesthesiology 2000;92?11–9.

56. Hansen B. Acute pain management. Vet Clin North Am

Small Anim Pract 2000;30(4):899–916.

57. Pascoe P. Opioid analgesics. Vet Clin North Am Small

Anim Pract 2000;30(4):757–69.

58. Keegan R, Green S, Bagley R, et al. Effects of medetomidine administration on intracranial pressure and cardiovascular variables of isoflurane-anesthetized dogs. Am J Vet Res

1996;56(2):193–8.

59. Treggiari M, Schultz N, Yanez N, et al. Role of intracranial pressure values and patterns in predicting outcome of traumatic brain injury: a systematic review. Neurocrit Care

2007;6?104–12.

60. Weed L, McKibbon P. Pressure changes in the cerebrospinal fluid following intravenous injection of solutions of various

concentrations. Am J Phys 1919;48?512–30.

61. Ropper A. Hyperosmolar therapy for raised intracranial

pressure. N Engl J Med 2012;367(8):746–52.

62. Brain Trauma Foundation, American Association of

Neurological Surgeons,Congress of Neurological Surgeons.

Guidelines for the management of severetraumatic brain injury. J

Neurotrauma 2007;24(1):S1–106.

63. Fink M. Osmotherapy for intracranial hypertension:

mannitol versus hypertonic saline. Continuum

2012;18(3):640–54.

64. Kaufmann A, Cardoso E. Aggravation of vasogenic

cerebral edema by multipledose mannitol. J Neurosurg

1992;77(4):584–9.

65. McManus M, Soriano S. Rebound swelling of astroglial

cells exposed to hypertonic mannitol. Anesthesiology

1998;88(6):1586–91.

66. Oddo M, Levine J, Frangos S, et al. Effect of mannitol

and hypertonic salineon cerebral oxygenation in patients with

severe traumatic brain injury and refractoryintracranial hypertension. J Neurol Neurosurg Psychiatr 2009;80(8):916–20.

67. Aiyagari V, Deibert E, Diringer M. Hypernatremia in the

neurologic intensive careunit: how high is too high? J Crit Care

2006;21(2):163–72.

68. Battison C, Andrews P, Graham C, et al. Randomized,

controlled trial on theeffect of a 20% mannitol solution and a

7.5% saline/6% dextran solution onincreased intracranial pressure after brain injury. Crit Care Med 2005;33(1):196–202.

69. Francony C, Fauvage B, Falcon D, et al. Equimolar

doses of mannitol and hypertonicsaline in the treatment of intracranial pressure. Crit Care Med 2008;36(3):795–800.

70. Zeng H, Wang Q, Deng Y, et al. A comparative study on

the efficacy of 10%hypertonic saline and equal volume of 20%

mannitol in the treatment of experimentallyinduced cerebral

edema in adult rats. BMC Neurosci 2010;11?153.

71. da Silva J, de Lima F, Valenca M, et al. Hypertonic saline

more efficacious thanmannitol in lethal intracranial hypertension

model. Neurol Res 2010;32(2):139–43.

72. Todd M, Cutkomp J, Brian J. Influence of mannitol and

furosemide, alone and incombination, on brain water content

after fluid percussion injury. Anesthesiology2006;105?1176–80.

73. Edwards P, Arango M, Balica L, et al. Final results of

MRC CRASH, a randomized placebo-controlled trial of intravenous corticosteroids in adults with headinjury- outcomes at 6

months. Lancet 2005;365(9475):1957–9.

74. Roberts I, Yates D, Sandercock P, et al. Effect of intravenous corticosteroids on death within 14 days in 10,008 adults

with clinically significant head injury (MRC CRASH trial): randomized placebo-controlled trial. Lancet 2004;364?9442.

75. Schierhout G, Roberts I. Withdrawn: antiepileptic drugs

for preventing seizures following acute traumatic brain injury.

Cochrane Database Syst Rev 2012;(6):CD000173.

76. Musulin S, Mariani C, Papich M. Diazepam pharmacokinetics after nasal drop and atomized nasal administration in

dogs. J Vet Pharmacol Ther 2011;34(1): 17–24.

77. Kassell N, Hitchon P, Gerk M, et al. Alterations in cerebral blood flow,oxygen metabolism, and electrical activity produced by high-dose thiopental.Neurosurgery 1980;7?598–603.

78. Hayes G. Severe seizures associated with traumatic

brain injury managed bycontrolled hypothermia, pharmacologic

coma, and mechanical ventilation in a dog. J Vet Emerg Crit Care

(San Antonio) 2009;19(6):629–34.

79. Giacino J, Whyte J, Bagiella E, et al. Placebo-controlled

trial of amantadine for severe traumatic brain injury. N Engl J

Med 2012;366?819–26.

80. Hall E. The neuroprotective pharmacology of methylprednisolone. J Neurosurg 1992;76(1):13–22.

81. Parker A, Smith C. Functional recovery from spinal cord

trauma following dexamethasone and chlorpromazine therapy in

dogs. Res Vet Sci 1976;21(2):246–7.

82. Levine J, Levine G, Boozer L, et al. Adverse effects and

outcome associatedwith dexamethasone administration in dogs

with acute thoracolumbar intervertebral disk herniation: 161

cases (2000-2006). J Am Vet Med Assoc 2008;232(3):411–7.

83. Bracken M, Shepard M, Collins W. A randomized, controlled trial of methylprednisolone or naloxone in the treatment

of acute spinal-cord injury. Results of the second national acute

spinal cord injury study. N Engl J Med 1990;322(20):1405–11.

84. Bracken M, Shepard M, Hellenbrand K. Methylprednisolone and neurologicalfunction 1 year after spinal cord injury.

Results of the National Acute Spinal Cord Injury Study. J Neurosurg 1985;63(5):704–13.

85. Bracken M, Shepard M, Holford T. Administration of

methylprednisolone for 24 or

48 hours or tirilazad mesylate for 48 hours in the treatment

of acute spinal cord injury. Results of the Third National Acute

Spinal Cord Injury Randomized Controlled Trial. National Acute

Spinal Cord Injury.JAMA 1997;277(20):1597–604.

86. Nesathurai S. Steroids and spinal cord injury: revisiting

the NASCIS 2 and NASCIS 3 trials. J Trauma Acute Care Surg

1998;45(6):1088–93.

87. Rabinowitz R, Eck J, Harper C. Urgent surgical decompression compared to methylprednisolone for the treatment of

acute spinal cord injury. Spine 2008;33(21):2260–8.

88. Coates J, Sorjonen D, Simpson S, et al. Clinicopathologic effects of a 21-aminosteroid compound (U74389G) and high

dose methylprednisolone onspinal cord function after simulated

spinal cord trauma. Vet Surg 1995;24?128–39.

89. Baltzer W, McMichael MA, Hosgood G. Randomized,

blinded, placebocontrolledclinical trial of N-acetylcysteine in

dogs with spinal cord trauma from acute intervertebral disc

disease. Spine 2008;33(13):1397–402.

90. Bains M, Hall E. Antioxidant therapies in traumatic brain

injury and spinal cord injury. Biochim Biophys Acta

2012;1822(5):675–84.

91. Hall E, Wolf D. A pharmacological analysis of the

pathophysiologicalmechanisms of posttraumatic spinal cord

ischemia. J Neurosurg 1986;64(6):951–61.

92. Ates O, Cayli S, Gurses I. Comparative neuroprotective

effect of sodium channel blockers after experimental spinal cord

injury. J Clin Neurosci 2007;14(7):658–65.

93. Kaptanoglu E, Solaroglu I, Surucu H. Blockade of

sodium channels by phenytoin protects ultrastructure and attenuates lipid peroxidation in experimental spinal cord injury. Acta

Neurochir 2005;147(4):405–12.

94. Hains B, Saab C, Lo A. Sodium channel blockade with

phenytoin protects spinal cord axons, enhances axonal conduction, and improves functional recovery after contusion SCI. Exp

Neurol 2004;188(2):365–77.

95. Schwartz G, Fehlings M. Secondary injury mechanisms

of spinal cord trauma:novel therapeutic approach for the management of secondary pathophysiology with the sodium channel blocker riluzole. Prog Brain Res 2002;137?177–90.

96. Park E, Velumian A, Fehlings M. The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with

an emphasis on the implications for white matter degeneration. J

Neurotrauma 2004;21?754–74.

97. Walters M, Kaste M, Lees K, et al. The AMPA antagonist

ZK 200775 in patients with acute ischaemic stroke: a double-blind, multi-centre, placebo-controlled safety and tolerability study. Cerebrovasc Dis 2005;20?304–9.

98. Chan P. White matter injury in spinal cord ischemia:

protection by AMPA/kainite glutamate receptor antagonism—Editoral comment. Stroke 2000;31?1952.

99. Chen HS, Lipton S. The chemical biology of clinically

tolerated NMDA receptor antagonists. J Neurochem

2006;97?1611–26.

100. Tadie M, D’ Arbigny P, Mathe J, et al. Acute spinal cord

injury. Early care and treatment in a multicenter study with

gacylidine. Soc Neurosci 1999;25?1090.

101. Kwon B, Okon E, Hillyer J. A systematic review of

non-invasive pharmacologic neuroprotective treatments for

acute spinal cord injury. J Neurotrauma 2011;28(8):1545–88.

102. Sturges B, LeCouteur R. Intracranial hypertension. In:

Silverstein D, Hopper K,editors. Small animal critical care medicine. 1st edition. St Louis (MO): ElsevierSaunders; 2009. p.

423–9.

103. Brain Trauma Foundation T, National Association of

State EMS Officials T,National Association of EMTs. Guidelines for

prehospital management of traumatic brain injury. Prehosp

Emerg Care 2007;12(1):1–52.

104. Davis D, Dunford J, Poste J, et al. The impact of hypoxia and hyperventilation on outcome after paramedic rapid

sequence intubation of severely head-injured patients. J Trauma

2004;57(1):1–8.

105. Muizelaar J, Marmarou A, Ward J, et al. Adverse effects

of prolonged hyperventilationin patients with severe head injury;

a randomized clinical trial. J Neurosurg 1991;75(5):731–9.

106. Deutschman C, Konstantinides F, Raup S. Physiological and metabolic response to isolated closed-head injury. Part i:

basal metabolic state: correlations of metabolic and physiological parameters with fasting and stressed controls. J Neurosurg

1986;64?89–98.

107. Jeremitsky E, Omert L, Dunham C, et al. The impact of

hyperglycemia on patients with severe brain injury. J Trauma

2005;58(1):47–50.

108. Syring R, Otto C, Drobatz K. Hyperglycemia in dogs

and cats with head trauma:122 cases (1997-1999). J Am Vet

Med Assoc 2001;218?1124–9.

109. Vespa P, McArthur D, Stein N, et al. Tight glycemic

control increases metabolic distress in traumatic brain injury: a

randomized controlled within subjects trial. Crit Care Med

2012;40(6):1923–9.

110. Green D, O’ Phelan K, Bassin S, et al. Intensive versus

conventional insulin therapy in critically ill neurologic patients.

Neurocrit Care 2010;13(3):299–306.

111. Bilotta F, Caramia R, Cernak I, et al. Intensive insulin

therapy after severe traumatic brain injury: randomized clinical

trial. Neurocrit Care 2008;9(2):159–66.

112. Dewey C. Urinary bladder management. In: Dewey

CW, editor. A practical guide to canine and feline neurology. St

Louis (MO): Elsevier Saunders; 2003. p. 419–26.

113. Bubenik L, Hosgood G. Urinary tract infection in dogs

with thoracolumbar intervertebral disc herniation and urinary

bladder dysfunction managed by manual expression, indwelling

catheterization or intermittent catheterization. Vet Surg

2008;37?791–800.

114. Smarick S, Haskins S, Aldrich J, et al. Incidence of

catheter-associated urinary tract infection among dogs in a

small animal intensive care unit. J Am Vet Med Assoc

2004;224(12):1936–40.

115. Ng I, Lim J, Wong H. Effects of head posture on cerebral hemodynamics its influences on intracranial pressure, cerebral perfusion pressure, and cerebral oxygenation. Neurosurgery

2004;54(3):593–7.

116. Sadaka F, Veremakis C. Therapeutic hypothermia for

the management of intracranial hypertension in severe traumatic

brain injury: a systematic review. Brain Inj 2012;26(7–8):899–908.

117. McCarthy P, Scott L, Ganta C, et al. Hypothermic protection in traumatic brain injury. Pathophysiology 2012;735–57.

118. Wijayatilake D, Shepherd S, Sherren P. Updates in the

management of intracranial pressure in traumatic brain injury.

Curr Opin Anaesthesiol 2012;25(5):540–7.

119. Hutchinson P, Corteen E, Czosnyka M, et al. Decompressive craniectomy intraumatic brain injury: the randomized

multicenter RESCUEicp study. Acta Neurochir 2006;96(S):17–20.

120. La Rosa G, Conti A, Cardali S, et al. Does early decompression improve neurological outcome of spinal cord injured

patients? Appraisal of the literature using a meta-analytical

approach. Spinal Cord 2004;42(9):503–12.

121. Croce M, Bee T, Pritchard E, et al. Does optimal timing

for spine fracture fixation exist? Ann Surg 2001;233(6):851–8.

122. Fehlings M, Perrin R. The timing of surgical intervention in the treatment of spinal cord injury: a systematic review of

recent clinical evidence. Spine 2006;31(11): S28–35.

123. Jeffery ND. Vertebral fracture and luxation in small

animals. Vet Clin North Am Small Anim Pract 2010;40(5):809–28.

124. Denis F. Spinal instability as defined by the three-column spine concept in acute spinal trauma. Clin Orthop Relat Res

1984;189?65–76.

125. Hillman R, Kengeri S, Waters D. Reevaluation of predictive factors for complete recovery in dogs with nonambulatory tetraparesis secondary to cervical disk herniation. J Am Anim

Hosp Assoc 2009;45?155–63.

126. Cherrone K, Dewey C, Coates J, et al. A retrospective

comparison of cervical intervertebral disk disease in nonchondrodystrophic large dogs versus small dogs. J Am Anim Hosp

Assoc 2004;40?316–20.

127. Gage E, Hoerlein B. Hemilaminectomy and dorsal

laminectomy for relieving compressions of the spinal cord in the

dog. J Am Vet Med Assoc 1968;152: 351–9.

128. Seim H 3rd, Prata R. Ventral decompression for the

treatment of cervical disk disease in the dog: a review of 54

cases. J Am Anim Hosp Assoc 1982;18: 233–40.

129. Gill P, Lippincott C, Anderson S. Dorsal laminectomy in

the treatment of cervical intervertebral disk disease in small

dogs: a retrospective study of 30 cases.J Am Anim Hosp Assoc

1996;32?77–80.

130. Felts J, Prata R. Cervical disk disease in the dog: intraforaminal and lateral extrusions. J Am Anim Hosp Assoc

1983;19?755–60.

131. Tanaka H, Nakayama M, Takase K. Usefulness of hemilaminectomy for cervical intervertebral disk disease in small

dogs. J Vet Med Sci 2005;67?679–83.

132. McCartney W. Comparison of recovery times and

complication rates between a modified slanted slot and the

standard ventral slot for the treatment of cervical disc disease in

20 dogs. J Small Anim Pract 2007;48?498–501.

133. Levine J, Levine G, Johnson S, et al. Evaluation of the

success of medical management for presumptive thoracolumbar

intervertebral disk herniation in dogs. Vet Surg 2007;36?482–91.

134. Kent M. Intraaxial spinal cord hemorrhage secondary

to atlantoaxial subluxationin a dog. J Am Anim Hosp Assoc

2010;46(2):132–7.

135. Cerda-Gonzalez S, Olby NJ. Fecal incontinence associated with epidural spinalhematoma and intervertebral disk

extrusion in a dog. J Am Vet Med Assoc 2006;228(2):230–5.

136. Caswell JL, Nykamp SG. Intradural vasculitis and hemorrhage in full sibling Welsh springer spaniels. Can Vet J

2003;44(2):137–9.

137. Tidwell AS, Specht A, Blaeser L, et al. Magnetic resonance imaging features ofextradural hematomas associated with

intervertebral disc herniation in a dog.Vet Radiol Ultrasound

2001;43(4):319–24.

138. Jeffery N, Lakatos A, Franklin R. Autologous olfactory

glial cell transplantation is eliable and safe in naturally occurring

spinal cord injury. J Neurotrauma 2005;22(11):1282–93.

139. Nishida H, Nakayama M, Tanaka H. Safety of autologous bone marrow stromal cell transplantation in dogs with

acute spinal cord injury. Vet Surg 2012;41?437–42.

140. Olby N, Levine J, Harris T. Long-term functional outcome of dogs with severe injuries of the thoracolumbar spinal

cord: 87 cases (1996-2001). J Am VetMed Assoc

2003;222(6):762–9.

141. Dewey CW. Myelopathies: disorders of the spinal cord.

In: Dewey CW, editor. A practical guide to canine and feline neurology. 2nd edition. Ames (IA):Wiley-Blackwell; 2008. p. 323–88.

142. Hawthorne J, Blevins W, Wallace L, et al. Cervical vertebral fractures in 56 dogs:a retrospective study. J Am Anim

Hosp Assoc 1999;35?135–46.

143. Eminaga S, Palus V, Cherubini G. Acute spinal cord

injury in the cat: causes,treatment and prognosis. J Feline Med

Surg 2011;13(11):850–62.spontaneous hyperadrenocorticism in

dogs. Part 2: Adrenal function testing and differentiating tests[J].

The Veterinary Journal, 2019, 252?105343.

第125頁

小動物臨床前沿(神經(jīng)學(xué)???- 上冊)· 腦部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 總第 12 期

- 123 -

結(jié)果

已發(fā)表的研究表明,15%患有GME的犬在接受

治療前死亡(Munana and Luttgen, 1998; Granger et

al.,2010)。盡管開始了適當(dāng)和積極的免疫抑制治療,

一項研究中仍有56%的犬死于MUO或被安樂死,其

中33%的犬在診斷后3天內(nèi)死亡(Lowrie et al., 2013)。

Cornelis等人(2016a)報告了類似的結(jié)果;在一項對

116例犬的研究中,盡管開始了適當(dāng)?shù)闹委?,?5%

的犬在診斷后7天內(nèi)死亡或被安樂死。Levine等人

(2008)報道,與未接受任何治療的NME犬相比,接

受任何形式治療的NME犬的平均ST明顯更長。大多

數(shù)患有MUO或GME的犬在確診后3個月內(nèi)死亡

(Thomas and Eger, 1989; Smith et al., 2009; Lowrie et

al., 2013)。在一項研究中,19只犬中的18只(95%)存

活了1個月(Smith et al.,2009),但這些犬中只有一

只未能存活1年。此外,活了1年的犬通常能活更長

的時間,這表明活過1個月的動物可能有更大的機會

再活幾年(Smith et al.,2009)。

在已發(fā)表的文獻中,已經(jīng)描述了57例患有MUO

的犬,并對50例犬進行了隨訪。總體而言,50例犬

中有30例(60%)死于本身的疾病或被安樂死,數(shù)據(jù)采

集時18例犬還活著(Griffin et al., 2008; Wong et al.,

2010; Cornelis et al., 2017a)。被診斷為不明原因腦

膜脊髓炎的病例的自發(fā)死亡可能是由于疾病的漸進

性發(fā)展涉及大腦,盡管需要進一步的研究來證實這

些發(fā)現(xiàn)。

結(jié)束語

MUO是一種以多種病理為特征的疾病,其發(fā)病

機制、診斷標(biāo)準(zhǔn)、最合適的治療方案、短期和長期

預(yù)后和結(jié)局仍存在許多問題。從臨床角度看,為了

得到(更確定的)診斷而進行所有診斷試驗的費用可能

很高,可能導(dǎo)致神經(jīng)系統(tǒng)惡化,甚至可能延誤適當(dāng)

的治療。此外,獲得明確診斷的腦活檢的使用性受

限,且與不良結(jié)果的顯著風(fēng)險相關(guān)。為什么有些動

物在一種通常被認(rèn)為是致命的疾病中,不管有沒有

治療,都能存活數(shù)年?最初的診斷不準(zhǔn)確嗎?如果存

在,最好的治療方案是什么?評估治療效果的最佳方

法是什么?通過臨床改善來評價治療效果,還是通過

進一步的定量調(diào)查來評價效果更好?重復(fù)腦脊液采樣

和/或MRI是否能準(zhǔn)確反映治療成功,重復(fù)麻醉和腦

脊液采集的好處是否值得冒采集的風(fēng)險?不同的納入

標(biāo)準(zhǔn)使解釋和比較以往的研究變得困難,應(yīng)該考慮

結(jié)論

由于通常在死前無法進行組織學(xué)診斷,臨床醫(yī)

生應(yīng)依賴以前建立的用于診斷MUO的臨床診斷標(biāo)

準(zhǔn)。在犬瘟熱病毒感染罕見的國家,MUO是導(dǎo)致犬

類腦膜腦炎的最常見原因,通常認(rèn)為主要影響青年

至中年、中型至小型品種的玩具犬和?類犬。然

而,最近的研究結(jié)果表明,所有品種和年齡的犬都

可能受到影響。MRI被認(rèn)為是診斷與炎癥性中樞神經(jīng)

系統(tǒng)疾病一致的顱內(nèi)或脊髓異常的首選成像方式。

目前還沒有根據(jù)MRI檢查結(jié)果確定區(qū)分MUO不同病

理形式(GME、NME和NLE)的標(biāo)準(zhǔn),這種區(qū)分在臨床

或發(fā)病機制、治療和結(jié)果方面的重要性還沒有確

定。免疫抑制藥物是目前公認(rèn)的治療MUO的主要藥

物。已有幾項研究報道了MUO的長期預(yù)后,報道的

MST范圍為28-1834天。兩項研究表明,25-33%的

犬會在診斷后的一周內(nèi)死亡,盡管開始了適當(dāng)?shù)闹?/p>

療。目前還不清楚為什么一些犬對治療反應(yīng)良好,

而另一些即使有適當(dāng)?shù)闹委焺t沒有。需要進一步研

究MUO的病因和病理生理機制,確定可規(guī)范臨床診

斷的診斷指標(biāo),制定循證治療方案,并確定臨床可

靠的預(yù)后指標(biāo)。

利益沖突聲明

譯者略

重新審視使用的嚴(yán)格的診斷標(biāo)準(zhǔn)。這可能使多中心

臨床研究能夠進一步描述推測患有MUO的犬的臨床

表現(xiàn)、診斷結(jié)果、治療結(jié)果和預(yù)后,接受并非所有

犬都符合以往研究的所有納入標(biāo)準(zhǔn)的可能性。還應(yīng)

進一步調(diào)查遺傳因素和可能的觸發(fā)因素。

參考文獻:

1.Adamo, F.P., O’ Brien, R.T., 2004. Use of cyclosporine

to treat granulomatous meningoencephalitis in three dogs.

J. Am. Vet. Med. Assoc. 225, 1211–1216.

2.Adamo, P.F., Rylander, H., Adams, W.M., 2007. Ciclosporin use in multi-drug therapy for meningoencephalomyelitis of unknown aetiology in dogs. J. Small Anim. Pract. 48,

486–496.

3.Bailey, C.S., Higgins, R.J., 1986. Characteristics of

cerebrospinal fluid associated with canine granulomatous

meningoencephalomyelitis: a retrospective study. J. Am. Vet.

Med. Assoc. 188, 418–421.

4.Barber, R.M., Porter, B.F., Li, Q., May, M., Clairborne, M.K.,

Allison, A.B., Howerth, E.W., Butler, A., Wei, S., Levine, J.M., Brown,

D.R., Schatzberg, S.J., 2012. Broadly reactive polymerase chain

reaction for pathogen detection in canine granulomatous meningoencephalomyelitis and necrotizing meningoencephalitis. J.

Vet. Intern. Med. 26 (4), 962–968.

5.Barnoon, I., Shamir, M.H., Aroch, I., Bdolah-Abram, T.,

Srugo, I., Konstantin, L., Chai, O., 2016. Retrospective evaluation

of combined mycophenolate mofetil and prednisone treatment

for meningoencephalomyelitis of unknown etiology in dogs: 25

cases (2005-2011). J. Vet. Emerg. Crit. Care 26 (1), 116–124.

6.Bateman, S.W., Parent, J.M., 1999. Clinical findings, treatment and outcome of dogs with status epilepticus or cluster

seizures: 156 cases (1990–1995). J. Am. Vet. Med. Assoc. 215,

1463–1468.

7. Beckmann, K., Carrera, I., Steffen, F., Golini, L., Kircher,

P.R., Schneider, U., Bley, C.R., 2015. A newly designed radiation

therapy protocol in combination with prednisolone as treatment

for meningoencephalitis of unknown origin in dogs: a prospective pilot study introducing magnetic resonance spectroscopy as

a monitor tool. Acta Vet. Scand. 57 (4), 1–14.

8.Braund, K.G., 1985. Granulomatous meningoencephalomyelitis. J. Am. Vet. Med. Assoc. 186, 138–141.

9.Carrera, I., Richter, H., Beckmann, K., Meier, D., Dennler,

M., Kircher, P.R., 2016. Evaluation of intracranial neoplasia and

non-infectious meningoencephalitis in dogs by use of short

echo time, single voxel proton magnetic resonance spectroscopy at 3.0 Tesla. Am. J. Vet. Res. 77, 452–462.

10.Carvalho, C.F., Perez, R.B., Chamas, M.C., Maiorka, P.C.,

2012. Transcranial Doppler sonographic findings in granulomatous meningoencephalitis in small breed dogs. Can. Vet. J. 53,

855–859.

11. Cherubini, G.B., Platt, S.R., Anderson, T.J., 2006. Characteristics of magnetic resonance images of granulomatous meningoencephalomyelitis in 11 dogs. Vet. Rec. 159, 504–515.

12.Coates, J.R., Barone, G., Dewey, C.W., Vitale, C.L., Holloway-Azene, N.M., Sessions, J.K., 2007. Procarbazine as adjunctive therapy for treatment of dogs with presumptive antemortem diagnosis of granulomatous meningoencephalomyelitis: 21

cases (1998-2004). J. Vet. Intern. Med. 21, 100–106.

13. Coates, J.R., Jeffery, N.D., 2014. Perspectives on meningoencephalomyelitis of unknown origin. Vet. Clin. North Am.

Small Anim. Pract. 44, 1157–1185. Cooper, J.J., Schatzberg, S.J.,

Vernau, K.M., Summers, B.A., Porter, B.F., Siso, S., Young, B.D.,

Levine, J.M., 2014. Necrotizing meningoencephalitis in atypical

dog breeds: a case series and literature review. J. Vet. Intern.

Med. 28, 198–203.

14.Cornelis, I., Volk, H.A., Van Ham, L., De Decker, S., 2016a.

Prognostic factors for 1- week survival in dogs diagnosed with

meningoencephalitis of unknown aetiology. Vet. J. 214, 91–95.

15. Cornelis, I., Volk, H.A., De Decker, S., 2016b. Clinical

presentation, diagnostic findings and long-term survival in large

breed dogs with meningoencephalitis of unknown aetiology.

Vet. Rec. 179 (6), 147.

16.Cornelis, I., Volk, H.A., Van Ham, L., De Decker, S., 2017a.

Clinical presentation, diagnostic findings and outcome in dogs

diagnosed with presumptive spinal- only meningoencephalomyelitis of unknown origin. J. Small Anim. Pract. 58, 174–182.

17. Cornelis, I., Van Ham, L., De Decker, S., Kromhout, K.,

Goethals, K., Gielen, I., Bhatti, S., 2017b. Sole prednisolone therapy in canine meningoencephalitis of unknown aetiology. Flemish

Vet. J. 86, 24–29.

18. Cuddon, P., 2002. New treatments for granulomatous

meningoencephalomyelitis. Proceedings of the 20th annual

ACVIM forum, Dallas, USA, pp. 319–321.

19. Cuddon, P., Smith-Maxie, L., 1984. Reticulosis of the

central nervous system in the dog. Compend. Contin. Educ.

Pract. Vet. 6, 23–32.

20.de Stefani, A., De Risio, L., Matiasek, L., Feliu-Pascual,

A.L., 2007. Intravenous cytosine arabinoside in the emergency

treatment of 9 dogs with central nervous system inflammatory

disease of unknown origin. In; Proceedings of the 20th annual

symposium of the ESVN/ECVN, Bern, Switzerland. J. Vet. Intern.

Med. 22 (2), 508. Eom, K.D., Lim, C.Y., Gu, S.H., Kang, B.T., Kim,

Y.B., Jang, D.P., Woo, E.J., Kim, D., Cho, Z. H., Park, H.M., 2008.

Positron emission tomography features of canine necrotizing

meningoencephalitis. Vet. Radiol. Ultrasound 49 (6), 595–599.

21.Feliu-Pascual, A.L., Matiasek, L., de Stefani, A., Beltran,

E., De Risio, L., 2007. Efficacy of mycophenolate mofetil for the

treatment of granulomatous meningoencephalomyelitis: preliminary results. Proceedings of the 20th annual symposium of the

ESVN/ECVN, Bern, Switzerland. J. Vet. Intern. Med. 22 (2), 509.

22. Flegel, T., Henke, D., Boetticher, I.C., Aupperle, H., Oechtering, G., Matiasek, K., 2008. Magnetic resonance imaging findings in histologically confirmed pug dog encephalitis. Vet.

Radiol. Ultrasound 49 (5), 419–424.

23.Flegel, T., Boettcher, I.C., Matiasek, K., Oevermann, A.,

Doherr, M.G., Oechtering, G., Henke, D., 2011. Comparison of oral

administration of lomustine and prednisolone or prednisolone

alone as treatment for granulomatous meningoencephalomyelitis or necrotizing encephalitis in dogs. J. Am. Vet. Med. Assoc.

238 (3), 337–345.

24.Flegel, T., Oevermann, A., Oechetering, G., Matiasek, K.,

2012. Diagnostic yield and adverse effects of MRI-guided

free-hand biopsies through a mini-burr hole in dogs with

encephalitis. J. Vet. Intern. Med. 26, 969–976.

25.Gnirs, K., 2006. Ciclosporin treatment of suspected

granulomatous meningoencephalomyelitis in three dogs. J.

Small Anim. Pract. 47 (4), 201–206. Granger, N., Smith, P.M.,

Jeffery, N.D., 2010.

26.Clinical findings and treatment of non-infectious meningoencephalomyelitis in dogs: a systematic review of 457

published cases from 1962 to 2008. Vet. J. 184, 290–297.

27.Greer, K.A., Wong, A.K., Liu, H., Famula, T.R., Pederson,

N.C., Ruhe, A., Wallace, M., Neff, M.W., 2010. Necrotizing meningoencephalitis of Pug dogs associates with dog leucocyte antigen class II and resembles acute variant forms of multiple sclerosis. Tissue Antigens 76 (2), 110–118.

28.Gregory, C.R., Stewart, A., Sturges, B., DeManvelle, T.,

Cannon, A., Ortega, T., Harb, M., Morris, R.E., 1998. Leflunomide

effectively treats naturally occurring immune- mediated and

inflammatory diseases of dogs that are unresponsive to conventional therapy. Transpl. Proc. 30 (8), 4143–4148.

29. Griffin, J.F., Levine, M., Levine, G.J., Fosgate, G.T., 2008.

Meningomyelitis in dogs: a retrospective review of 28 cases

(1999 to 2007). J. Small Anim. Pract. 49, 509– 517.

30. Higgins, R.J., Dickinson, P.J., Kube, S.A., Moore, P.F.,

Couto, S.S., Vernau, K.M., Sturges, B.K., Lecouteur, R.A., 2008.

Necrotizing meningoencephalitis in five Chihuahua dogs. Vet.

Pathol. 45, 336–346.

31.Jung, D.I., Kang, B.T., Park, C., Yoo, J.H., Gu, S.H., Jeon,

H.W., Kim, J.W., Heo, R.Y., Sung, H.J., Eom, K.D., Lee, J.H., Woo,

E.J., Park, H.M., 2007. A comparison of combination therapy

(cyclosporine plus prednisolone) with sole prednisolone therapy

in 7 dogs with necrotizing meningoencephalitis. J. Vet. Med. Sci.

69, 1303–1306.

32.Jung, D.I., Kim, J.W., Park, H.M., 2011. Long-term immunosuppressive therapy with cyclosporine plus prednisolone for

necrotizing meningoencephalitis in a pekingese dog. J. Vet. Med.

Sci. 74, 765–769.

33. Jung, D.I., Lee, H.C., J, H.A., Jung, H.W., Jeon, J.H., Moon,

J.H., Lee, J.H., Kim, N.H., Kang, B.T., Cho, K.W., 2013. Unsuccessful

cyclosporine plus prednisolone therapy for autoimmune meningoencephalitis in three dogs. J. Vet. Med. Sci. 75 (12), 1661–

1665.

34. Kang, B.T., Kim, S.G., Lim, C.Y., Gu, S.H., Jang, D.P., Kim,

Y.B., Kim, D.Y., Woo, E.J., Cho, Z. H., Park, H.M., 2010. Correlation

between fluorodeoxyglucose positron emission tomography and

magnetic resonance imaging findings of non-suppurative meningoencephalitis in 5 dogs. Can. Vet. J. 51, 986–992.

35. Kipar, A., Baumgartner, W., Vogl, C., Gaedke, K., Wellman, M., 1998. Immunohistochemical characterization of inflammatory cells in brains of dogs with granulomatous meningoencephalitis. Vet. Pathol. 35 (1), 43–52.

36.Koblik, P.D., LeCouteur, R.A., Higgins, R.J., Bollen, A.W.,

Vernau, K.M., Kortz, G.D., Ilkiw, J.E., 1999. CT-guided brain biopsy

using a modified pelorus mark III stereotactic system: experience

with 50 dogs. Vet. Radiol. Ultrasound 40 (4), 434–440.

37.Lamb, C.R., Croson, P.J., Capello, R., Cherubini, G.B.,

2005. Results of MR imaging of the head in dogs with inflammatory cerebrospinal fluid. Vet. Radiol. Ultrasound 37, 424–427.

38.Levine, J.M., Fosgate, G.T., Porter, B., Schatzberg, S.J.,

Greer, K., 2008. Epidemiology of necrotizing meningoencephalitis in Pug dogs. J. Vet. Intern. Med. 22 (4), 961– 968.

39. Lowrie, M., Smith, P.M., Garosi, L., 2013. Meningoencephalitis of unknown origin: investigation of prognostic factors

and outcome using a standard treatment protocol. Vet. Rec. 172

(20), 527.

40.Lowrie, M., Thomson, S., Smith, P., Garosi, L., 2016.

Effect of a constant rate infusion of cytosine arabinoside on

mortality in dogs with meningoencephalitis of unknown origin.

Vet. J. 213, 1–5. Menaut, P., Landart, J., Behr, S., Lanore, D.,

Trumel, C., 2008. Treatment of 11 dogs with meningoencephalomyelitis of unknown origin with a combination of prednisolone

and cytosine arabinoside. Vet. Rec. 162 (8), 241–245.

41.Mercier, M., Barnes Heller, H.L., 2015. Efficacy of glucocorticoid monotherapy for treatment of canine meningo-encephalomyelitis of uknown etiology: a prospective study in 16

dogs. Vet. Med. Sci. 1, 16–22.

42.Munana, K.R., Luttgen, P.J., 1998. Prognostic factors for

dogs with granulomatous meningoencephalomyelitis: 42 cases

(1982-1996). J. Am. Vet. Med. Assoc. 212, 1902–1906.

43.Oliphant, B.J., Barnes Heller, H.L., White, J.M., 2017. Retrospective study evaluating assocations between midine shift

on magnetic resonance imaging and survival in dogs diagnosed

with meningoencephalitis of unknown etiology. Vet. Radiol.

Ultrasound 58 (1), 38–43.

44.Pakozdy, A., Leschnik, M., Kneissl, S., Gumpenberger, M.,

Gruber, A., Tichy, A., Thalhammer, J.G., 2009. Improved survival

time in dogs with suspected GME treated with ciclosporine. Vet.

Rec. 164, 89–91.

45.Russo, M.E., 1979. Primary reticulosis of the central nervous system in dogs. J. Am. Vet. Med. Assoc. 174, 492–500.

46.Schatzberg, S.J., Haley, N.J., Barr, S.C., de Lahunta, A.,

Sharp, N.J.H., 2005. Polymerase chain reaction screening for

DNA viruses in paraffin-embedded brains from dogs with necrotizing meningoencephalitis, necrotizing leucoencephalitis and

granulomatous meningoencephalitis. J. Vet. Intern. Med. 19 (4),

553–559.

47.Sisson, A.F., LeCouteur, R.A., Dow, S.W., Gilette, E.L.,

1989. Radiation therapy of granulomatous meningoencephalomyelitis of dogs. ACVIM forum proceedings. J. Vet. Intern. Med. 3

(2), 119.

48.Smith, P.M., Stalin, C.E., Shaw, D., Granger, N., Jeffery,

N.D., 2009. Comparison of two regimens for the treatment of

meningoencephalomyelitis of unknown etiology. J. Vet. Intern.

Med. 23, 520–526.

49.Sorjonen, D.C., 1990. Clinical and histopathological features of granulomatous meningoencephalomyelitis in dogs. J.

Am. Anim. Hosp. Assoc. 26, 141–147.

50. Talarico, L.R., Schatzberg, S.J., 2010. Idiopathic granulomatous and necrotising inflammatory disorders of the canine

central nervous system: a review and future perspectives. J.

Small Anim. Pract. 51, 138–149.

51.Thomas, J.B., Eger, C., 1989. Granulomatous meningoencephalomyelitis in 21 dogs. J. Small Anim. Pract. 30, 287–293.

52.Tipold, A., 1995. Diagnosis of inflammatory and infectious diseases of the central nervous system in dogs: a retrospective study. J. Vet. Intern. Med. 9, 304–314.

53.Uchida, K., Park, E., Tsuboi, M., Chambers, J.K., Nakayama, H., 2016. Pathological and immunological features of canine

necrotising meningoencephalitis and granulomatous meningoencephalitis. Vet. J. 213, 72–77.

54.Uriarte, J.L., Thibaud, K., Gnirs, S., Blot, S., 2007. Lomustine treatment in noninfectious meningoencephalitis in 8 dogs,

Proceedings of the 20th annual symposium of the ESVN/ECVN,

Bern, Switzerland. J. Vet. Intern. Med. 22 (2), 509. von Praun, F.,

Matiasek, K., Grevel, V., Alef, M., Flegel, T., 2006. Magnetic resonance imaging and pathologic findings associated with necrotizing encephalitis in two Yorkshire terriers. Vet. Radiol. Ultrasound 47, 260–264.

55.Wolff, C.A., Holmes, S.P., Young, B.D., Chen, A.V., Kent,

M., Platt, S.R., Savage, M.Y., Schatzberg, S.J., Fosgate, G.T., Levine,

J.M., 2012. Magnetic resonance imaging for the differentiation of

neoplastic, inflammatory and cerebrovascular brain disease in

dogs. J. Vet. Intern. Med. 26, 589–597.

56.Wong, M.A., Hopkings, A.L., Meeks, J.C., Clarke, J.D.,

2010. Evaluation of treatment with a combination of azathioprine and prednisone in dogs with meningoencephalomyelitis of

undetermined etiology: 40 cases (2000-2007). J. Am. Vet. Med.

Assoc. 237 (8), 929–935.

57.Young, B., Levine, J.L., Fosgate, A., de Lahunta, A.,

Flegel, T., Matiasek, K., Miller, A., Silver, G., Sharp, N., Greer, K.,

Schatzberg, S.J., 2009. Magnetic resonance imaging characteristics of necrotizing meningoencephalitis in pug dogs. J. Vet.

Intern. Med. 23 (3), 527–535.

58.Zarfoss, M., Schatzberg, S., Venator, K., Cutter-Schatzberg, K., Cuddon, P., Pintar, J., Weinkle, T., Scarlett, J.,

deLahunta, A., 2006. Combined cytosine arabinoside and prednisone therapy for meningoencephalitis of unknown aetiology in

10 dogs. J. Small Anim. Pract. 47, 588–595.

第126頁

小動物臨床前沿(神經(jīng)學(xué)專刊 - 上冊)· 腦部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 總第 12 期

- 124 -

參考文獻:

1.Adamo, F.P., O’ Brien, R.T., 2004. Use of cyclosporine

to treat granulomatous meningoencephalitis in three dogs.

J. Am. Vet. Med. Assoc. 225, 1211–1216.

2.Adamo, P.F., Rylander, H., Adams, W.M., 2007. Ciclosporin use in multi-drug therapy for meningoencephalomyelitis of unknown aetiology in dogs. J. Small Anim. Pract. 48,

486–496.

3.Bailey, C.S., Higgins, R.J., 1986. Characteristics of

cerebrospinal fluid associated with canine granulomatous

meningoencephalomyelitis: a retrospective study. J. Am. Vet.

Med. Assoc. 188, 418–421.

4.Barber, R.M., Porter, B.F., Li, Q., May, M., Clairborne, M.K.,

Allison, A.B., Howerth, E.W., Butler, A., Wei, S., Levine, J.M., Brown,

D.R., Schatzberg, S.J., 2012. Broadly reactive polymerase chain

reaction for pathogen detection in canine granulomatous meningoencephalomyelitis and necrotizing meningoencephalitis. J.

Vet. Intern. Med. 26 (4), 962–968.

5.Barnoon, I., Shamir, M.H., Aroch, I., Bdolah-Abram, T.,

Srugo, I., Konstantin, L., Chai, O., 2016. Retrospective evaluation

of combined mycophenolate mofetil and prednisone treatment

for meningoencephalomyelitis of unknown etiology in dogs: 25

cases (2005-2011). J. Vet. Emerg. Crit. Care 26 (1), 116–124.

6.Bateman, S.W., Parent, J.M., 1999. Clinical findings, treatment and outcome of dogs with status epilepticus or cluster

seizures: 156 cases (1990–1995). J. Am. Vet. Med. Assoc. 215,

1463–1468.

7. Beckmann, K., Carrera, I., Steffen, F., Golini, L., Kircher,

P.R., Schneider, U., Bley, C.R., 2015. A newly designed radiation

therapy protocol in combination with prednisolone as treatment

for meningoencephalitis of unknown origin in dogs: a prospective pilot study introducing magnetic resonance spectroscopy as

a monitor tool. Acta Vet. Scand. 57 (4), 1–14.

8.Braund, K.G., 1985. Granulomatous meningoencephalomyelitis. J. Am. Vet. Med. Assoc. 186, 138–141.

9.Carrera, I., Richter, H., Beckmann, K., Meier, D., Dennler,

M., Kircher, P.R., 2016. Evaluation of intracranial neoplasia and

non-infectious meningoencephalitis in dogs by use of short

echo time, single voxel proton magnetic resonance spectroscopy at 3.0 Tesla. Am. J. Vet. Res. 77, 452–462.

10.Carvalho, C.F., Perez, R.B., Chamas, M.C., Maiorka, P.C.,

2012. Transcranial Doppler sonographic findings in granulomatous meningoencephalitis in small breed dogs. Can. Vet. J. 53,

855–859.

11. Cherubini, G.B., Platt, S.R., Anderson, T.J., 2006. Characteristics of magnetic resonance images of granulomatous meningoencephalomyelitis in 11 dogs. Vet. Rec. 159, 504–515.

12.Coates, J.R., Barone, G., Dewey, C.W., Vitale, C.L., Holloway-Azene, N.M., Sessions, J.K., 2007. Procarbazine as adjunctive therapy for treatment of dogs with presumptive antemortem diagnosis of granulomatous meningoencephalomyelitis: 21

cases (1998-2004). J. Vet. Intern. Med. 21, 100–106.

13. Coates, J.R., Jeffery, N.D., 2014. Perspectives on meningoencephalomyelitis of unknown origin. Vet. Clin. North Am.

Small Anim. Pract. 44, 1157–1185. Cooper, J.J., Schatzberg, S.J.,

Vernau, K.M., Summers, B.A., Porter, B.F., Siso, S., Young, B.D.,

Levine, J.M., 2014. Necrotizing meningoencephalitis in atypical

dog breeds: a case series and literature review. J. Vet. Intern.

Med. 28, 198–203.

14.Cornelis, I., Volk, H.A., Van Ham, L., De Decker, S., 2016a.

Prognostic factors for 1- week survival in dogs diagnosed with

meningoencephalitis of unknown aetiology. Vet. J. 214, 91–95.

15. Cornelis, I., Volk, H.A., De Decker, S., 2016b. Clinical

presentation, diagnostic findings and long-term survival in large

breed dogs with meningoencephalitis of unknown aetiology.

Vet. Rec. 179 (6), 147.

16.Cornelis, I., Volk, H.A., Van Ham, L., De Decker, S., 2017a.

Clinical presentation, diagnostic findings and outcome in dogs

diagnosed with presumptive spinal- only meningoencephalomyelitis of unknown origin. J. Small Anim. Pract. 58, 174–182.

17. Cornelis, I., Van Ham, L., De Decker, S., Kromhout, K.,

Goethals, K., Gielen, I., Bhatti, S., 2017b. Sole prednisolone therapy in canine meningoencephalitis of unknown aetiology. Flemish

Vet. J. 86, 24–29.

18. Cuddon, P., 2002. New treatments for granulomatous

meningoencephalomyelitis. Proceedings of the 20th annual

ACVIM forum, Dallas, USA, pp. 319–321.

19. Cuddon, P., Smith-Maxie, L., 1984. Reticulosis of the

central nervous system in the dog. Compend. Contin. Educ.

Pract. Vet. 6, 23–32.

20.de Stefani, A., De Risio, L., Matiasek, L., Feliu-Pascual,

A.L., 2007. Intravenous cytosine arabinoside in the emergency

treatment of 9 dogs with central nervous system inflammatory

disease of unknown origin. In; Proceedings of the 20th annual

symposium of the ESVN/ECVN, Bern, Switzerland. J. Vet. Intern.

Med. 22 (2), 508. Eom, K.D., Lim, C.Y., Gu, S.H., Kang, B.T., Kim,

Y.B., Jang, D.P., Woo, E.J., Kim, D., Cho, Z. H., Park, H.M., 2008.

Positron emission tomography features of canine necrotizing

meningoencephalitis. Vet. Radiol. Ultrasound 49 (6), 595–599.

21.Feliu-Pascual, A.L., Matiasek, L., de Stefani, A., Beltran,

E., De Risio, L., 2007. Efficacy of mycophenolate mofetil for the

treatment of granulomatous meningoencephalomyelitis: preliminary results. Proceedings of the 20th annual symposium of the

ESVN/ECVN, Bern, Switzerland. J. Vet. Intern. Med. 22 (2), 509.

22. Flegel, T., Henke, D., Boetticher, I.C., Aupperle, H., Oechtering, G., Matiasek, K., 2008. Magnetic resonance imaging findings in histologically confirmed pug dog encephalitis. Vet.

Radiol. Ultrasound 49 (5), 419–424.

23.Flegel, T., Boettcher, I.C., Matiasek, K., Oevermann, A.,

Doherr, M.G., Oechtering, G., Henke, D., 2011. Comparison of oral

administration of lomustine and prednisolone or prednisolone

alone as treatment for granulomatous meningoencephalomyelitis or necrotizing encephalitis in dogs. J. Am. Vet. Med. Assoc.

238 (3), 337–345.

24.Flegel, T., Oevermann, A., Oechetering, G., Matiasek, K.,

2012. Diagnostic yield and adverse effects of MRI-guided

free-hand biopsies through a mini-burr hole in dogs with

encephalitis. J. Vet. Intern. Med. 26, 969–976.

25.Gnirs, K., 2006. Ciclosporin treatment of suspected

granulomatous meningoencephalomyelitis in three dogs. J.

Small Anim. Pract. 47 (4), 201–206. Granger, N., Smith, P.M.,

Jeffery, N.D., 2010.

26.Clinical findings and treatment of non-infectious meningoencephalomyelitis in dogs: a systematic review of 457

published cases from 1962 to 2008. Vet. J. 184, 290–297.

27.Greer, K.A., Wong, A.K., Liu, H., Famula, T.R., Pederson,

N.C., Ruhe, A., Wallace, M., Neff, M.W., 2010. Necrotizing meningoencephalitis of Pug dogs associates with dog leucocyte antigen class II and resembles acute variant forms of multiple sclerosis. Tissue Antigens 76 (2), 110–118.

28.Gregory, C.R., Stewart, A., Sturges, B., DeManvelle, T.,

Cannon, A., Ortega, T., Harb, M., Morris, R.E., 1998. Leflunomide

effectively treats naturally occurring immune- mediated and

inflammatory diseases of dogs that are unresponsive to conventional therapy. Transpl. Proc. 30 (8), 4143–4148.

29. Griffin, J.F., Levine, M., Levine, G.J., Fosgate, G.T., 2008.

Meningomyelitis in dogs: a retrospective review of 28 cases

(1999 to 2007). J. Small Anim. Pract. 49, 509– 517.

30. Higgins, R.J., Dickinson, P.J., Kube, S.A., Moore, P.F.,

Couto, S.S., Vernau, K.M., Sturges, B.K., Lecouteur, R.A., 2008.

Necrotizing meningoencephalitis in five Chihuahua dogs. Vet.

Pathol. 45, 336–346.

31.Jung, D.I., Kang, B.T., Park, C., Yoo, J.H., Gu, S.H., Jeon,

H.W., Kim, J.W., Heo, R.Y., Sung, H.J., Eom, K.D., Lee, J.H., Woo,

E.J., Park, H.M., 2007. A comparison of combination therapy

(cyclosporine plus prednisolone) with sole prednisolone therapy

in 7 dogs with necrotizing meningoencephalitis. J. Vet. Med. Sci.

69, 1303–1306.

32.Jung, D.I., Kim, J.W., Park, H.M., 2011. Long-term immunosuppressive therapy with cyclosporine plus prednisolone for

necrotizing meningoencephalitis in a pekingese dog. J. Vet. Med.

Sci. 74, 765–769.

33. Jung, D.I., Lee, H.C., J, H.A., Jung, H.W., Jeon, J.H., Moon,

J.H., Lee, J.H., Kim, N.H., Kang, B.T., Cho, K.W., 2013. Unsuccessful

cyclosporine plus prednisolone therapy for autoimmune meningoencephalitis in three dogs. J. Vet. Med. Sci. 75 (12), 1661–

1665.

34. Kang, B.T., Kim, S.G., Lim, C.Y., Gu, S.H., Jang, D.P., Kim,

Y.B., Kim, D.Y., Woo, E.J., Cho, Z. H., Park, H.M., 2010. Correlation

between fluorodeoxyglucose positron emission tomography and

magnetic resonance imaging findings of non-suppurative meningoencephalitis in 5 dogs. Can. Vet. J. 51, 986–992.

35. Kipar, A., Baumgartner, W., Vogl, C., Gaedke, K., Wellman, M., 1998. Immunohistochemical characterization of inflammatory cells in brains of dogs with granulomatous meningoencephalitis. Vet. Pathol. 35 (1), 43–52.

36.Koblik, P.D., LeCouteur, R.A., Higgins, R.J., Bollen, A.W.,

Vernau, K.M., Kortz, G.D., Ilkiw, J.E., 1999. CT-guided brain biopsy

using a modified pelorus mark III stereotactic system: experience

with 50 dogs. Vet. Radiol. Ultrasound 40 (4), 434–440.

37.Lamb, C.R., Croson, P.J., Capello, R., Cherubini, G.B.,

2005. Results of MR imaging of the head in dogs with inflammatory cerebrospinal fluid. Vet. Radiol. Ultrasound 37, 424–427.

38.Levine, J.M., Fosgate, G.T., Porter, B., Schatzberg, S.J.,

Greer, K., 2008. Epidemiology of necrotizing meningoencephalitis in Pug dogs. J. Vet. Intern. Med. 22 (4), 961– 968.

39. Lowrie, M., Smith, P.M., Garosi, L., 2013. Meningoencephalitis of unknown origin: investigation of prognostic factors

and outcome using a standard treatment protocol. Vet. Rec. 172

(20), 527.

40.Lowrie, M., Thomson, S., Smith, P., Garosi, L., 2016.

Effect of a constant rate infusion of cytosine arabinoside on

mortality in dogs with meningoencephalitis of unknown origin.

Vet. J. 213, 1–5. Menaut, P., Landart, J., Behr, S., Lanore, D.,

Trumel, C., 2008. Treatment of 11 dogs with meningoencephalomyelitis of unknown origin with a combination of prednisolone

and cytosine arabinoside. Vet. Rec. 162 (8), 241–245.

41.Mercier, M., Barnes Heller, H.L., 2015. Efficacy of glucocorticoid monotherapy for treatment of canine meningo-encephalomyelitis of uknown etiology: a prospective study in 16

dogs. Vet. Med. Sci. 1, 16–22.

42.Munana, K.R., Luttgen, P.J., 1998. Prognostic factors for

dogs with granulomatous meningoencephalomyelitis: 42 cases

(1982-1996). J. Am. Vet. Med. Assoc. 212, 1902–1906.

43.Oliphant, B.J., Barnes Heller, H.L., White, J.M., 2017. Retrospective study evaluating assocations between midine shift

on magnetic resonance imaging and survival in dogs diagnosed

with meningoencephalitis of unknown etiology. Vet. Radiol.

Ultrasound 58 (1), 38–43.

44.Pakozdy, A., Leschnik, M., Kneissl, S., Gumpenberger, M.,

Gruber, A., Tichy, A., Thalhammer, J.G., 2009. Improved survival

time in dogs with suspected GME treated with ciclosporine. Vet.

Rec. 164, 89–91.

45.Russo, M.E., 1979. Primary reticulosis of the central nervous system in dogs. J. Am. Vet. Med. Assoc. 174, 492–500.

46.Schatzberg, S.J., Haley, N.J., Barr, S.C., de Lahunta, A.,

Sharp, N.J.H., 2005. Polymerase chain reaction screening for

DNA viruses in paraffin-embedded brains from dogs with necrotizing meningoencephalitis, necrotizing leucoencephalitis and

granulomatous meningoencephalitis. J. Vet. Intern. Med. 19 (4),

553–559.

47.Sisson, A.F., LeCouteur, R.A., Dow, S.W., Gilette, E.L.,

1989. Radiation therapy of granulomatous meningoencephalomyelitis of dogs. ACVIM forum proceedings. J. Vet. Intern. Med. 3

(2), 119.

48.Smith, P.M., Stalin, C.E., Shaw, D., Granger, N., Jeffery,

N.D., 2009. Comparison of two regimens for the treatment of

meningoencephalomyelitis of unknown etiology. J. Vet. Intern.

Med. 23, 520–526.

49.Sorjonen, D.C., 1990. Clinical and histopathological features of granulomatous meningoencephalomyelitis in dogs. J.

Am. Anim. Hosp. Assoc. 26, 141–147.

50. Talarico, L.R., Schatzberg, S.J., 2010. Idiopathic granulomatous and necrotising inflammatory disorders of the canine

central nervous system: a review and future perspectives. J.

Small Anim. Pract. 51, 138–149.

51.Thomas, J.B., Eger, C., 1989. Granulomatous meningoencephalomyelitis in 21 dogs. J. Small Anim. Pract. 30, 287–293.

52.Tipold, A., 1995. Diagnosis of inflammatory and infectious diseases of the central nervous system in dogs: a retrospective study. J. Vet. Intern. Med. 9, 304–314.

53.Uchida, K., Park, E., Tsuboi, M., Chambers, J.K., Nakayama, H., 2016. Pathological and immunological features of canine

necrotising meningoencephalitis and granulomatous meningoencephalitis. Vet. J. 213, 72–77.

54.Uriarte, J.L., Thibaud, K., Gnirs, S., Blot, S., 2007. Lomustine treatment in noninfectious meningoencephalitis in 8 dogs,

Proceedings of the 20th annual symposium of the ESVN/ECVN,

Bern, Switzerland. J. Vet. Intern. Med. 22 (2), 509. von Praun, F.,

Matiasek, K., Grevel, V., Alef, M., Flegel, T., 2006. Magnetic resonance imaging and pathologic findings associated with necrotizing encephalitis in two Yorkshire terriers. Vet. Radiol. Ultrasound 47, 260–264.

55.Wolff, C.A., Holmes, S.P., Young, B.D., Chen, A.V., Kent,

M., Platt, S.R., Savage, M.Y., Schatzberg, S.J., Fosgate, G.T., Levine,

J.M., 2012. Magnetic resonance imaging for the differentiation of

neoplastic, inflammatory and cerebrovascular brain disease in

dogs. J. Vet. Intern. Med. 26, 589–597.

56.Wong, M.A., Hopkings, A.L., Meeks, J.C., Clarke, J.D.,

2010. Evaluation of treatment with a combination of azathioprine and prednisone in dogs with meningoencephalomyelitis of

undetermined etiology: 40 cases (2000-2007). J. Am. Vet. Med.

Assoc. 237 (8), 929–935.

57.Young, B., Levine, J.L., Fosgate, A., de Lahunta, A.,

Flegel, T., Matiasek, K., Miller, A., Silver, G., Sharp, N., Greer, K.,

Schatzberg, S.J., 2009. Magnetic resonance imaging characteristics of necrotizing meningoencephalitis in pug dogs. J. Vet.

Intern. Med. 23 (3), 527–535.

58.Zarfoss, M., Schatzberg, S., Venator, K., Cutter-Schatzberg, K., Cuddon, P., Pintar, J., Weinkle, T., Scarlett, J.,

deLahunta, A., 2006. Combined cytosine arabinoside and prednisone therapy for meningoencephalitis of unknown aetiology in

10 dogs. J. Small Anim. Pract. 47, 588–595.

第127頁

小動物臨床前沿(神經(jīng)學(xué)???- 上冊)· 腦部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 總第 12 期

- 125 -

參考文獻:

1.Adamo, F.P., O’ Brien, R.T., 2004. Use of cyclosporine

to treat granulomatous meningoencephalitis in three dogs.

J. Am. Vet. Med. Assoc. 225, 1211–1216.

2.Adamo, P.F., Rylander, H., Adams, W.M., 2007. Ciclosporin use in multi-drug therapy for meningoencephalomyelitis of unknown aetiology in dogs. J. Small Anim. Pract. 48,

486–496.

3.Bailey, C.S., Higgins, R.J., 1986. Characteristics of

cerebrospinal fluid associated with canine granulomatous

meningoencephalomyelitis: a retrospective study. J. Am. Vet.

Med. Assoc. 188, 418–421.

4.Barber, R.M., Porter, B.F., Li, Q., May, M., Clairborne, M.K.,

Allison, A.B., Howerth, E.W., Butler, A., Wei, S., Levine, J.M., Brown,

D.R., Schatzberg, S.J., 2012. Broadly reactive polymerase chain

reaction for pathogen detection in canine granulomatous meningoencephalomyelitis and necrotizing meningoencephalitis. J.

Vet. Intern. Med. 26 (4), 962–968.

5.Barnoon, I., Shamir, M.H., Aroch, I., Bdolah-Abram, T.,

Srugo, I., Konstantin, L., Chai, O., 2016. Retrospective evaluation

of combined mycophenolate mofetil and prednisone treatment

for meningoencephalomyelitis of unknown etiology in dogs: 25

cases (2005-2011). J. Vet. Emerg. Crit. Care 26 (1), 116–124.

6.Bateman, S.W., Parent, J.M., 1999. Clinical findings, treatment and outcome of dogs with status epilepticus or cluster

seizures: 156 cases (1990–1995). J. Am. Vet. Med. Assoc. 215,

1463–1468.

7. Beckmann, K., Carrera, I., Steffen, F., Golini, L., Kircher,

P.R., Schneider, U., Bley, C.R., 2015. A newly designed radiation

therapy protocol in combination with prednisolone as treatment

for meningoencephalitis of unknown origin in dogs: a prospective pilot study introducing magnetic resonance spectroscopy as

a monitor tool. Acta Vet. Scand. 57 (4), 1–14.

8.Braund, K.G., 1985. Granulomatous meningoencephalomyelitis. J. Am. Vet. Med. Assoc. 186, 138–141.

9.Carrera, I., Richter, H., Beckmann, K., Meier, D., Dennler,

M., Kircher, P.R., 2016. Evaluation of intracranial neoplasia and

non-infectious meningoencephalitis in dogs by use of short

echo time, single voxel proton magnetic resonance spectroscopy at 3.0 Tesla. Am. J. Vet. Res. 77, 452–462.

10.Carvalho, C.F., Perez, R.B., Chamas, M.C., Maiorka, P.C.,

2012. Transcranial Doppler sonographic findings in granulomatous meningoencephalitis in small breed dogs. Can. Vet. J. 53,

855–859.

11. Cherubini, G.B., Platt, S.R., Anderson, T.J., 2006. Characteristics of magnetic resonance images of granulomatous meningoencephalomyelitis in 11 dogs. Vet. Rec. 159, 504–515.

12.Coates, J.R., Barone, G., Dewey, C.W., Vitale, C.L., Holloway-Azene, N.M., Sessions, J.K., 2007. Procarbazine as adjunctive therapy for treatment of dogs with presumptive antemortem diagnosis of granulomatous meningoencephalomyelitis: 21

cases (1998-2004). J. Vet. Intern. Med. 21, 100–106.

13. Coates, J.R., Jeffery, N.D., 2014. Perspectives on meningoencephalomyelitis of unknown origin. Vet. Clin. North Am.

Small Anim. Pract. 44, 1157–1185. Cooper, J.J., Schatzberg, S.J.,

Vernau, K.M., Summers, B.A., Porter, B.F., Siso, S., Young, B.D.,

Levine, J.M., 2014. Necrotizing meningoencephalitis in atypical

dog breeds: a case series and literature review. J. Vet. Intern.

Med. 28, 198–203.

14.Cornelis, I., Volk, H.A., Van Ham, L., De Decker, S., 2016a.

Prognostic factors for 1- week survival in dogs diagnosed with

meningoencephalitis of unknown aetiology. Vet. J. 214, 91–95.

15. Cornelis, I., Volk, H.A., De Decker, S., 2016b. Clinical

presentation, diagnostic findings and long-term survival in large

breed dogs with meningoencephalitis of unknown aetiology.

Vet. Rec. 179 (6), 147.

16.Cornelis, I., Volk, H.A., Van Ham, L., De Decker, S., 2017a.

Clinical presentation, diagnostic findings and outcome in dogs

diagnosed with presumptive spinal- only meningoencephalomyelitis of unknown origin. J. Small Anim. Pract. 58, 174–182.

17. Cornelis, I., Van Ham, L., De Decker, S., Kromhout, K.,

Goethals, K., Gielen, I., Bhatti, S., 2017b. Sole prednisolone therapy in canine meningoencephalitis of unknown aetiology. Flemish

Vet. J. 86, 24–29.

18. Cuddon, P., 2002. New treatments for granulomatous

meningoencephalomyelitis. Proceedings of the 20th annual

ACVIM forum, Dallas, USA, pp. 319–321.

19. Cuddon, P., Smith-Maxie, L., 1984. Reticulosis of the

central nervous system in the dog. Compend. Contin. Educ.

Pract. Vet. 6, 23–32.

20.de Stefani, A., De Risio, L., Matiasek, L., Feliu-Pascual,

A.L., 2007. Intravenous cytosine arabinoside in the emergency

treatment of 9 dogs with central nervous system inflammatory

disease of unknown origin. In; Proceedings of the 20th annual

symposium of the ESVN/ECVN, Bern, Switzerland. J. Vet. Intern.

Med. 22 (2), 508. Eom, K.D., Lim, C.Y., Gu, S.H., Kang, B.T., Kim,

Y.B., Jang, D.P., Woo, E.J., Kim, D., Cho, Z. H., Park, H.M., 2008.

Positron emission tomography features of canine necrotizing

meningoencephalitis. Vet. Radiol. Ultrasound 49 (6), 595–599.

21.Feliu-Pascual, A.L., Matiasek, L., de Stefani, A., Beltran,

E., De Risio, L., 2007. Efficacy of mycophenolate mofetil for the

treatment of granulomatous meningoencephalomyelitis: preliminary results. Proceedings of the 20th annual symposium of the

ESVN/ECVN, Bern, Switzerland. J. Vet. Intern. Med. 22 (2), 509.

22. Flegel, T., Henke, D., Boetticher, I.C., Aupperle, H., Oechtering, G., Matiasek, K., 2008. Magnetic resonance imaging findings in histologically confirmed pug dog encephalitis. Vet.

Radiol. Ultrasound 49 (5), 419–424.

23.Flegel, T., Boettcher, I.C., Matiasek, K., Oevermann, A.,

Doherr, M.G., Oechtering, G., Henke, D., 2011. Comparison of oral

administration of lomustine and prednisolone or prednisolone

alone as treatment for granulomatous meningoencephalomyelitis or necrotizing encephalitis in dogs. J. Am. Vet. Med. Assoc.

238 (3), 337–345.

24.Flegel, T., Oevermann, A., Oechetering, G., Matiasek, K.,

2012. Diagnostic yield and adverse effects of MRI-guided

free-hand biopsies through a mini-burr hole in dogs with

encephalitis. J. Vet. Intern. Med. 26, 969–976.

25.Gnirs, K., 2006. Ciclosporin treatment of suspected

granulomatous meningoencephalomyelitis in three dogs. J.

Small Anim. Pract. 47 (4), 201–206. Granger, N., Smith, P.M.,

Jeffery, N.D., 2010.

26.Clinical findings and treatment of non-infectious meningoencephalomyelitis in dogs: a systematic review of 457

published cases from 1962 to 2008. Vet. J. 184, 290–297.

27.Greer, K.A., Wong, A.K., Liu, H., Famula, T.R., Pederson,

N.C., Ruhe, A., Wallace, M., Neff, M.W., 2010. Necrotizing meningoencephalitis of Pug dogs associates with dog leucocyte antigen class II and resembles acute variant forms of multiple sclerosis. Tissue Antigens 76 (2), 110–118.

28.Gregory, C.R., Stewart, A., Sturges, B., DeManvelle, T.,

Cannon, A., Ortega, T., Harb, M., Morris, R.E., 1998. Leflunomide

effectively treats naturally occurring immune- mediated and

inflammatory diseases of dogs that are unresponsive to conventional therapy. Transpl. Proc. 30 (8), 4143–4148.

29. Griffin, J.F., Levine, M., Levine, G.J., Fosgate, G.T., 2008.

Meningomyelitis in dogs: a retrospective review of 28 cases

(1999 to 2007). J. Small Anim. Pract. 49, 509– 517.

30. Higgins, R.J., Dickinson, P.J., Kube, S.A., Moore, P.F.,

Couto, S.S., Vernau, K.M., Sturges, B.K., Lecouteur, R.A., 2008.

Necrotizing meningoencephalitis in five Chihuahua dogs. Vet.

Pathol. 45, 336–346.

31.Jung, D.I., Kang, B.T., Park, C., Yoo, J.H., Gu, S.H., Jeon,

H.W., Kim, J.W., Heo, R.Y., Sung, H.J., Eom, K.D., Lee, J.H., Woo,

E.J., Park, H.M., 2007. A comparison of combination therapy

(cyclosporine plus prednisolone) with sole prednisolone therapy

in 7 dogs with necrotizing meningoencephalitis. J. Vet. Med. Sci.

69, 1303–1306.

32.Jung, D.I., Kim, J.W., Park, H.M., 2011. Long-term immunosuppressive therapy with cyclosporine plus prednisolone for

necrotizing meningoencephalitis in a pekingese dog. J. Vet. Med.

Sci. 74, 765–769.

33. Jung, D.I., Lee, H.C., J, H.A., Jung, H.W., Jeon, J.H., Moon,

J.H., Lee, J.H., Kim, N.H., Kang, B.T., Cho, K.W., 2013. Unsuccessful

cyclosporine plus prednisolone therapy for autoimmune meningoencephalitis in three dogs. J. Vet. Med. Sci. 75 (12), 1661–

1665.

34. Kang, B.T., Kim, S.G., Lim, C.Y., Gu, S.H., Jang, D.P., Kim,

Y.B., Kim, D.Y., Woo, E.J., Cho, Z. H., Park, H.M., 2010. Correlation

between fluorodeoxyglucose positron emission tomography and

magnetic resonance imaging findings of non-suppurative meningoencephalitis in 5 dogs. Can. Vet. J. 51, 986–992.

35. Kipar, A., Baumgartner, W., Vogl, C., Gaedke, K., Wellman, M., 1998. Immunohistochemical characterization of inflammatory cells in brains of dogs with granulomatous meningoencephalitis. Vet. Pathol. 35 (1), 43–52.

36.Koblik, P.D., LeCouteur, R.A., Higgins, R.J., Bollen, A.W.,

Vernau, K.M., Kortz, G.D., Ilkiw, J.E., 1999. CT-guided brain biopsy

using a modified pelorus mark III stereotactic system: experience

with 50 dogs. Vet. Radiol. Ultrasound 40 (4), 434–440.

37.Lamb, C.R., Croson, P.J., Capello, R., Cherubini, G.B.,

2005. Results of MR imaging of the head in dogs with inflammatory cerebrospinal fluid. Vet. Radiol. Ultrasound 37, 424–427.

38.Levine, J.M., Fosgate, G.T., Porter, B., Schatzberg, S.J.,

Greer, K., 2008. Epidemiology of necrotizing meningoencephalitis in Pug dogs. J. Vet. Intern. Med. 22 (4), 961– 968.

39. Lowrie, M., Smith, P.M., Garosi, L., 2013. Meningoencephalitis of unknown origin: investigation of prognostic factors

and outcome using a standard treatment protocol. Vet. Rec. 172

(20), 527.

40.Lowrie, M., Thomson, S., Smith, P., Garosi, L., 2016.

Effect of a constant rate infusion of cytosine arabinoside on

mortality in dogs with meningoencephalitis of unknown origin.

Vet. J. 213, 1–5. Menaut, P., Landart, J., Behr, S., Lanore, D.,

Trumel, C., 2008. Treatment of 11 dogs with meningoencephalomyelitis of unknown origin with a combination of prednisolone

and cytosine arabinoside. Vet. Rec. 162 (8), 241–245.

41.Mercier, M., Barnes Heller, H.L., 2015. Efficacy of glucocorticoid monotherapy for treatment of canine meningo-encephalomyelitis of uknown etiology: a prospective study in 16

dogs. Vet. Med. Sci. 1, 16–22.

42.Munana, K.R., Luttgen, P.J., 1998. Prognostic factors for

dogs with granulomatous meningoencephalomyelitis: 42 cases

(1982-1996). J. Am. Vet. Med. Assoc. 212, 1902–1906.

43.Oliphant, B.J., Barnes Heller, H.L., White, J.M., 2017. Retrospective study evaluating assocations between midine shift

on magnetic resonance imaging and survival in dogs diagnosed

with meningoencephalitis of unknown etiology. Vet. Radiol.

Ultrasound 58 (1), 38–43.

44.Pakozdy, A., Leschnik, M., Kneissl, S., Gumpenberger, M.,

Gruber, A., Tichy, A., Thalhammer, J.G., 2009. Improved survival

time in dogs with suspected GME treated with ciclosporine. Vet.

Rec. 164, 89–91.

45.Russo, M.E., 1979. Primary reticulosis of the central nervous system in dogs. J. Am. Vet. Med. Assoc. 174, 492–500.

46.Schatzberg, S.J., Haley, N.J., Barr, S.C., de Lahunta, A.,

Sharp, N.J.H., 2005. Polymerase chain reaction screening for

DNA viruses in paraffin-embedded brains from dogs with necrotizing meningoencephalitis, necrotizing leucoencephalitis and

granulomatous meningoencephalitis. J. Vet. Intern. Med. 19 (4),

553–559.

47.Sisson, A.F., LeCouteur, R.A., Dow, S.W., Gilette, E.L.,

1989. Radiation therapy of granulomatous meningoencephalomyelitis of dogs. ACVIM forum proceedings. J. Vet. Intern. Med. 3

(2), 119.

48.Smith, P.M., Stalin, C.E., Shaw, D., Granger, N., Jeffery,

N.D., 2009. Comparison of two regimens for the treatment of

meningoencephalomyelitis of unknown etiology. J. Vet. Intern.

Med. 23, 520–526.

49.Sorjonen, D.C., 1990. Clinical and histopathological features of granulomatous meningoencephalomyelitis in dogs. J.

Am. Anim. Hosp. Assoc. 26, 141–147.

50. Talarico, L.R., Schatzberg, S.J., 2010. Idiopathic granulomatous and necrotising inflammatory disorders of the canine

central nervous system: a review and future perspectives. J.

Small Anim. Pract. 51, 138–149.

51.Thomas, J.B., Eger, C., 1989. Granulomatous meningoencephalomyelitis in 21 dogs. J. Small Anim. Pract. 30, 287–293.

52.Tipold, A., 1995. Diagnosis of inflammatory and infectious diseases of the central nervous system in dogs: a retrospective study. J. Vet. Intern. Med. 9, 304–314.

53.Uchida, K., Park, E., Tsuboi, M., Chambers, J.K., Nakayama, H., 2016. Pathological and immunological features of canine

necrotising meningoencephalitis and granulomatous meningoencephalitis. Vet. J. 213, 72–77.

54.Uriarte, J.L., Thibaud, K., Gnirs, S., Blot, S., 2007. Lomustine treatment in noninfectious meningoencephalitis in 8 dogs,

Proceedings of the 20th annual symposium of the ESVN/ECVN,

Bern, Switzerland. J. Vet. Intern. Med. 22 (2), 509. von Praun, F.,

Matiasek, K., Grevel, V., Alef, M., Flegel, T., 2006. Magnetic resonance imaging and pathologic findings associated with necrotizing encephalitis in two Yorkshire terriers. Vet. Radiol. Ultrasound 47, 260–264.

55.Wolff, C.A., Holmes, S.P., Young, B.D., Chen, A.V., Kent,

M., Platt, S.R., Savage, M.Y., Schatzberg, S.J., Fosgate, G.T., Levine,

J.M., 2012. Magnetic resonance imaging for the differentiation of

neoplastic, inflammatory and cerebrovascular brain disease in

dogs. J. Vet. Intern. Med. 26, 589–597.

56.Wong, M.A., Hopkings, A.L., Meeks, J.C., Clarke, J.D.,

2010. Evaluation of treatment with a combination of azathioprine and prednisone in dogs with meningoencephalomyelitis of

undetermined etiology: 40 cases (2000-2007). J. Am. Vet. Med.

Assoc. 237 (8), 929–935.

57.Young, B., Levine, J.L., Fosgate, A., de Lahunta, A.,

Flegel, T., Matiasek, K., Miller, A., Silver, G., Sharp, N., Greer, K.,

Schatzberg, S.J., 2009. Magnetic resonance imaging characteristics of necrotizing meningoencephalitis in pug dogs. J. Vet.

Intern. Med. 23 (3), 527–535.

58.Zarfoss, M., Schatzberg, S., Venator, K., Cutter-Schatzberg, K., Cuddon, P., Pintar, J., Weinkle, T., Scarlett, J.,

deLahunta, A., 2006. Combined cytosine arabinoside and prednisone therapy for meningoencephalitis of unknown aetiology in

10 dogs. J. Small Anim. Pract. 47, 588–595.

第128頁

小動物臨床前沿(神經(jīng)學(xué)???- 上冊)· 腦部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 總第 12 期

- 126 -

參考文獻:

1.Adamo, F.P., O’ Brien, R.T., 2004. Use of cyclosporine

to treat granulomatous meningoencephalitis in three dogs.

J. Am. Vet. Med. Assoc. 225, 1211–1216.

2.Adamo, P.F., Rylander, H., Adams, W.M., 2007. Ciclosporin use in multi-drug therapy for meningoencephalomyelitis of unknown aetiology in dogs. J. Small Anim. Pract. 48,

486–496.

3.Bailey, C.S., Higgins, R.J., 1986. Characteristics of

cerebrospinal fluid associated with canine granulomatous

meningoencephalomyelitis: a retrospective study. J. Am. Vet.

Med. Assoc. 188, 418–421.

4.Barber, R.M., Porter, B.F., Li, Q., May, M., Clairborne, M.K.,

Allison, A.B., Howerth, E.W., Butler, A., Wei, S., Levine, J.M., Brown,

D.R., Schatzberg, S.J., 2012. Broadly reactive polymerase chain

reaction for pathogen detection in canine granulomatous meningoencephalomyelitis and necrotizing meningoencephalitis. J.

Vet. Intern. Med. 26 (4), 962–968.

5.Barnoon, I., Shamir, M.H., Aroch, I., Bdolah-Abram, T.,

Srugo, I., Konstantin, L., Chai, O., 2016. Retrospective evaluation

of combined mycophenolate mofetil and prednisone treatment

for meningoencephalomyelitis of unknown etiology in dogs: 25

cases (2005-2011). J. Vet. Emerg. Crit. Care 26 (1), 116–124.

6.Bateman, S.W., Parent, J.M., 1999. Clinical findings, treatment and outcome of dogs with status epilepticus or cluster

seizures: 156 cases (1990–1995). J. Am. Vet. Med. Assoc. 215,

1463–1468.

7. Beckmann, K., Carrera, I., Steffen, F., Golini, L., Kircher,

P.R., Schneider, U., Bley, C.R., 2015. A newly designed radiation

therapy protocol in combination with prednisolone as treatment

for meningoencephalitis of unknown origin in dogs: a prospective pilot study introducing magnetic resonance spectroscopy as

a monitor tool. Acta Vet. Scand. 57 (4), 1–14.

8.Braund, K.G., 1985. Granulomatous meningoencephalomyelitis. J. Am. Vet. Med. Assoc. 186, 138–141.

9.Carrera, I., Richter, H., Beckmann, K., Meier, D., Dennler,

M., Kircher, P.R., 2016. Evaluation of intracranial neoplasia and

non-infectious meningoencephalitis in dogs by use of short

echo time, single voxel proton magnetic resonance spectroscopy at 3.0 Tesla. Am. J. Vet. Res. 77, 452–462.

10.Carvalho, C.F., Perez, R.B., Chamas, M.C., Maiorka, P.C.,

2012. Transcranial Doppler sonographic findings in granulomatous meningoencephalitis in small breed dogs. Can. Vet. J. 53,

855–859.

11. Cherubini, G.B., Platt, S.R., Anderson, T.J., 2006. Characteristics of magnetic resonance images of granulomatous meningoencephalomyelitis in 11 dogs. Vet. Rec. 159, 504–515.

12.Coates, J.R., Barone, G., Dewey, C.W., Vitale, C.L., Holloway-Azene, N.M., Sessions, J.K., 2007. Procarbazine as adjunctive therapy for treatment of dogs with presumptive antemortem diagnosis of granulomatous meningoencephalomyelitis: 21

cases (1998-2004). J. Vet. Intern. Med. 21, 100–106.

13. Coates, J.R., Jeffery, N.D., 2014. Perspectives on meningoencephalomyelitis of unknown origin. Vet. Clin. North Am.

Small Anim. Pract. 44, 1157–1185. Cooper, J.J., Schatzberg, S.J.,

Vernau, K.M., Summers, B.A., Porter, B.F., Siso, S., Young, B.D.,

Levine, J.M., 2014. Necrotizing meningoencephalitis in atypical

dog breeds: a case series and literature review. J. Vet. Intern.

Med. 28, 198–203.

14.Cornelis, I., Volk, H.A., Van Ham, L., De Decker, S., 2016a.

Prognostic factors for 1- week survival in dogs diagnosed with

meningoencephalitis of unknown aetiology. Vet. J. 214, 91–95.

15. Cornelis, I., Volk, H.A., De Decker, S., 2016b. Clinical

presentation, diagnostic findings and long-term survival in large

breed dogs with meningoencephalitis of unknown aetiology.

Vet. Rec. 179 (6), 147.

16.Cornelis, I., Volk, H.A., Van Ham, L., De Decker, S., 2017a.

Clinical presentation, diagnostic findings and outcome in dogs

diagnosed with presumptive spinal- only meningoencephalomyelitis of unknown origin. J. Small Anim. Pract. 58, 174–182.

17. Cornelis, I., Van Ham, L., De Decker, S., Kromhout, K.,

Goethals, K., Gielen, I., Bhatti, S., 2017b. Sole prednisolone therapy in canine meningoencephalitis of unknown aetiology. Flemish

Vet. J. 86, 24–29.

18. Cuddon, P., 2002. New treatments for granulomatous

meningoencephalomyelitis. Proceedings of the 20th annual

ACVIM forum, Dallas, USA, pp. 319–321.

19. Cuddon, P., Smith-Maxie, L., 1984. Reticulosis of the

central nervous system in the dog. Compend. Contin. Educ.

Pract. Vet. 6, 23–32.

20.de Stefani, A., De Risio, L., Matiasek, L., Feliu-Pascual,

A.L., 2007. Intravenous cytosine arabinoside in the emergency

treatment of 9 dogs with central nervous system inflammatory

disease of unknown origin. In; Proceedings of the 20th annual

symposium of the ESVN/ECVN, Bern, Switzerland. J. Vet. Intern.

Med. 22 (2), 508. Eom, K.D., Lim, C.Y., Gu, S.H., Kang, B.T., Kim,

Y.B., Jang, D.P., Woo, E.J., Kim, D., Cho, Z. H., Park, H.M., 2008.

Positron emission tomography features of canine necrotizing

meningoencephalitis. Vet. Radiol. Ultrasound 49 (6), 595–599.

21.Feliu-Pascual, A.L., Matiasek, L., de Stefani, A., Beltran,

E., De Risio, L., 2007. Efficacy of mycophenolate mofetil for the

treatment of granulomatous meningoencephalomyelitis: preliminary results. Proceedings of the 20th annual symposium of the

ESVN/ECVN, Bern, Switzerland. J. Vet. Intern. Med. 22 (2), 509.

22. Flegel, T., Henke, D., Boetticher, I.C., Aupperle, H., Oechtering, G., Matiasek, K., 2008. Magnetic resonance imaging findings in histologically confirmed pug dog encephalitis. Vet.

Radiol. Ultrasound 49 (5), 419–424.

23.Flegel, T., Boettcher, I.C., Matiasek, K., Oevermann, A.,

Doherr, M.G., Oechtering, G., Henke, D., 2011. Comparison of oral

administration of lomustine and prednisolone or prednisolone

alone as treatment for granulomatous meningoencephalomyelitis or necrotizing encephalitis in dogs. J. Am. Vet. Med. Assoc.

238 (3), 337–345.

24.Flegel, T., Oevermann, A., Oechetering, G., Matiasek, K.,

2012. Diagnostic yield and adverse effects of MRI-guided

free-hand biopsies through a mini-burr hole in dogs with

encephalitis. J. Vet. Intern. Med. 26, 969–976.

25.Gnirs, K., 2006. Ciclosporin treatment of suspected

granulomatous meningoencephalomyelitis in three dogs. J.

Small Anim. Pract. 47 (4), 201–206. Granger, N., Smith, P.M.,

Jeffery, N.D., 2010.

26.Clinical findings and treatment of non-infectious meningoencephalomyelitis in dogs: a systematic review of 457

published cases from 1962 to 2008. Vet. J. 184, 290–297.

27.Greer, K.A., Wong, A.K., Liu, H., Famula, T.R., Pederson,

N.C., Ruhe, A., Wallace, M., Neff, M.W., 2010. Necrotizing meningoencephalitis of Pug dogs associates with dog leucocyte antigen class II and resembles acute variant forms of multiple sclerosis. Tissue Antigens 76 (2), 110–118.

28.Gregory, C.R., Stewart, A., Sturges, B., DeManvelle, T.,

Cannon, A., Ortega, T., Harb, M., Morris, R.E., 1998. Leflunomide

effectively treats naturally occurring immune- mediated and

inflammatory diseases of dogs that are unresponsive to conventional therapy. Transpl. Proc. 30 (8), 4143–4148.

29. Griffin, J.F., Levine, M., Levine, G.J., Fosgate, G.T., 2008.

Meningomyelitis in dogs: a retrospective review of 28 cases

(1999 to 2007). J. Small Anim. Pract. 49, 509– 517.

30. Higgins, R.J., Dickinson, P.J., Kube, S.A., Moore, P.F.,

Couto, S.S., Vernau, K.M., Sturges, B.K., Lecouteur, R.A., 2008.

Necrotizing meningoencephalitis in five Chihuahua dogs. Vet.

Pathol. 45, 336–346.

31.Jung, D.I., Kang, B.T., Park, C., Yoo, J.H., Gu, S.H., Jeon,

H.W., Kim, J.W., Heo, R.Y., Sung, H.J., Eom, K.D., Lee, J.H., Woo,

E.J., Park, H.M., 2007. A comparison of combination therapy

(cyclosporine plus prednisolone) with sole prednisolone therapy

in 7 dogs with necrotizing meningoencephalitis. J. Vet. Med. Sci.

69, 1303–1306.

32.Jung, D.I., Kim, J.W., Park, H.M., 2011. Long-term immunosuppressive therapy with cyclosporine plus prednisolone for

necrotizing meningoencephalitis in a pekingese dog. J. Vet. Med.

Sci. 74, 765–769.

33. Jung, D.I., Lee, H.C., J, H.A., Jung, H.W., Jeon, J.H., Moon,

J.H., Lee, J.H., Kim, N.H., Kang, B.T., Cho, K.W., 2013. Unsuccessful

cyclosporine plus prednisolone therapy for autoimmune meningoencephalitis in three dogs. J. Vet. Med. Sci. 75 (12), 1661–

1665.

34. Kang, B.T., Kim, S.G., Lim, C.Y., Gu, S.H., Jang, D.P., Kim,

Y.B., Kim, D.Y., Woo, E.J., Cho, Z. H., Park, H.M., 2010. Correlation

between fluorodeoxyglucose positron emission tomography and

magnetic resonance imaging findings of non-suppurative meningoencephalitis in 5 dogs. Can. Vet. J. 51, 986–992.

35. Kipar, A., Baumgartner, W., Vogl, C., Gaedke, K., Wellman, M., 1998. Immunohistochemical characterization of inflammatory cells in brains of dogs with granulomatous meningoencephalitis. Vet. Pathol. 35 (1), 43–52.

36.Koblik, P.D., LeCouteur, R.A., Higgins, R.J., Bollen, A.W.,

Vernau, K.M., Kortz, G.D., Ilkiw, J.E., 1999. CT-guided brain biopsy

using a modified pelorus mark III stereotactic system: experience

with 50 dogs. Vet. Radiol. Ultrasound 40 (4), 434–440.

37.Lamb, C.R., Croson, P.J., Capello, R., Cherubini, G.B.,

2005. Results of MR imaging of the head in dogs with inflammatory cerebrospinal fluid. Vet. Radiol. Ultrasound 37, 424–427.

38.Levine, J.M., Fosgate, G.T., Porter, B., Schatzberg, S.J.,

Greer, K., 2008. Epidemiology of necrotizing meningoencephalitis in Pug dogs. J. Vet. Intern. Med. 22 (4), 961– 968.

39. Lowrie, M., Smith, P.M., Garosi, L., 2013. Meningoencephalitis of unknown origin: investigation of prognostic factors

and outcome using a standard treatment protocol. Vet. Rec. 172

(20), 527.

40.Lowrie, M., Thomson, S., Smith, P., Garosi, L., 2016.

Effect of a constant rate infusion of cytosine arabinoside on

mortality in dogs with meningoencephalitis of unknown origin.

Vet. J. 213, 1–5. Menaut, P., Landart, J., Behr, S., Lanore, D.,

Trumel, C., 2008. Treatment of 11 dogs with meningoencephalomyelitis of unknown origin with a combination of prednisolone

and cytosine arabinoside. Vet. Rec. 162 (8), 241–245.

41.Mercier, M., Barnes Heller, H.L., 2015. Efficacy of glucocorticoid monotherapy for treatment of canine meningo-encephalomyelitis of uknown etiology: a prospective study in 16

dogs. Vet. Med. Sci. 1, 16–22.

42.Munana, K.R., Luttgen, P.J., 1998. Prognostic factors for

dogs with granulomatous meningoencephalomyelitis: 42 cases

(1982-1996). J. Am. Vet. Med. Assoc. 212, 1902–1906.

43.Oliphant, B.J., Barnes Heller, H.L., White, J.M., 2017. Retrospective study evaluating assocations between midine shift

on magnetic resonance imaging and survival in dogs diagnosed

with meningoencephalitis of unknown etiology. Vet. Radiol.

Ultrasound 58 (1), 38–43.

44.Pakozdy, A., Leschnik, M., Kneissl, S., Gumpenberger, M.,

Gruber, A., Tichy, A., Thalhammer, J.G., 2009. Improved survival

time in dogs with suspected GME treated with ciclosporine. Vet.

Rec. 164, 89–91.

45.Russo, M.E., 1979. Primary reticulosis of the central nervous system in dogs. J. Am. Vet. Med. Assoc. 174, 492–500.

46.Schatzberg, S.J., Haley, N.J., Barr, S.C., de Lahunta, A.,

Sharp, N.J.H., 2005. Polymerase chain reaction screening for

DNA viruses in paraffin-embedded brains from dogs with necrotizing meningoencephalitis, necrotizing leucoencephalitis and

granulomatous meningoencephalitis. J. Vet. Intern. Med. 19 (4),

553–559.

47.Sisson, A.F., LeCouteur, R.A., Dow, S.W., Gilette, E.L.,

1989. Radiation therapy of granulomatous meningoencephalomyelitis of dogs. ACVIM forum proceedings. J. Vet. Intern. Med. 3

(2), 119.

48.Smith, P.M., Stalin, C.E., Shaw, D., Granger, N., Jeffery,

N.D., 2009. Comparison of two regimens for the treatment of

meningoencephalomyelitis of unknown etiology. J. Vet. Intern.

Med. 23, 520–526.

49.Sorjonen, D.C., 1990. Clinical and histopathological features of granulomatous meningoencephalomyelitis in dogs. J.

Am. Anim. Hosp. Assoc. 26, 141–147.

50. Talarico, L.R., Schatzberg, S.J., 2010. Idiopathic granulomatous and necrotising inflammatory disorders of the canine

central nervous system: a review and future perspectives. J.

Small Anim. Pract. 51, 138–149.

51.Thomas, J.B., Eger, C., 1989. Granulomatous meningoencephalomyelitis in 21 dogs. J. Small Anim. Pract. 30, 287–293.

52.Tipold, A., 1995. Diagnosis of inflammatory and infectious diseases of the central nervous system in dogs: a retrospective study. J. Vet. Intern. Med. 9, 304–314.

53.Uchida, K., Park, E., Tsuboi, M., Chambers, J.K., Nakayama, H., 2016. Pathological and immunological features of canine

necrotising meningoencephalitis and granulomatous meningoencephalitis. Vet. J. 213, 72–77.

54.Uriarte, J.L., Thibaud, K., Gnirs, S., Blot, S., 2007. Lomustine treatment in noninfectious meningoencephalitis in 8 dogs,

Proceedings of the 20th annual symposium of the ESVN/ECVN,

Bern, Switzerland. J. Vet. Intern. Med. 22 (2), 509. von Praun, F.,

Matiasek, K., Grevel, V., Alef, M., Flegel, T., 2006. Magnetic resonance imaging and pathologic findings associated with necrotizing encephalitis in two Yorkshire terriers. Vet. Radiol. Ultrasound 47, 260–264.

55.Wolff, C.A., Holmes, S.P., Young, B.D., Chen, A.V., Kent,

M., Platt, S.R., Savage, M.Y., Schatzberg, S.J., Fosgate, G.T., Levine,

J.M., 2012. Magnetic resonance imaging for the differentiation of

neoplastic, inflammatory and cerebrovascular brain disease in

dogs. J. Vet. Intern. Med. 26, 589–597.

56.Wong, M.A., Hopkings, A.L., Meeks, J.C., Clarke, J.D.,

2010. Evaluation of treatment with a combination of azathioprine and prednisone in dogs with meningoencephalomyelitis of

undetermined etiology: 40 cases (2000-2007). J. Am. Vet. Med.

Assoc. 237 (8), 929–935.

57.Young, B., Levine, J.L., Fosgate, A., de Lahunta, A.,

Flegel, T., Matiasek, K., Miller, A., Silver, G., Sharp, N., Greer, K.,

Schatzberg, S.J., 2009. Magnetic resonance imaging characteristics of necrotizing meningoencephalitis in pug dogs. J. Vet.

Intern. Med. 23 (3), 527–535.

58.Zarfoss, M., Schatzberg, S., Venator, K., Cutter-Schatzberg, K., Cuddon, P., Pintar, J., Weinkle, T., Scarlett, J.,

deLahunta, A., 2006. Combined cytosine arabinoside and prednisone therapy for meningoencephalitis of unknown aetiology in

10 dogs. J. Small Anim. Pract. 47, 588–595.

第129頁

小動物臨床前沿(神經(jīng)學(xué)???- 上冊)· 腦部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 總第 12 期

- 127 -

李彥林

南京農(nóng)業(yè)大學(xué)臨床獸醫(yī)系 碩士

南京艾貝爾雙龍中心醫(yī)院 院長

榮獲2021年江蘇省優(yōu)秀動物醫(yī)生

新瑞鵬集團神經(jīng)??苾?yōu)秀人才

作者介紹

寄語

敬畏生命,不斷學(xué)習(xí),希望能在運用所學(xué)所能,

在治療,在執(zhí)刀冰冷時,守執(zhí)業(yè)初始之熱情予生命和

醫(yī)療以溫暖。

神經(jīng)內(nèi)科、超聲診斷

擅長領(lǐng)域

中文核心期刊發(fā)表:

《磁共振成像(MRI)在犬顱腦損傷診斷中的應(yīng)用》

《犬非感染性腦炎的磁共振影像觀察》

《增強磁共振成像在犬細(xì)菌性腦膜炎診斷中的應(yīng)用》

樓凌森

畢業(yè)于中國農(nóng)業(yè)大學(xué)動物醫(yī)學(xué)

杭州美聯(lián)眾合動物醫(yī)院博大轉(zhuǎn)診中心 技術(shù)院長

新瑞鵬集團百強-神經(jīng)科/影像科

中國畜牧獸醫(yī)學(xué)會會員/影像專科醫(yī)師

冠能獸醫(yī)俱樂部 特聘講師

邁瑞小動物超聲 特聘講師

作者介紹

寄語

劈破旁門,方見明月如洗。

第130頁

小動物臨床前沿(神經(jīng)學(xué)???- 上冊)· 腦部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 總第 12 期

前言

材料與方法

病例分析:三例海綿竇綜合征的診斷分析

Case report:Clinical approach of Cavernous Sinus Syndrome in 3 Dogs

作者

李彥林1

(南京艾貝爾雙龍動物醫(yī)院)

史超穎2

(南京艾貝爾動物醫(yī)學(xué)中心)、吳俊杰3

(南京艾貝爾動物醫(yī)學(xué)中心)

摘要:

海綿竇綜合征 (CSS) 是顱穹窿底部穿過海綿狀竇的多條腦神經(jīng) (CN) 出現(xiàn)缺陷引起的一類神經(jīng)癥候群

統(tǒng)稱,常見的腦神經(jīng)異常包括 CN III( 動眼神經(jīng) ),CN IV( 滑車神經(jīng) ),CN VI( 外展神經(jīng) ),CN V 的前兩個分支 (

三叉神經(jīng) )。根據(jù)病動物體格檢查、神經(jīng)學(xué)檢查和實驗室檢查結(jié)果初步進行診斷,然后采用聯(lián)影公司 uMR560

1.5T 磁共振掃描儀進行影像診斷,兩例病例在 MRI 影像下均發(fā)現(xiàn)海綿竇有腫塊病變。本論文總結(jié) 2 例犬,1

例貓海綿狀竇綜合征 (CSS) 的主訴、神經(jīng)學(xué)表現(xiàn)、診斷和結(jié)果。目的是讓臨床醫(yī)生熟悉常見的臨床體征、診斷

測試、臨床結(jié)果,并回顧 CSS 相關(guān)的神經(jīng)學(xué)應(yīng)用。

關(guān)鍵詞:海綿竇綜合征;磁共振影像;診斷;

臨床病例

在2021年1月至2021年11月中接到的3例由于腦

神經(jīng)異常癥狀就診的病例,通過磁共振影像檢查確

診海綿竇區(qū)域病變的病例,其中有2例犬,1例貓。

病例也配合進行了全血計數(shù)、生化分析、尿液分

析、胸片、腹部超聲、腦脊液分析等輔助診斷。

主要儀器設(shè)備

uMR560 1.5T磁共振掃描儀、柔性線圈(大、小)

(聯(lián)影醫(yī)療);麻醉機(MATRX);血細(xì)胞分析儀(愛德士

ProCyte Dx?);生化分析儀愛德士(Catalyst DxTM);

內(nèi)分泌及快速檢測試劑分析儀(愛德士 SNAPshot Dx

?);動物電解質(zhì)與血氣分析儀(雅培EC8+)。

- 128 -

海綿竇(Cavernous Sinus,CS)是一個成對的靜脈

竇,解剖位置在蝶竇上方垂體的兩側(cè),從眶裂延伸至

巖枕管,其中腦神經(jīng)從海綿竇邊緣穿行。海綿狀竇綜

合征(Cavernous Sinus Syndrome CSS)是指海綿竇區(qū)

域病變后,引起一對以上的腦神經(jīng)III、IV、V和VI缺陷

所表現(xiàn)的異常癥候群[1-3],因海綿竇靠近多對腦神經(jīng)

和垂體,通常伴隨有單一或多種癥狀如失明,面神經(jīng)

反射異常,共濟失調(diào),疼痛,無力,嗜睡,上瞼下垂,眼

腫脹,多飲,癲癇,面肌萎縮,吞咽困難,頭傾斜等。神

經(jīng)體征包括眼肌麻痹,瞳孔光反應(yīng)減弱/消失,瞳孔散

失,角膜感覺減弱/消失,眼睛的交感神經(jīng)也通過CS

區(qū)域,因此,霍納氏綜合征可能伴有與海綿竇綜合征

一致的其他臨床癥狀[4]。

CSS與多種疾病過程相關(guān)。在一項人類醫(yī)學(xué)研

究中[5],腫瘤因素約占該類病例發(fā)病的70%,其他原

因包括感染性,非感染性炎癥和創(chuàng)傷性損傷。在動

物中只有零星的CSS個例被報道[6-7]。組織病理學(xué)確

診的腫瘤種類有淋巴瘤、甲狀腺腺癌、神經(jīng)內(nèi)分泌

癌、腦膜瘤、軟骨肉瘤和原始神經(jīng)外胚層腫瘤。其

他報道的狗和貓的病因包括:傳染性和非傳染性炎癥

性疾病、多發(fā)性軟骨外生、外傷和血管病變、海綿

竇瘺[8-10]。與狗相比,貓的傳染性病因報道更普遍,

包括:貓傳染性腹膜炎、新型隱球菌和弓形蟲[11]。

本病例系列的目的是確定海綿狀竇綜合征犬和

貓的常見主訴、臨床表現(xiàn)、診斷和結(jié)果。給臨床醫(yī)

生診斷該類疾病提供理論依據(jù)。

第131頁

小動物臨床前沿(神經(jīng)學(xué)???- 上冊)· 腦部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 總第 12 期

結(jié)果

病例基本信息及臨床檢查

病例1,11歲雌性雪納瑞,體重8Kg,已絕育,

主訴三個月前開始出現(xiàn)多飲多尿的情況,最近一周

出現(xiàn)明顯的虛弱嗜睡,行走共濟失調(diào)的情況,雙側(cè)

瞳孔大小不一致,上眼瞼下垂。神經(jīng)學(xué)檢查可見雙

側(cè)瞳孔對光反射減弱。

病例2,8歲雄性混血犬,體重6.2Kg,未去勢,

兩天前突發(fā)癲癇,持續(xù)發(fā)作10分鐘后恢復(fù),之后精

神沉郁,出現(xiàn)走路碰到障礙的情況,發(fā)現(xiàn)右側(cè)瞳孔

散大。神經(jīng)學(xué)檢查發(fā)現(xiàn)恐嚇反射消失,右側(cè)瞳孔對

光反射消失,左側(cè)瞳孔對光反射減弱。

病例3,13歲雄性田園貓,體重5.3Kg,已去

勢,半年前因為有多飲多尿情況疑似糖尿病一直未

曾檢查用藥,最近發(fā)現(xiàn)眼睛瞳孔大小不對稱,走路

不穩(wěn),便秘就診。神經(jīng)學(xué)檢查雙側(cè)瞳孔對光反射減

弱,左側(cè)面神經(jīng)麻痹,舌面有潰瘍。

實驗室檢查結(jié)果

病例1:中性粒細(xì)胞數(shù)目輕微升高12.39K/μL(正

常值范圍3.62-12.3)生化檢查結(jié)果堿性磷酸酶升高

273U/L(正常范圍23-212),血清總甲狀腺素(TT4)

6nmol/L(正常值13-51),送檢T4:0.63μg/dl、TSH:

0.71ng/ml、Anti-Tg:64.1U/ml,提示甲狀腺機能減

退,腦脊液(CSF)檢測未見明顯異常。

檢查項目

Check the project

檢查結(jié)果

Check the result

參考范圍

Reference

檢查項目

Check the project

檢查結(jié)果

Check the result

參考范圍

Reference

紅細(xì)胞計數(shù)

RBC

6.21 5.65-8.87 中性粒細(xì)胞

NEU(K/ L) 13.41↑ 2.95-11.64

紅細(xì)胞壓積PCV 402% 37.3-61.7 淋巴細(xì)胞

LYM(K/ L) 4.5 1.05-5.10

血紅蛋白HB(g/dL) 13.1 13.1-20.5 單核細(xì)胞

MONO(K/ L) 1.33↑ 0.16-1.12

平均紅細(xì)胞體積

MCV(fL) 62.4 61.6-73.5 嗜酸性粒細(xì)胞

EOS(K/ L) 0.03↓ 0.06-1.23

平均血紅蛋白量 MCH

(pg) 22 21.2-25.9 嗜堿性粒細(xì)胞

BASO(K/ L) 0.08 0.00-0.10

平均血紅蛋白濃度

MCHC(g/dL) 32.3 32.0-37.9 血小板

PLT(K/ L) 228 148-484

紅細(xì)胞分布寬度 RDW 16.40% 13.6-21.7 平均血小板體積

MPV(fL) 9.8 8.7-13.2

網(wǎng)織紅細(xì)胞

RC(K/ L) 18 10.0-110.0 血小板分布寬度

PDW(fL) 12 9.1-19.4

白細(xì)胞WBC(K/ L) 18.24↑ 5.05-16.76 血小板壓積PCT 0.32% 0.14-0.46

(M/μL) μ

μ

μ

μ

μ

μ

μ

μ

病例2:血液學(xué)檢查結(jié)果未見明顯異常。CSF未見

明顯異常。

病例3:實驗室檢查見表1-1,1-2。白細(xì)胞18.24

K/μL、中性粒細(xì)胞13.41K/μL、單核細(xì)胞結(jié)果1.33 K/μ

L高于正常值,生化檢測提示高血糖,CSF可見輕微的

單核細(xì)胞增多。在2021年1月至2021年11月中接到的3

例由于腦神經(jīng)異常癥狀就診的病例,通過磁共振影像

檢查確診海綿竇區(qū)域病變的病例,其中有2例犬,1例

貓。病例也配合進行了全血計數(shù)、生化分析、尿液分

析、胸片、腹部超聲、腦脊液分析等輔助診斷。

表 1-1、1-2 兩項實驗室檢查提示炎性病變及血

糖升高。

磁共振掃描結(jié)果

使用1.5T磁共振儀對三個病例均進行了掃描。

病例1的磁共振檢查結(jié)果如圖1,在T1序列下海綿

竇區(qū)域等信號病灶,在T2下高信號提示病變周圍伴

隨細(xì)胞毒性水腫在FLAIR序列下無法被抑制,病灶在

T1增強序列下呈現(xiàn)高信號。

病例2的磁共振檢查結(jié)果如圖2,病灶在T1序列下

呈現(xiàn)等偏高信號,T2序列下呈現(xiàn)等信號,造影增強下

呈現(xiàn)高信號。DWI序列、SWI序列均未見異常信號。

病例3的磁共振檢查結(jié)果如圖3,病灶在T1序列

下呈等信號、T2序列下均呈現(xiàn)低信號,造影增強下呈

現(xiàn)高信號。

表1-1:病例3血細(xì)胞檢測報告

- 129 -

第132頁

小動物臨床前沿(神經(jīng)學(xué)???- 上冊)· 腦部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 總第 12 期

表1-2:病例3生化檢測

A

A

圖1:病例1磁共振檢查圖像

A:Gd-T1WI橫斷面,B:Gd-T1WI冠狀面,在T1造影增強下顱底垂體部位出現(xiàn)局灶性病灶(箭頭)

病灶侵占了整個海綿竇,侵占了丘腦及部分大腦顳葉。

圖2:病例2磁共振檢查圖像

A:T2WI矢狀面,B:Gd-T1WI橫斷面,在T2下海綿竇區(qū)域呈現(xiàn)等信號的病灶,在T1增強序列呈現(xiàn)高信號

檢查項目

Check the project

檢查結(jié)果

Check the result

參考范圍

Reference

檢查項目

Check the project

檢查結(jié)果

Check the result

參考范圍

Reference

血糖

GLU(mmol/L) 12.11↑ 3.95-8.85 白蛋白ALB(g/L) 33 23-39

血尿素氮

BUN(mmol/L) 11.4 5.1-12.9 球蛋白 (g/L) 52↑ 28-51

肌酐

CREA( mol/L) 144 71-212 白/球比A/G 0.6

血尿素氮/肌酐比

BUN/CREA

20 丙氨酸轉(zhuǎn)氨酶

ALT(U/L) 31 10-125

總蛋白TP(g/L) 85 52-89 堿性磷酸酶ALP(U/L) 100 23-212

GLB

μ

B

B

- 130 -

第133頁

小動物臨床前沿(神經(jīng)學(xué)專刊 - 上冊)· 腦部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 總第 12 期

圖3:病例3磁共振檢查圖像

A:Gd-T1WI橫斷面,B:Gd-T1WI冠狀面,在T1造影增強下顱底垂體部位出現(xiàn)局灶性病灶(箭頭),病灶增大侵占了整個海綿竇。

診斷分析

三個動物均表現(xiàn)了一定程度的精神沉郁,出現(xiàn)了

指示海綿竇綜合征的神經(jīng)癥狀包括瞳孔對光反射出

現(xiàn)異常,雙側(cè)瞳孔大小不對稱,均出現(xiàn)了一定程度的

散瞳癥狀,其中有兩個動物出現(xiàn)了共濟失調(diào)的表現(xiàn),

一個動物出現(xiàn)癲癇的癥狀,其中有兩例動物表現(xiàn)了出

了多飲多尿的癥狀,一例有表現(xiàn)便秘的癥狀。實驗室

檢查,有兩例動物在血細(xì)胞計數(shù)結(jié)果上表現(xiàn)出中性粒

細(xì)胞數(shù)目增多的情況,其中一例在腦脊液檢查中也出

現(xiàn)了免疫細(xì)胞增多的情況,有一例動物實驗室檢查提

示甲狀腺機能減退,有一例動物提示血糖升高,有一

例動物血液學(xué)檢查未見明顯異常。在磁共振影像學(xué)

檢查中,三例動物均變現(xiàn)了在海綿竇區(qū)域的團塊占位

性病變,并在造影增強中顯示高信號,提示了腫瘤性

的病變引起。

在國外相關(guān)文獻報道中[12]表明海綿竇綜合征

CSS在實踐中較為常見,在國內(nèi)臨床病例研究中該類

疾病很少被提及。在這篇文章中我們給出了2021年中

臨床診斷中遇到被確診的三例病例,匯總了臨床體

征、實驗室檢查及影像學(xué)檢查結(jié)果,與之前報道的結(jié)

果相吻合。在任何病人中發(fā)現(xiàn)瞳孔不等寬應(yīng)立即進行

全面的眼科和神經(jīng)學(xué)評估。評估眼肌麻痹,瞳孔不對

稱獲得海綿竇綜合征診斷的關(guān)鍵?;佳蹜?yīng)以對側(cè)眼作

為對照(當(dāng)為單側(cè)眼時),仔細(xì)評估其背側(cè)、腹側(cè)、外

A B

討論

側(cè)和內(nèi)側(cè)方向的運動。瞳孔對光反射也可以用來作為

診斷的依據(jù)。本研究將瘤變確定為CSS最常見的潛在

病因,這與以往的研究結(jié)果一致[8、11]。

本研究中所涉及到的3例病例有2例主人在得知

診斷結(jié)果后選擇安樂,有一例目前仍在對癥支持治療

中,因此對于CSS的治療及預(yù)后無法給出指示性結(jié)

果。在之前國外報道的該類疾病的回顧性研究中[12],

作者回訪了13例患者超過47個月或直到安樂死,報道

中放射治療的中位存活時間有1035天,抗炎類固醇治

療的中位存活時間為360天,無任何治療的存活時間

僅有14天。研究中普遍認(rèn)為接受治療的狗的生存時間

更長可能是由于使用了放射療法。

在目前的研究中,病例以相同的頻率出現(xiàn)在眼科

和神經(jīng)內(nèi)科診斷中,所以所有的臨床醫(yī)生應(yīng)該知道該

綜合征及其常見的臨床表現(xiàn)。這兩個專業(yè)的臨床醫(yī)生

應(yīng)該始終進行完整的神經(jīng)眼科檢查,包括眼動評估和

角膜不等差的角膜感覺,并把CSS列入鑒別診斷列

表。綜上所述,犬貓海綿狀竇綜合征通常是海綿狀竇

內(nèi)腫瘤過程的結(jié)果,通過對該綜合征的認(rèn)識,并對任

何散瞳癥患者進行全面的眼科和神經(jīng)系統(tǒng)檢查,病

例可能在疾病進展中更早被發(fā)現(xiàn),預(yù)后也可能改善。

- 131-

第134頁

小動物臨床前沿(神經(jīng)學(xué)???- 上冊)· 腦部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 總第 12 期

參考文獻:

1.Van Overheeke JJ, Jansen JJ, Tulleken CA. The cavernous

sinus syndrome[J]. Clin Neurol Neurosurg 1988, 90: 311 -319.

2.Bilyk JR, Dallow RL, Ojerman RG, et al. Management of

lesions at the cranio-orbital junction. Int Ophthop Clin 1992, 32:

73-93.

3.Fujiwara S, Fujino H, Nisho S, Fuki M. Aspergillosis of the

sphenoid sinus with cavernous sinus syndrome. Neuroradiology

1989, 31: 443.

4.Dewey, C.W. 2008. Practical Guide to Canine and Feline

Neurology. 2nd edition. Iowa: WileyBlackwell

5.Thomas JE, Yoss RE. The parasellar syndrome: Problems

in determining the etiology. Mayo Clin Proc 1970, 45: 617-623.

6.Griffiths IR, Lee R. Ophthalmoplegia in the dog and use

of cavernous sinus venography as an aid in diagnosis. J Am Vet

Radiol Soc 1979; 12?22-28.

7.Lewis GT, Blanchard GL, Trapp AL, Decamp CE. Ophthalmoplegia caused by thyroid adenocarcinoma invasion of the

cavemous sinuses in the dog. J Am Anim Hosp Assoc 1984, 20:

805-812.

8.Rossmeisl, J.H., Higgins, M.A., Inzana, K.D., Herring, I.P.

and Grant, D.C. 2005. Bilateral cavernous sinus syndrome in

dogs: 6 cases (1000- 2004). J. Am. Vet. Med. Assoc. 226,

1105-1111.

9.Guevar, J., Gutierrez-Quintana, R., Peplinski, G., Helm, J.R.

and Penderis, J. 2014. Cavernous sinus syndrome secondary to

intracranial lymphoma in a cat. J. Feline Med. Surg. 16, 513-516.

10.Perazzi, A., Bernardini, M., Mandara, M., De Benedictis,

G.M., De Strobel, F. and Zotti, A. 2013. Cavernous sinus syndrome

due to osteochondromatosis in a cat. J. Feline Med. Surg. 15(12),

1132-1136.

11.Theisen, S.K., Podell, M., Schneider, T., Wilkie, D.A. and

Fenner, W.R. 1996. A Retrospective study of cavernous sinus

syndrome in 4 dogs and 8 cats. J. Vet. Intern. Med. 10, 65-71.

12.Aslynn M. Jones Ellison Bentleyand Helena Rylander,-

Cavernous sinus syndrome in dogs and cats: case series

(2002-2015)Open Veterinary Journal, (2018), Vol. 8(2): 186-192

- 132 -

第136頁

小動物臨床前沿(神經(jīng)學(xué)???- 上冊)· 腦部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 總第 12 期

該動物為混血長毛貓,12歲,雄性絕育,近期未

免疫,主飼貓糧。日常老人飼養(yǎng),我院就診前一日早

上發(fā)現(xiàn)四肢無力,時而角弓反張,精神萎靡,向右側(cè)

歪頭,出現(xiàn)多次嘔吐及流涎,可自行排尿;癥狀逐漸

加重至我院就診時完全癱瘓;就診前在兩家醫(yī)院進行

檢查和治療,外院判斷全身X線及基礎(chǔ)血檢無異常,

進行吸氧、維生素B族和補液等支持治療;

三年前診斷為慢性腎病二期,輕度蛋白尿,一

直服用替米沙坦。

入院體格檢查顯示體重近期無變化為3.3kg,體

溫36.6°C,胸腹式呼吸36次/分鐘,CRT<1秒,心率

120次/分鐘,收縮壓190mmgh。動物消瘦,BSC評

分3/9;可視粘膜潮紅,口腔牙齦紅腫,雙側(cè)臼齒牙

結(jié)石嚴(yán)重,左側(cè)上頜第四前臼齒牙齦萎縮,牙根暴

露,膿性滲出(圖1),左眼眼部腫脹見分泌物(圖

2),右眼正常。動物四肢癱軟僅可側(cè)臥,呈角弓反

張,意識正常。聽診心律不齊、呼吸音正常。觸診

體表淋巴結(jié)未見異常,腹部未見異常。

動物體溫降低、癱瘓及角弓反張,分診為危重

癥,因出現(xiàn)癱瘓及角弓反張,神經(jīng)系統(tǒng)疾病為首要

考慮的類型。聽診可見心雜音及心律不齊,全身無

簡介 病歷分析

ABM是由于細(xì)菌感染導(dǎo)致軟腦膜及腦實質(zhì)發(fā)生

炎癥,并伴有嚴(yán)重腦功能障礙的急性CNS疾病,主

要感染途徑有開放性顱腦創(chuàng)傷、中耳、鼻-喉部、頭

部其他局部感染以及全身局部病灶引發(fā)血源性感染

所繼發(fā)。腦部細(xì)菌感染可能通過產(chǎn)生腫物效應(yīng)(即

組織膿腫)或釋放細(xì)菌毒素而導(dǎo)致神經(jīng)功能障礙[5]。

任何年齡、品種或性別的犬和貓都可能患有ABM,

但在青中年動物(如1~7歲)中更常見[9]發(fā)燒和頸部

感覺過敏被認(rèn)為是ABM的典型特征,但可能并不明

顯或無法與其他腦炎進行有效區(qū)分[10]與其他疾病一

樣,神經(jīng)功能障礙的臨床癥狀取決于病變的位置和

范圍??股貫橹饕闹委熓侄危硐肭闆r下,

ABM的抗生素治療取決于致病微生物的細(xì)菌培養(yǎng)/

藥敏試驗結(jié)果。在無法得到有效報告或治療前期,

可以通過經(jīng)驗性給藥進行治療。

不幸的是,目前還沒有關(guān)于大量犬或貓確診

ABM的合適治療方法的報道??色@得的少量資料表

明總體預(yù)后不良,有個別犬和貓ABM成功治療的報

道。與人細(xì)菌性CNS感染相似,早期診斷和快速、

積極的治療是成功治療犬貓ABM的關(guān)鍵。通過本病

例報告為讀者在臨床診療中提供參考。

病例分析:一例貓牙周炎疑似

繼發(fā)急性細(xì)菌性腦膜腦炎的診療病例報告

Case report:A case report of acute bacterial meningoencephalitis suspected secondary to periodontitis in a cat

作者:樓凌森(杭州美聯(lián)眾合動物醫(yī)院博大轉(zhuǎn)診中心)

審校:林毓暐(上海頑皮家族寵物醫(yī)院)

摘要:

急性細(xì)菌性腦膜腦炎(Acute Bacterial Meningoencephalitis,ABM)是一種在犬貓報道中相對少見的中

樞神經(jīng)系統(tǒng)(Central Nervous System,CNS)疾病,可以通過神經(jīng)學(xué)檢查和常規(guī)全身檢查得神經(jīng)系統(tǒng)異常的

結(jié)論及定位,再通過核磁共振(MRI)檢查確認(rèn) / 疑似顱內(nèi)異常炎性影像特征,最后結(jié)合腦脊液(Cerebrospinal

Fluid,CSF)檢查進行診斷,抗生素為主要的治療手段。一只老年混血貓因急性神經(jīng)癥狀入院,檢查診斷為細(xì)菌

性腦膜腦炎,進行全身局部感染性病灶篩查,懷疑因牙周炎引發(fā)。通過有效的抗生素聯(lián)合輔助治療,動物癥狀

得到有效快速控制。

關(guān)鍵詞:牙周炎;細(xì)菌性;抗生素 ; 腦膜腦炎 ; 貓

力癱軟以及慢性腎病病史,在神經(jīng)系統(tǒng)檢查外需同

時對于心血管系統(tǒng)及代謝相關(guān)系統(tǒng)進行疾病篩查。

眼部腫脹可能與同側(cè)發(fā)病的牙齒病灶相關(guān),暫時不

作為前期鑒別依據(jù)。

神經(jīng)學(xué)檢查意識正常,頭向右側(cè)歪斜(頭部正

中切面發(fā)生旋轉(zhuǎn),耳朵右側(cè)低于左側(cè)),呈現(xiàn)陣發(fā)

性角弓反張(頭頸后仰前肢僵直后肢及臀部屈曲,

每次持續(xù)約10-20分鐘后自行解除,間隔期無規(guī)律

約20分鐘至1小時)(圖3)。本體感受測試四肢均

缺失,視覺與觸覺放置反應(yīng)均缺失。雙側(cè)威嚇反射

均消失,瞳孔對光反射及其余腦神經(jīng)反射均正常。

非角弓反張狀態(tài)下,肌張力正常,脊髓反射均正常

,膀胱可觸及不充盈。

動物四肢癱瘓、本體感受及放置反應(yīng)均缺失,

但脊髓反射均為正常。陣發(fā)性角弓反張的姿勢較為

特異,結(jié)合意識狀態(tài),可判斷為去小腦化僵直,該

姿勢提示小腦急性病變。歪頭提示前庭系統(tǒng)受損,

雖未見更多神經(jīng)學(xué)異常,但結(jié)合整體評估仍更傾向

于中樞性的前庭受損。綜上所述,神經(jīng)學(xué)檢查可以

證實動物的發(fā)病位置為CNS,考慮多灶性。定位為

前腦、小腦,頸部脊髓及前庭系統(tǒng)需進一步鑒別。

疾病類型鑒別范圍包含但不僅限于:腫瘤性、炎癥

性、血管性,需通過全身檢查、顱腦MRI及CSF檢查

進一步鑒別。

血液檢查愛德士五分類全血細(xì)胞計數(shù)無異常,愛

德士生化全項及血氨僅見肌酐上升(238μmol/L),雅

培Cg8+血氣無異常,超聲心動無異常,全腹部超聲

無異常。肌酐上升對比病史,為慢性腎病所致。

顱腦MRI掃查可見,雙側(cè)大腦對稱,腦中線無

偏移,整體腦回不明顯腦溝模糊。雙側(cè)顳葉見彌漫

非對稱非均質(zhì)的T2w高T1w等信號區(qū)域 ,區(qū)域內(nèi)病

灶邊緣不清局部T2w信號高亮FLAIR均無抑制,均無

占位效應(yīng)(圖3)。腦室系統(tǒng)均未見明顯擴張。小腦

結(jié)構(gòu)模糊,腦回不明顯,后緣疝出至枕骨后于腹側(cè)

壓迫腦干,小腦實質(zhì)整體見彌漫非均質(zhì)非對稱的

T2w高T1w等信號變化,局邊多處T2w高亮FLAIR可

抑制(圖4 圖5)。腦干右側(cè)及中部見局部邊界模糊

T2w輕度增高T1W輕度下降區(qū)域(圖4 圖5)。注射

釓劑后T1w下未見增強顯影區(qū)域。鼻部、耳部未見

異常,頸部近腦端脊髓中央管輕度擴張。

通過影像描述,得知小腦、大腦、腦干均出現(xiàn)

了不同程度的病變。根據(jù)病灶信號、結(jié)構(gòu)及占位性

等特征,判斷病灶性質(zhì)為浸潤性病變,所以首要考

慮的疾病類型為炎性,多發(fā)性腦梗死或腫瘤也將在

鑒別范圍內(nèi)。因影像易于發(fā)現(xiàn)病灶但無法確定病灶

性質(zhì)的特性,我們需要進行CSF檢測甚至組織病理

結(jié)果來得到最終診斷。

MRI后立即于枕骨后小腦延髓池進行CSF采集。

CSF性狀無色輕度渾濁,通過腦脊液細(xì)胞量檢測,有

核細(xì)胞數(shù)為920個/ul(正常值<10),無紅細(xì)胞。通

過沉淀法染色制片進行細(xì)胞學(xué)判讀,偶見球菌,大

量中性粒細(xì)胞存在球菌吞噬相(圖)。送檢上海獸

丘寵物第三方實驗室,于第二日出具蛋白量結(jié)果為

50.74 mg/dL(正常值< 30 mg/dL),PCR篩查冠狀

病毒、弓形蟲、加州型與俄亥俄州型貓血巴爾通體

、博爾納病毒,均為陰性。第四日送檢出具細(xì)菌培

養(yǎng)為陽性,藥敏試驗顯示阿莫西林克拉維酸鉀、頭

孢曲松、頭孢噻圬、頭孢哌酮舒巴坦鈉、氨芐西林

為敏感,青霉素、多西環(huán)素、米諾環(huán)素為中介。第

七日送檢出具細(xì)菌鑒定結(jié)果,為假中間葡萄球菌。

正常腦脊液中存在的細(xì)胞含量微乎其微,有核

細(xì)胞數(shù)的少量上升(>30個/ul),即可提示存在炎

癥,該病例數(shù)量遠(yuǎn)遠(yuǎn)超出該范圍,且蛋白量也上升

(因送檢時效性影響,實際蛋白量應(yīng)大于所檢測數(shù)

值),提示CNS存在炎癥。腦炎的鑒別中分為感染

性與非感染性,通過腦脊液的篩查可縮小診斷范圍

或確診。細(xì)胞學(xué)鏡下偶見球菌,可提示細(xì)菌感染但

不排除染色干擾,同時出現(xiàn)中性粒細(xì)胞球菌吞噬相

(圖7)則可明確CNS炎癥為細(xì)菌感染。結(jié)合動物發(fā)

病過程及其余檢驗結(jié)果,可診斷為ABM。滯后的送

檢結(jié)果,也進一步驗證了院內(nèi)腦脊液檢測的判斷。

- 134 -

第137頁

小動物臨床前沿(神經(jīng)學(xué)???- 上冊)· 腦部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 總第 12 期

該動物為混血長毛貓,12歲,雄性絕育,近期未

免疫,主飼貓糧。日常老人飼養(yǎng),我院就診前一日早

上發(fā)現(xiàn)四肢無力,時而角弓反張,精神萎靡,向右側(cè)

歪頭,出現(xiàn)多次嘔吐及流涎,可自行排尿;癥狀逐漸

加重至我院就診時完全癱瘓;就診前在兩家醫(yī)院進行

檢查和治療,外院判斷全身X線及基礎(chǔ)血檢無異常,

進行吸氧、維生素B族和補液等支持治療;

三年前診斷為慢性腎病二期,輕度蛋白尿,一

直服用替米沙坦。

入院體格檢查顯示體重近期無變化為3.3kg,體

溫36.6°C,胸腹式呼吸36次/分鐘,CRT<1秒,心率

120次/分鐘,收縮壓190mmgh。動物消瘦,BSC評

分3/9;可視粘膜潮紅,口腔牙齦紅腫,雙側(cè)臼齒牙

結(jié)石嚴(yán)重,左側(cè)上頜第四前臼齒牙齦萎縮,牙根暴

露,膿性滲出(圖1),左眼眼部腫脹見分泌物(圖

2),右眼正常。動物四肢癱軟僅可側(cè)臥,呈角弓反

張,意識正常。聽診心律不齊、呼吸音正常。觸診

體表淋巴結(jié)未見異常,腹部未見異常。

動物體溫降低、癱瘓及角弓反張,分診為危重

癥,因出現(xiàn)癱瘓及角弓反張,神經(jīng)系統(tǒng)疾病為首要

考慮的類型。聽診可見心雜音及心律不齊,全身無

力癱軟以及慢性腎病病史,在神經(jīng)系統(tǒng)檢查外需同

時對于心血管系統(tǒng)及代謝相關(guān)系統(tǒng)進行疾病篩查。

眼部腫脹可能與同側(cè)發(fā)病的牙齒病灶相關(guān),暫時不

作為前期鑒別依據(jù)。

神經(jīng)學(xué)檢查意識正常,頭向右側(cè)歪斜(頭部正

中切面發(fā)生旋轉(zhuǎn),耳朵右側(cè)低于左側(cè)),呈現(xiàn)陣發(fā)

圖 1:體格檢查時病灶側(cè)口腔

圖2:體格檢查時眼部表現(xiàn)

圖3:角弓反張/去小腦化僵直姿勢

性角弓反張(頭頸后仰前肢僵直后肢及臀部屈曲,

每次持續(xù)約10-20分鐘后自行解除,間隔期無規(guī)律

約20分鐘至1小時)(圖3)。本體感受測試四肢均

缺失,視覺與觸覺放置反應(yīng)均缺失。雙側(cè)威嚇反射

均消失,瞳孔對光反射及其余腦神經(jīng)反射均正常。

非角弓反張狀態(tài)下,肌張力正常,脊髓反射均正常

,膀胱可觸及不充盈。

動物四肢癱瘓、本體感受及放置反應(yīng)均缺失,

但脊髓反射均為正常。陣發(fā)性角弓反張的姿勢較為

特異,結(jié)合意識狀態(tài),可判斷為去小腦化僵直,該

姿勢提示小腦急性病變。歪頭提示前庭系統(tǒng)受損,

雖未見更多神經(jīng)學(xué)異常,但結(jié)合整體評估仍更傾向

于中樞性的前庭受損。綜上所述,神經(jīng)學(xué)檢查可以

證實動物的發(fā)病位置為CNS,考慮多灶性。定位為

前腦、小腦,頸部脊髓及前庭系統(tǒng)需進一步鑒別。

疾病類型鑒別范圍包含但不僅限于:腫瘤性、炎癥

性、血管性,需通過全身檢查、顱腦MRI及CSF檢查

進一步鑒別。

血液檢查愛德士五分類全血細(xì)胞計數(shù)無異常,愛

德士生化全項及血氨僅見肌酐上升(238μmol/L),雅

培Cg8+血氣無異常,超聲心動無異常,全腹部超聲

無異常。肌酐上升對比病史,為慢性腎病所致。

顱腦MRI掃查可見,雙側(cè)大腦對稱,腦中線無

偏移,整體腦回不明顯腦溝模糊。雙側(cè)顳葉見彌漫

非對稱非均質(zhì)的T2w高T1w等信號區(qū)域 ,區(qū)域內(nèi)病

灶邊緣不清局部T2w信號高亮FLAIR均無抑制,均無

占位效應(yīng)(圖3)。腦室系統(tǒng)均未見明顯擴張。小腦

結(jié)構(gòu)模糊,腦回不明顯,后緣疝出至枕骨后于腹側(cè)

壓迫腦干,小腦實質(zhì)整體見彌漫非均質(zhì)非對稱的

T2w高T1w等信號變化,局邊多處T2w高亮FLAIR可

抑制(圖4 圖5)。腦干右側(cè)及中部見局部邊界模糊

T2w輕度增高T1W輕度下降區(qū)域(圖4 圖5)。注射

釓劑后T1w下未見增強顯影區(qū)域。鼻部、耳部未見

異常,頸部近腦端脊髓中央管輕度擴張。

通過影像描述,得知小腦、大腦、腦干均出現(xiàn)

了不同程度的病變。根據(jù)病灶信號、結(jié)構(gòu)及占位性

等特征,判斷病灶性質(zhì)為浸潤性病變,所以首要考

慮的疾病類型為炎性,多發(fā)性腦梗死或腫瘤也將在

鑒別范圍內(nèi)。因影像易于發(fā)現(xiàn)病灶但無法確定病灶

性質(zhì)的特性,我們需要進行CSF檢測甚至組織病理

結(jié)果來得到最終診斷。

MRI后立即于枕骨后小腦延髓池進行CSF采集。

CSF性狀無色輕度渾濁,通過腦脊液細(xì)胞量檢測,有

核細(xì)胞數(shù)為920個/ul(正常值<10),無紅細(xì)胞。通

過沉淀法染色制片進行細(xì)胞學(xué)判讀,偶見球菌,大

量中性粒細(xì)胞存在球菌吞噬相(圖)。送檢上海獸

丘寵物第三方實驗室,于第二日出具蛋白量結(jié)果為

50.74 mg/dL(正常值< 30 mg/dL),PCR篩查冠狀

病毒、弓形蟲、加州型與俄亥俄州型貓血巴爾通體

、博爾納病毒,均為陰性。第四日送檢出具細(xì)菌培

養(yǎng)為陽性,藥敏試驗顯示阿莫西林克拉維酸鉀、頭

孢曲松、頭孢噻圬、頭孢哌酮舒巴坦鈉、氨芐西林

為敏感,青霉素、多西環(huán)素、米諾環(huán)素為中介。第

七日送檢出具細(xì)菌鑒定結(jié)果,為假中間葡萄球菌。

正常腦脊液中存在的細(xì)胞含量微乎其微,有核

細(xì)胞數(shù)的少量上升(>30個/ul),即可提示存在炎

癥,該病例數(shù)量遠(yuǎn)遠(yuǎn)超出該范圍,且蛋白量也上升

(因送檢時效性影響,實際蛋白量應(yīng)大于所檢測數(shù)

值),提示CNS存在炎癥。腦炎的鑒別中分為感染

性與非感染性,通過腦脊液的篩查可縮小診斷范圍

或確診。細(xì)胞學(xué)鏡下偶見球菌,可提示細(xì)菌感染但

不排除染色干擾,同時出現(xiàn)中性粒細(xì)胞球菌吞噬相

(圖7)則可明確CNS炎癥為細(xì)菌感染。結(jié)合動物發(fā)

病過程及其余檢驗結(jié)果,可診斷為ABM。滯后的送

檢結(jié)果,也進一步驗證了院內(nèi)腦脊液檢測的判斷。

- 135-

第138頁

小動物臨床前沿(神經(jīng)學(xué)???- 上冊)· 腦部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 總第 12 期

該動物為混血長毛貓,12歲,雄性絕育,近期未

免疫,主飼貓糧。日常老人飼養(yǎng),我院就診前一日早

上發(fā)現(xiàn)四肢無力,時而角弓反張,精神萎靡,向右側(cè)

歪頭,出現(xiàn)多次嘔吐及流涎,可自行排尿;癥狀逐漸

加重至我院就診時完全癱瘓;就診前在兩家醫(yī)院進行

檢查和治療,外院判斷全身X線及基礎(chǔ)血檢無異常,

進行吸氧、維生素B族和補液等支持治療;

三年前診斷為慢性腎病二期,輕度蛋白尿,一

直服用替米沙坦。

入院體格檢查顯示體重近期無變化為3.3kg,體

溫36.6°C,胸腹式呼吸36次/分鐘,CRT<1秒,心率

120次/分鐘,收縮壓190mmgh。動物消瘦,BSC評

分3/9;可視粘膜潮紅,口腔牙齦紅腫,雙側(cè)臼齒牙

結(jié)石嚴(yán)重,左側(cè)上頜第四前臼齒牙齦萎縮,牙根暴

露,膿性滲出(圖1),左眼眼部腫脹見分泌物(圖

2),右眼正常。動物四肢癱軟僅可側(cè)臥,呈角弓反

張,意識正常。聽診心律不齊、呼吸音正常。觸診

體表淋巴結(jié)未見異常,腹部未見異常。

動物體溫降低、癱瘓及角弓反張,分診為危重

癥,因出現(xiàn)癱瘓及角弓反張,神經(jīng)系統(tǒng)疾病為首要

考慮的類型。聽診可見心雜音及心律不齊,全身無

力癱軟以及慢性腎病病史,在神經(jīng)系統(tǒng)檢查外需同

時對于心血管系統(tǒng)及代謝相關(guān)系統(tǒng)進行疾病篩查。

眼部腫脹可能與同側(cè)發(fā)病的牙齒病灶相關(guān),暫時不

作為前期鑒別依據(jù)。

神經(jīng)學(xué)檢查意識正常,頭向右側(cè)歪斜(頭部正

中切面發(fā)生旋轉(zhuǎn),耳朵右側(cè)低于左側(cè)),呈現(xiàn)陣發(fā)

性角弓反張(頭頸后仰前肢僵直后肢及臀部屈曲,

每次持續(xù)約10-20分鐘后自行解除,間隔期無規(guī)律

約20分鐘至1小時)(圖3)。本體感受測試四肢均

缺失,視覺與觸覺放置反應(yīng)均缺失。雙側(cè)威嚇反射

均消失,瞳孔對光反射及其余腦神經(jīng)反射均正常。

非角弓反張狀態(tài)下,肌張力正常,脊髓反射均正常

,膀胱可觸及不充盈。

動物四肢癱瘓、本體感受及放置反應(yīng)均缺失,

但脊髓反射均為正常。陣發(fā)性角弓反張的姿勢較為

特異,結(jié)合意識狀態(tài),可判斷為去小腦化僵直,該

姿勢提示小腦急性病變。歪頭提示前庭系統(tǒng)受損,

雖未見更多神經(jīng)學(xué)異常,但結(jié)合整體評估仍更傾向

于中樞性的前庭受損。綜上所述,神經(jīng)學(xué)檢查可以

證實動物的發(fā)病位置為CNS,考慮多灶性。定位為

前腦、小腦,頸部脊髓及前庭系統(tǒng)需進一步鑒別。

疾病類型鑒別范圍包含但不僅限于:腫瘤性、炎癥

性、血管性,需通過全身檢查、顱腦MRI及CSF檢查

進一步鑒別。

血液檢查愛德士五分類全血細(xì)胞計數(shù)無異常,愛

德士生化全項及血氨僅見肌酐上升(238μmol/L),雅

培Cg8+血氣無異常,超聲心動無異常,全腹部超聲

無異常。肌酐上升對比病史,為慢性腎病所致。

顱腦MRI掃查可見,雙側(cè)大腦對稱,腦中線無

偏移,整體腦回不明顯腦溝模糊。雙側(cè)顳葉見彌漫

非對稱非均質(zhì)的T2w高T1w等信號區(qū)域 ,區(qū)域內(nèi)病

灶邊緣不清局部T2w信號高亮FLAIR均無抑制,均無

占位效應(yīng)(圖3)。腦室系統(tǒng)均未見明顯擴張。小腦

結(jié)構(gòu)模糊,腦回不明顯,后緣疝出至枕骨后于腹側(cè)

壓迫腦干,小腦實質(zhì)整體見彌漫非均質(zhì)非對稱的

T2w高T1w等信號變化,局邊多處T2w高亮FLAIR可

抑制(圖4 圖5)。腦干右側(cè)及中部見局部邊界模糊

T2w輕度增高T1W輕度下降區(qū)域(圖4 圖5)。注射

釓劑后T1w下未見增強顯影區(qū)域。鼻部、耳部未見

異常,頸部近腦端脊髓中央管輕度擴張。

通過影像描述,得知小腦、大腦、腦干均出現(xiàn)

了不同程度的病變。根據(jù)病灶信號、結(jié)構(gòu)及占位性

等特征,判斷病灶性質(zhì)為浸潤性病變,所以首要考

慮的疾病類型為炎性,多發(fā)性腦梗死或腫瘤也將在

鑒別范圍內(nèi)。因影像易于發(fā)現(xiàn)病灶但無法確定病灶

性質(zhì)的特性,我們需要進行CSF檢測甚至組織病理

結(jié)果來得到最終診斷。

MRI后立即于枕骨后小腦延髓池進行CSF采集。

CSF性狀無色輕度渾濁,通過腦脊液細(xì)胞量檢測,有

核細(xì)胞數(shù)為920個/ul(正常值<10),無紅細(xì)胞。通

過沉淀法染色制片進行細(xì)胞學(xué)判讀,偶見球菌,大

量中性粒細(xì)胞存在球菌吞噬相(圖)。送檢上海獸

丘寵物第三方實驗室,于第二日出具蛋白量結(jié)果為

50.74 mg/dL(正常值< 30 mg/dL),PCR篩查冠狀

病毒、弓形蟲、加州型與俄亥俄州型貓血巴爾通體

、博爾納病毒,均為陰性。第四日送檢出具細(xì)菌培

養(yǎng)為陽性,藥敏試驗顯示阿莫西林克拉維酸鉀、頭

孢曲松、頭孢噻圬、頭孢哌酮舒巴坦鈉、氨芐西林

為敏感,青霉素、多西環(huán)素、米諾環(huán)素為中介。第

七日送檢出具細(xì)菌鑒定結(jié)果,為假中間葡萄球菌。

正常腦脊液中存在的細(xì)胞含量微乎其微,有核

細(xì)胞數(shù)的少量上升(>30個/ul),即可提示存在炎

癥,該病例數(shù)量遠(yuǎn)遠(yuǎn)超出該范圍,且蛋白量也上升

圖4:小腦及腦干橫斷面,T2w和T1w下大面積異常高低信號

(因送檢時效性影響,實際蛋白量應(yīng)大于所檢測數(shù)

值),提示CNS存在炎癥。腦炎的鑒別中分為感染

性與非感染性,通過腦脊液的篩查可縮小診斷范圍

或確診。細(xì)胞學(xué)鏡下偶見球菌,可提示細(xì)菌感染但

圖7:腦脊液細(xì)胞學(xué),中心粒細(xì)胞球菌吞噬相 不排除染色干擾,同時出現(xiàn)中性粒細(xì)胞球菌吞噬相

(圖7)則可明確CNS炎癥為細(xì)菌感染。結(jié)合動物發(fā)

病過程及其余檢驗結(jié)果,可診斷為ABM。滯后的送

檢結(jié)果,也進一步驗證了院內(nèi)腦脊液檢測的判斷。

- 136 -

第139頁

小動物臨床前沿(神經(jīng)學(xué)???- 上冊)· 腦部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 總第 12 期

該動物為混血長毛貓,12歲,雄性絕育,近期未

免疫,主飼貓糧。日常老人飼養(yǎng),我院就診前一日早

上發(fā)現(xiàn)四肢無力,時而角弓反張,精神萎靡,向右側(cè)

歪頭,出現(xiàn)多次嘔吐及流涎,可自行排尿;癥狀逐漸

加重至我院就診時完全癱瘓;就診前在兩家醫(yī)院進行

檢查和治療,外院判斷全身X線及基礎(chǔ)血檢無異常,

進行吸氧、維生素B族和補液等支持治療;

三年前診斷為慢性腎病二期,輕度蛋白尿,一

直服用替米沙坦。

入院體格檢查顯示體重近期無變化為3.3kg,體

溫36.6°C,胸腹式呼吸36次/分鐘,CRT<1秒,心率

120次/分鐘,收縮壓190mmgh。動物消瘦,BSC評

分3/9;可視粘膜潮紅,口腔牙齦紅腫,雙側(cè)臼齒牙

結(jié)石嚴(yán)重,左側(cè)上頜第四前臼齒牙齦萎縮,牙根暴

露,膿性滲出(圖1),左眼眼部腫脹見分泌物(圖

2),右眼正常。動物四肢癱軟僅可側(cè)臥,呈角弓反

張,意識正常。聽診心律不齊、呼吸音正常。觸診

體表淋巴結(jié)未見異常,腹部未見異常。

動物體溫降低、癱瘓及角弓反張,分診為危重

癥,因出現(xiàn)癱瘓及角弓反張,神經(jīng)系統(tǒng)疾病為首要

考慮的類型。聽診可見心雜音及心律不齊,全身無

力癱軟以及慢性腎病病史,在神經(jīng)系統(tǒng)檢查外需同

時對于心血管系統(tǒng)及代謝相關(guān)系統(tǒng)進行疾病篩查。

眼部腫脹可能與同側(cè)發(fā)病的牙齒病灶相關(guān),暫時不

作為前期鑒別依據(jù)。

神經(jīng)學(xué)檢查意識正常,頭向右側(cè)歪斜(頭部正

中切面發(fā)生旋轉(zhuǎn),耳朵右側(cè)低于左側(cè)),呈現(xiàn)陣發(fā)

性角弓反張(頭頸后仰前肢僵直后肢及臀部屈曲,

每次持續(xù)約10-20分鐘后自行解除,間隔期無規(guī)律

約20分鐘至1小時)(圖3)。本體感受測試四肢均

缺失,視覺與觸覺放置反應(yīng)均缺失。雙側(cè)威嚇反射

均消失,瞳孔對光反射及其余腦神經(jīng)反射均正常。

非角弓反張狀態(tài)下,肌張力正常,脊髓反射均正常

,膀胱可觸及不充盈。

動物四肢癱瘓、本體感受及放置反應(yīng)均缺失,

但脊髓反射均為正常。陣發(fā)性角弓反張的姿勢較為

特異,結(jié)合意識狀態(tài),可判斷為去小腦化僵直,該

姿勢提示小腦急性病變。歪頭提示前庭系統(tǒng)受損,

雖未見更多神經(jīng)學(xué)異常,但結(jié)合整體評估仍更傾向

于中樞性的前庭受損。綜上所述,神經(jīng)學(xué)檢查可以

證實動物的發(fā)病位置為CNS,考慮多灶性。定位為

前腦、小腦,頸部脊髓及前庭系統(tǒng)需進一步鑒別。

疾病類型鑒別范圍包含但不僅限于:腫瘤性、炎癥

性、血管性,需通過全身檢查、顱腦MRI及CSF檢查

進一步鑒別。

血液檢查愛德士五分類全血細(xì)胞計數(shù)無異常,愛

德士生化全項及血氨僅見肌酐上升(238μmol/L),雅

培Cg8+血氣無異常,超聲心動無異常,全腹部超聲

無異常。肌酐上升對比病史,為慢性腎病所致。

顱腦MRI掃查可見,雙側(cè)大腦對稱,腦中線無

偏移,整體腦回不明顯腦溝模糊。雙側(cè)顳葉見彌漫

非對稱非均質(zhì)的T2w高T1w等信號區(qū)域 ,區(qū)域內(nèi)病

灶邊緣不清局部T2w信號高亮FLAIR均無抑制,均無

占位效應(yīng)(圖3)。腦室系統(tǒng)均未見明顯擴張。小腦

結(jié)構(gòu)模糊,腦回不明顯,后緣疝出至枕骨后于腹側(cè)

壓迫腦干,小腦實質(zhì)整體見彌漫非均質(zhì)非對稱的

T2w高T1w等信號變化,局邊多處T2w高亮FLAIR可

抑制(圖4 圖5)。腦干右側(cè)及中部見局部邊界模糊

T2w輕度增高T1W輕度下降區(qū)域(圖4 圖5)。注射

釓劑后T1w下未見增強顯影區(qū)域。鼻部、耳部未見

異常,頸部近腦端脊髓中央管輕度擴張。

通過影像描述,得知小腦、大腦、腦干均出現(xiàn)

了不同程度的病變。根據(jù)病灶信號、結(jié)構(gòu)及占位性

等特征,判斷病灶性質(zhì)為浸潤性病變,所以首要考

慮的疾病類型為炎性,多發(fā)性腦梗死或腫瘤也將在

鑒別范圍內(nèi)。因影像易于發(fā)現(xiàn)病灶但無法確定病灶

性質(zhì)的特性,我們需要進行CSF檢測甚至組織病理

結(jié)果來得到最終診斷。

MRI后立即于枕骨后小腦延髓池進行CSF采集。

CSF性狀無色輕度渾濁,通過腦脊液細(xì)胞量檢測,有

核細(xì)胞數(shù)為920個/ul(正常值<10),無紅細(xì)胞。通

過沉淀法染色制片進行細(xì)胞學(xué)判讀,偶見球菌,大

量中性粒細(xì)胞存在球菌吞噬相(圖)。送檢上海獸

丘寵物第三方實驗室,于第二日出具蛋白量結(jié)果為

50.74 mg/dL(正常值< 30 mg/dL),PCR篩查冠狀

病毒、弓形蟲、加州型與俄亥俄州型貓血巴爾通體

、博爾納病毒,均為陰性。第四日送檢出具細(xì)菌培

養(yǎng)為陽性,藥敏試驗顯示阿莫西林克拉維酸鉀、頭

孢曲松、頭孢噻圬、頭孢哌酮舒巴坦鈉、氨芐西林

為敏感,青霉素、多西環(huán)素、米諾環(huán)素為中介。第

七日送檢出具細(xì)菌鑒定結(jié)果,為假中間葡萄球菌。

正常腦脊液中存在的細(xì)胞含量微乎其微,有核

細(xì)胞數(shù)的少量上升(>30個/ul),即可提示存在炎

癥,該病例數(shù)量遠(yuǎn)遠(yuǎn)超出該范圍,且蛋白量也上升

圖5:大腦橫斷面,T2w下局部異常高信號

(因送檢時效性影響,實際蛋白量應(yīng)大于所檢測數(shù)

值),提示CNS存在炎癥。腦炎的鑒別中分為感染

性與非感染性,通過腦脊液的篩查可縮小診斷范圍

或確診。細(xì)胞學(xué)鏡下偶見球菌,可提示細(xì)菌感染但

對于病因,上述全身檢查中,除口腔牙周感染

外未見其他感染性病灶,所以需要通過牙科的進一

步檢查和處理,來確定牙齒的問題和解決該隱患,

防止疾病復(fù)發(fā)??谇荒恳曄乱姶罅垦澜Y(jié)石附著,牙

齦紅腫,左側(cè)上頜第四前臼齒牙齦萎縮、牙根暴

露,有膿性滲出。動物在通過相應(yīng)治療后癥狀相對

穩(wěn)定,第10日在麻醉后進行牙結(jié)石的去除,同時拍

攝牙科X線??紤]未拍攝X線不確定牙根病變的的類

型及侵襲范圍,牙科醫(yī)生決定先拍攝(圖8),再行

處置。影像下可見病灶牙根周透明度呈不規(guī)則非均

質(zhì)性升高,牙體輪廓不清晰,結(jié)合臨床診斷為牙周

膿腫。牙周的細(xì)菌感染雖然不能直接被證明為病

因,但通過全身檢查的鑒別,高度懷疑是該病灶引

發(fā)ABM。

因病情緊急,在藥敏結(jié)果出具前,使用穿透血

圖8:牙科X線,牙根周透明度升高,牙體輪廓不清

圖9:剛拔出牙體時的病灶部位

不排除染色干擾,同時出現(xiàn)中性粒細(xì)胞球菌吞噬相

(圖7)則可明確CNS炎癥為細(xì)菌感染。結(jié)合動物發(fā)

病過程及其余檢驗結(jié)果,可診斷為ABM。滯后的送

檢結(jié)果,也進一步驗證了院內(nèi)腦脊液檢測的判斷。

腦屏障的抗生素進行,頭孢曲松鈉為筆者經(jīng)驗之首

選,以50mg/kg每日2-3次靜脈給藥。藥物使用后動

物癥狀得到改善,滯后的藥敏結(jié)果也證實藥物的有

效性,遂持續(xù)使用至出院(14日)。出院后改為口

服阿莫西林克拉維酸鉀25mg/kg每日2次,繼續(xù)持續(xù)

使用14日。

診斷提示腦部水腫及腦損傷,需配合甘露醇每

次0.5g/kg每日1-2次靜脈給藥。單唾液酸四己糖神

經(jīng)節(jié)脂鈉作為CNS修復(fù)劑以2mg/kg每日1次靜脈給

藥。動物存在高血壓及腎病,在單純使用替米沙坦

無效下,加入氨氯地平進行血壓控制,血壓上升考

慮顱腦外基礎(chǔ)疾病或顱內(nèi)壓上升引發(fā)。

治療期間,持續(xù)入住ICU倉和每日1次的高壓氧

治療,動物因神經(jīng)功能障礙無法進食進水以及癱

瘓,給予半流質(zhì)針管飼喂、局部按摩、定時翻身和

輔助排尿等特殊護理。

拍攝牙科X光后,清除了所有的牙結(jié)石,拔除了

病灶牙齒,并對病灶處進行了清創(chuàng)和縫合(圖9),

每日給予碘甘油和口腔藥物護理。

針灸及中藥曾考慮使用,因動物癥狀迅速改善

至正常,遂未進行。

以首診日為第1日計算,第2日動物角弓反張解

除,可自行趴臥及偶爾站立。第4日可以少量自主進

食進水,可以共濟失調(diào)性的行走,同時出現(xiàn)款基

步、肢體與頭部意向性震顫及辨距不良(前肢高抬

腿),前庭癥狀消失。第14日(牙科手術(shù)后四

日),眼部腫脹消退,神經(jīng)功能障礙好轉(zhuǎn)明顯,精

神食欲正常,體征穩(wěn)定,出院;第三十日復(fù)診,主

訴運動功能正??勺孕猩舷聵恰⑴芴芭c家中貓咪

打鬧,意識正常,未見行為異常。第94日,動物無

征兆性突發(fā)昏迷,入院后見低心率、低血壓、體溫

及呼吸微弱,搶救無效死亡,病因未知。

- 137 -

第140頁

小動物臨床前沿(神經(jīng)學(xué)???- 上冊)· 腦部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 總第 12 期

對于病因,上述全身檢查中,除口腔牙周感染

外未見其他感染性病灶,所以需要通過牙科的進一

步檢查和處理,來確定牙齒的問題和解決該隱患,

防止疾病復(fù)發(fā)??谇荒恳曄乱姶罅垦澜Y(jié)石附著,牙

齦紅腫,左側(cè)上頜第四前臼齒牙齦萎縮、牙根暴

露,有膿性滲出。動物在通過相應(yīng)治療后癥狀相對

穩(wěn)定,第10日在麻醉后進行牙結(jié)石的去除,同時拍

攝牙科X線。考慮未拍攝X線不確定牙根病變的的類

型及侵襲范圍,牙科醫(yī)生決定先拍攝(圖8),再行

處置。影像下可見病灶牙根周透明度呈不規(guī)則非均

質(zhì)性升高,牙體輪廓不清晰,結(jié)合臨床診斷為牙周

膿腫。牙周的細(xì)菌感染雖然不能直接被證明為病

因,但通過全身檢查的鑒別,高度懷疑是該病灶引

發(fā)ABM。

因病情緊急,在藥敏結(jié)果出具前,使用穿透血

腦屏障的抗生素進行,頭孢曲松鈉為筆者經(jīng)驗之首

選,以50mg/kg每日2-3次靜脈給藥。藥物使用后動

物癥狀得到改善,滯后的藥敏結(jié)果也證實藥物的有

效性,遂持續(xù)使用至出院(14日)。出院后改為口

服阿莫西林克拉維酸鉀25mg/kg每日2次,繼續(xù)持續(xù)

使用14日。

診斷提示腦部水腫及腦損傷,需配合甘露醇每

次0.5g/kg每日1-2次靜脈給藥。單唾液酸四己糖神

經(jīng)節(jié)脂鈉作為CNS修復(fù)劑以2mg/kg每日1次靜脈給

藥。動物存在高血壓及腎病,在單純使用替米沙坦

無效下,加入氨氯地平進行血壓控制,血壓上升考

慮顱腦外基礎(chǔ)疾病或顱內(nèi)壓上升引發(fā)。

治療期間,持續(xù)入住ICU倉和每日1次的高壓氧

治療,動物因神經(jīng)功能障礙無法進食進水以及癱

瘓,給予半流質(zhì)針管飼喂、局部按摩、定時翻身和

輔助排尿等特殊護理。

拍攝牙科X光后,清除了所有的牙結(jié)石,拔除了

病灶牙齒,并對病灶處進行了清創(chuàng)和縫合(圖9),

每日給予碘甘油和口腔藥物護理。

針灸及中藥曾考慮使用,因動物癥狀迅速改善

至正常,遂未進行。

以首診日為第1日計算,第2日動物角弓反張解

除,可自行趴臥及偶爾站立。第4日可以少量自主進

食進水,可以共濟失調(diào)性的行走,同時出現(xiàn)款基

步、肢體與頭部意向性震顫及辨距不良(前肢高抬

腿),前庭癥狀消失。第14日(牙科手術(shù)后四

日),眼部腫脹消退,神經(jīng)功能障礙好轉(zhuǎn)明顯,精

神食欲正常,體征穩(wěn)定,出院;第三十日復(fù)診,主

訴運動功能正??勺孕猩舷聵?、跑跳及與家中貓咪

打鬧,意識正常,未見行為異常。第94日,動物無

征兆性突發(fā)昏迷,入院后見低心率、低血壓、體溫

及呼吸微弱,搶救無效死亡,病因未知。

神經(jīng)系統(tǒng)的細(xì)菌感染確診報道并不常見[1]。細(xì)

菌可以通過血源或通過鄰近病灶的感染延伸進入腦

部(如內(nèi)耳炎延伸到腦干)[2]。血腦屏障以及CNS淋

巴系統(tǒng)的缺失有助于保護其免受微生物入侵。一旦

血腦屏障被病原體成功破壞,CNS的免疫豁免機制

對入侵的微生物是有利的,對宿主是不利的[3]。CNS

缺乏免疫活性細(xì)胞和補體,這給細(xì)菌的生長提供了

討論

良好的環(huán)境。等到全身免疫系統(tǒng)的細(xì)胞進入CNS,

感染通常已經(jīng)發(fā)生了。[4]

腦部細(xì)菌感染可能通過產(chǎn)生腫物效應(yīng)(即組織

膿腫)或釋放細(xì)菌毒素而導(dǎo)致神經(jīng)功能障礙。但

是,引起神經(jīng)功能缺損的主要原因是細(xì)菌引起的繼

發(fā)性炎癥反應(yīng)[5]。炎癥介質(zhì),如干擾素、腫瘤壞死

因子、前列腺素和激肽是白細(xì)胞對細(xì)菌產(chǎn)生反應(yīng)的

產(chǎn)物。這些介質(zhì)導(dǎo)致水腫、血管炎和梗死。通過吸

引更多的WBC到感染灶或病灶(趨化性),隨即發(fā)

生自損性的組織損傷[6]。在犬和貓的細(xì)菌性腦膜腦

炎中,最常見的微生物是葡萄球菌和鏈球菌、多殺

巴斯德菌(尤其是貓)、放線菌和諾卡氏菌以及厭

氧菌(擬桿菌屬、消化鏈球菌屬、梭菌屬、真桿菌

屬)[7]。在近期一份關(guān)于犬細(xì)菌性腦膜腦炎的報道

中,最常見的致病微生物是大腸桿菌、鏈球菌和克

雷伯菌[4]。革蘭氏陰性菌感染是最常見的,單一和

多個微生物感染的可能性相同。巴爾通體被認(rèn)為是

犬和貓中樞神經(jīng)系統(tǒng)疾病的潛在病因。[8]

任何年齡、品種或性別的犬和貓都可能患有

ABM,但在青中年動物(如1~7歲)中更常見[9]。

在一項研究中,大多數(shù)患病犬為純種犬,患病的中

位年齡為5歲[5]。神經(jīng)功能障礙的臨床癥狀通常是急

性和迅速發(fā)展的。發(fā)燒和頸部感覺過敏被認(rèn)為是

ABM的典型特征,但可能并不明顯或無法與其他腦

炎進行有效區(qū)分[10]。據(jù)報道,發(fā)熱和頸部感覺過敏

在犬細(xì)菌性腦膜腦炎的病例中分別占約40%和20%

[4]。與其他疾病一樣,神經(jīng)功能障礙的臨床癥狀取

決于病變的位置和范圍??赡転樯婕扒澳X和(或)

腦干的局灶性和多灶性腦病。有些患病動物可能由

于全身性細(xì)菌感染而出現(xiàn)系統(tǒng)性疾病。

ABM的初步診斷是基于病史、臨床檢查以及實

驗室檢查結(jié)果。對抗生素治療有效也支持診斷。

CBC結(jié)果可能提示全身性炎癥反應(yīng),但情況往往并

非如此[11]。據(jù)報道,約57%的犬ABM病例出現(xiàn)白細(xì)

胞增多、白細(xì)胞減少和血小板減少等異常[12]。超過

70%的病例存在明顯的血清生化異常(如ALT和SAP

水平升高、低血糖、高血糖)[13]。高級影像學(xué)檢查

(CT、MRI)可能有助于診斷腫物性病變或阻塞性

腦積水。CSF分析可提供最有價值的信息,90%以

上的病例存在CSF異常[14]。ABM的典型癥狀是腦脊

液化膿,常伴有中性粒細(xì)胞退行性和中毒性改變。

蛋白質(zhì)水平也經(jīng)常升高[5]。CSF樣本中存在細(xì)胞內(nèi)細(xì)

菌可確診。細(xì)胞外細(xì)菌可能是病原體,但也可能是

污染物。CSF、血液和(或)尿液細(xì)菌培養(yǎng)陽性也

支持細(xì)菌性腦膜腦炎的診斷[15]。由于在確診的細(xì)菌

性腦膜腦炎的病例中,約80%的培養(yǎng)結(jié)果通常為陰

性[16],因此,陰性結(jié)果不應(yīng)被過度判讀。

理想情況下,ABM的抗生素治療取決于致病微

生物的細(xì)菌培養(yǎng)/藥敏試驗結(jié)果。但由于多數(shù)獸醫(yī)

院選擇送檢至第三方實驗室進行檢驗,所以在檢驗

中常因運輸和時效性等因素培養(yǎng)通常無法獲得陽性

結(jié)果,這時抗生素治療往往是基于CSF分析時看到

微生物的革蘭氏染色結(jié)果,或者如果沒有發(fā)現(xiàn)病原

體,則考慮最有可能的病原體[17]。治療ABM的合適

抗生素最好是殺菌性,具有低水平的蛋白結(jié)合能

力,并且能夠穿過血腦屏障。建議在最初的3~5d

內(nèi)進行靜脈注射治療[18]。大多數(shù)犬和貓ABM推薦靜

脈注射大劑量氨芐西林(如22mg/kg,每6h一

次),作為適當(dāng)?shù)闹委熯x擇。氨芐西林能較好地穿

過發(fā)炎的BBB,且具有殺菌作用[18]。如果懷疑或確

認(rèn)為革蘭氏陰性菌感染,恩諾沙星(如10mg/kg,

靜脈注射,每12h一次)或第三代頭孢菌素(如頭孢

噻肟25~50mg/kg,靜脈注射,每8h一次)是一

個不錯的選擇[16]。甲硝唑(10mg/kg,緩慢靜脈注

射,每8h一次)是大多數(shù)厭氧菌感染的最佳抗生素

選擇[16]。甲硝唑應(yīng)靜脈注射30~40min以上,快速

輸注會導(dǎo)致低血壓。在嚴(yán)重的ABM的病例中,在等

待CSF化驗結(jié)果(革蘭氏染色、培養(yǎng)結(jié)果)的同時

進行聯(lián)合抗菌治療可能是需要斟酌的,首次給藥一

旦無效,動物將更快速惡化甚至死亡[15]。根據(jù)有關(guān)

犬ABM病原體的信息,強烈建議使用對革蘭氏陰性

菌具有強活性的抗生素[16]。雖然氯霉素是廣譜抗生

素,并且容易穿過血腦屏障,但其在人類和實驗性

犬ABM中的應(yīng)用存在高復(fù)發(fā)率,這可能與該藥物的

抑菌性質(zhì)有關(guān)[15]。一旦對靜脈注射抗生素治療產(chǎn)生

積極的反應(yīng),就可以改為口服治療?;前芳籽跗S啶

(15mg/kg,口服,每12h一次)具有廣譜殺菌作

用,即使血腦屏障未被破壞,它也能很容易穿透。

恩諾沙星和甲硝唑也有口服制劑。關(guān)于口服抗生素

治療時間長短的建議各不相同。停用抗生素治療的

理想依據(jù)是臨床癥狀和正常的CSF復(fù)查結(jié)果。但

是,后者的信息通常很難得到。一般來說,抗生素

治療應(yīng)在臨床癥狀消失后鞏固10~14d[16]。

雖然糖皮質(zhì)激素在感染時的使用通常是禁忌

的,但有大量證據(jù)表明,短期(最多4d)抗炎劑量

的糖皮質(zhì)激素(如地塞米松0.15mg/kg,靜脈注

射,每6h一次)可改善人ABM的預(yù)后[19]。對于犬和

貓來說,這種疾病也應(yīng)該考慮這種治療方法。如果

CT或MRI發(fā)現(xiàn)可以手術(shù)的膿腫,則手術(shù)治療在ABM

的治療中可能發(fā)揮重要作用[18]。

不幸的是,目前還沒有關(guān)于大量犬或貓確診

ABM的合適治療方法的報道??色@得的少量資料表

明總體預(yù)后不良[20]。但是,人的細(xì)菌性腦膜炎經(jīng)過

適當(dāng)治療后的存活率超過70%[19]。有個別犬和貓

ABM成功治療的報道。與人ABM相似,早期診斷和

快速、積極的治療是成功治療犬和貓ABM的關(guān)鍵。

該病例基于動物臨床癥狀、全身檢查、顱腦

MRI及CSF檢驗得到了初步診斷,通過CSF培養(yǎng)和抗

生素有效證實該診斷,也驗證了上述文獻所描述的

診斷和治療邏輯的正確性。在流行病學(xué)中,年齡、

特征性癥狀血檢僅供讀者參考,該病例就與該信息

不符。病患給藥后癥狀逐步改善至恢復(fù)正常,期間

約90日未見臨床癥狀反復(fù)表明本次感染已痊愈,證

實抗生素結(jié)合輔助療法的可靠性。牙周炎為全身體

檢中唯一被證實的可疑病因,雖無法完全證明其相

關(guān)性,但也為未來診斷提供相應(yīng)依據(jù)。動物于90余

日出現(xiàn)體征迅速惡化至死亡,送診至醫(yī)院至死亡時

均無法進行更多臨床檢查,飼主拒絕尸檢,遂無法

給出相應(yīng)病因及與本文章所關(guān)聯(lián)性的依據(jù)。

- 138 -

第141頁

小動物臨床前沿(神經(jīng)學(xué)???- 上冊)· 腦部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 總第 12 期

參考文獻:

1.Barrs VR, Nicoll RG, Churcher RK, et al. Intracranial

empyema: Literature review and two novel cases in cats. J

Small Anim Pract. 2007;48?449–454.

2.Brass DA. Pathophysiology and neuroimmunology of

bacterial meningitis. Compend Contin Edu Pract Vet.

1994;16?45– 53.

3.Cook LB, Bergman RL, Bahr A, Boothe HW. Inflammatory polyp in the middle ear with secondary suppurative meningoencephalitis in a cat. Vet Radiol Ultrasound.

神經(jīng)系統(tǒng)的細(xì)菌感染確診報道并不常見[1]。細(xì)

菌可以通過血源或通過鄰近病灶的感染延伸進入腦

部(如內(nèi)耳炎延伸到腦干)[2]。血腦屏障以及CNS淋

巴系統(tǒng)的缺失有助于保護其免受微生物入侵。一旦

血腦屏障被病原體成功破壞,CNS的免疫豁免機制

對入侵的微生物是有利的,對宿主是不利的[3]。CNS

缺乏免疫活性細(xì)胞和補體,這給細(xì)菌的生長提供了

良好的環(huán)境。等到全身免疫系統(tǒng)的細(xì)胞進入CNS,

感染通常已經(jīng)發(fā)生了。[4]

腦部細(xì)菌感染可能通過產(chǎn)生腫物效應(yīng)(即組織

膿腫)或釋放細(xì)菌毒素而導(dǎo)致神經(jīng)功能障礙。但

是,引起神經(jīng)功能缺損的主要原因是細(xì)菌引起的繼

發(fā)性炎癥反應(yīng)[5]。炎癥介質(zhì),如干擾素、腫瘤壞死

因子、前列腺素和激肽是白細(xì)胞對細(xì)菌產(chǎn)生反應(yīng)的

產(chǎn)物。這些介質(zhì)導(dǎo)致水腫、血管炎和梗死。通過吸

引更多的WBC到感染灶或病灶(趨化性),隨即發(fā)

生自損性的組織損傷[6]。在犬和貓的細(xì)菌性腦膜腦

炎中,最常見的微生物是葡萄球菌和鏈球菌、多殺

巴斯德菌(尤其是貓)、放線菌和諾卡氏菌以及厭

氧菌(擬桿菌屬、消化鏈球菌屬、梭菌屬、真桿菌

屬)[7]。在近期一份關(guān)于犬細(xì)菌性腦膜腦炎的報道

中,最常見的致病微生物是大腸桿菌、鏈球菌和克

雷伯菌[4]。革蘭氏陰性菌感染是最常見的,單一和

多個微生物感染的可能性相同。巴爾通體被認(rèn)為是

犬和貓中樞神經(jīng)系統(tǒng)疾病的潛在病因。[8]

任何年齡、品種或性別的犬和貓都可能患有

ABM,但在青中年動物(如1~7歲)中更常見[9]。

在一項研究中,大多數(shù)患病犬為純種犬,患病的中

位年齡為5歲[5]。神經(jīng)功能障礙的臨床癥狀通常是急

性和迅速發(fā)展的。發(fā)燒和頸部感覺過敏被認(rèn)為是

ABM的典型特征,但可能并不明顯或無法與其他腦

炎進行有效區(qū)分[10]。據(jù)報道,發(fā)熱和頸部感覺過敏

在犬細(xì)菌性腦膜腦炎的病例中分別占約40%和20%

[4]。與其他疾病一樣,神經(jīng)功能障礙的臨床癥狀取

決于病變的位置和范圍??赡転樯婕扒澳X和(或)

腦干的局灶性和多灶性腦病。有些患病動物可能由

于全身性細(xì)菌感染而出現(xiàn)系統(tǒng)性疾病。

ABM的初步診斷是基于病史、臨床檢查以及實

驗室檢查結(jié)果。對抗生素治療有效也支持診斷。

CBC結(jié)果可能提示全身性炎癥反應(yīng),但情況往往并

非如此[11]。據(jù)報道,約57%的犬ABM病例出現(xiàn)白細(xì)

胞增多、白細(xì)胞減少和血小板減少等異常[12]。超過

70%的病例存在明顯的血清生化異常(如ALT和SAP

水平升高、低血糖、高血糖)[13]。高級影像學(xué)檢查

(CT、MRI)可能有助于診斷腫物性病變或阻塞性

腦積水。CSF分析可提供最有價值的信息,90%以

上的病例存在CSF異常[14]。ABM的典型癥狀是腦脊

液化膿,常伴有中性粒細(xì)胞退行性和中毒性改變。

蛋白質(zhì)水平也經(jīng)常升高[5]。CSF樣本中存在細(xì)胞內(nèi)細(xì)

菌可確診。細(xì)胞外細(xì)菌可能是病原體,但也可能是

污染物。CSF、血液和(或)尿液細(xì)菌培養(yǎng)陽性也

支持細(xì)菌性腦膜腦炎的診斷[15]。由于在確診的細(xì)菌

性腦膜腦炎的病例中,約80%的培養(yǎng)結(jié)果通常為陰

性[16],因此,陰性結(jié)果不應(yīng)被過度判讀。

理想情況下,ABM的抗生素治療取決于致病微

生物的細(xì)菌培養(yǎng)/藥敏試驗結(jié)果。但由于多數(shù)獸醫(yī)

院選擇送檢至第三方實驗室進行檢驗,所以在檢驗

中常因運輸和時效性等因素培養(yǎng)通常無法獲得陽性

結(jié)果,這時抗生素治療往往是基于CSF分析時看到

微生物的革蘭氏染色結(jié)果,或者如果沒有發(fā)現(xiàn)病原

體,則考慮最有可能的病原體[17]。治療ABM的合適

抗生素最好是殺菌性,具有低水平的蛋白結(jié)合能

力,并且能夠穿過血腦屏障。建議在最初的3~5d

內(nèi)進行靜脈注射治療[18]。大多數(shù)犬和貓ABM推薦靜

脈注射大劑量氨芐西林(如22mg/kg,每6h一

次),作為適當(dāng)?shù)闹委熯x擇。氨芐西林能較好地穿

過發(fā)炎的BBB,且具有殺菌作用[18]。如果懷疑或確

認(rèn)為革蘭氏陰性菌感染,恩諾沙星(如10mg/kg,

靜脈注射,每12h一次)或第三代頭孢菌素(如頭孢

噻肟25~50mg/kg,靜脈注射,每8h一次)是一

個不錯的選擇[16]。甲硝唑(10mg/kg,緩慢靜脈注

射,每8h一次)是大多數(shù)厭氧菌感染的最佳抗生素

選擇[16]。甲硝唑應(yīng)靜脈注射30~40min以上,快速

輸注會導(dǎo)致低血壓。在嚴(yán)重的ABM的病例中,在等

待CSF化驗結(jié)果(革蘭氏染色、培養(yǎng)結(jié)果)的同時

進行聯(lián)合抗菌治療可能是需要斟酌的,首次給藥一

旦無效,動物將更快速惡化甚至死亡[15]。根據(jù)有關(guān)

犬ABM病原體的信息,強烈建議使用對革蘭氏陰性

菌具有強活性的抗生素[16]。雖然氯霉素是廣譜抗生

素,并且容易穿過血腦屏障,但其在人類和實驗性

犬ABM中的應(yīng)用存在高復(fù)發(fā)率,這可能與該藥物的

抑菌性質(zhì)有關(guān)[15]。一旦對靜脈注射抗生素治療產(chǎn)生

積極的反應(yīng),就可以改為口服治療?;前芳籽跗S啶

(15mg/kg,口服,每12h一次)具有廣譜殺菌作

用,即使血腦屏障未被破壞,它也能很容易穿透。

恩諾沙星和甲硝唑也有口服制劑。關(guān)于口服抗生素

治療時間長短的建議各不相同。停用抗生素治療的

理想依據(jù)是臨床癥狀和正常的CSF復(fù)查結(jié)果。但

是,后者的信息通常很難得到。一般來說,抗生素

治療應(yīng)在臨床癥狀消失后鞏固10~14d[16]。

雖然糖皮質(zhì)激素在感染時的使用通常是禁忌

的,但有大量證據(jù)表明,短期(最多4d)抗炎劑量

的糖皮質(zhì)激素(如地塞米松0.15mg/kg,靜脈注

射,每6h一次)可改善人ABM的預(yù)后[19]。對于犬和

貓來說,這種疾病也應(yīng)該考慮這種治療方法。如果

CT或MRI發(fā)現(xiàn)可以手術(shù)的膿腫,則手術(shù)治療在ABM

的治療中可能發(fā)揮重要作用[18]。

不幸的是,目前還沒有關(guān)于大量犬或貓確診

ABM的合適治療方法的報道。可獲得的少量資料表

明總體預(yù)后不良[20]。但是,人的細(xì)菌性腦膜炎經(jīng)過

適當(dāng)治療后的存活率超過70%[19]。有個別犬和貓

ABM成功治療的報道。與人ABM相似,早期診斷和

快速、積極的治療是成功治療犬和貓ABM的關(guān)鍵。

該病例基于動物臨床癥狀、全身檢查、顱腦

MRI及CSF檢驗得到了初步診斷,通過CSF培養(yǎng)和抗

生素有效證實該診斷,也驗證了上述文獻所描述的

診斷和治療邏輯的正確性。在流行病學(xué)中,年齡、

特征性癥狀血檢僅供讀者參考,該病例就與該信息

不符。病患給藥后癥狀逐步改善至恢復(fù)正常,期間

約90日未見臨床癥狀反復(fù)表明本次感染已痊愈,證

實抗生素結(jié)合輔助療法的可靠性。牙周炎為全身體

檢中唯一被證實的可疑病因,雖無法完全證明其相

關(guān)性,但也為未來診斷提供相應(yīng)依據(jù)。動物于90余

日出現(xiàn)體征迅速惡化至死亡,送診至醫(yī)院至死亡時

均無法進行更多臨床檢查,飼主拒絕尸檢,遂無法

給出相應(yīng)病因及與本文章所關(guān)聯(lián)性的依據(jù)。

2003;44?648–651.

4.Cross JR, Rossmeisl JH. Bartonella-associated pyogranulomatous meningoradiculoneuritis and nodular dermatitis in 3 dogs. J Vet Intern Med. 2007;21?591.

5.Dewey CW. Surgical Disorders of the Brain. Proceedings 23rd ACVIM Forum. 2005?324–326.

6.Espino L, Bermudez R, Fidalgo LE, et al. Meningoencephalitis associated with Staphylococcus warneri in a dog. J

Small Anim Pract. 2006;47?598–602

7.Fletcher DJ, Snyder JM, Messinger JS, et al. Ventricular

pneumocephalus and septic meningoencephalitis secondary

to dorsal rhinotomy and nasal polypectomy in a dog. J Am

Vet Med Assoc. 2006;229?240–245.

8.Gunn-Moore D. Infectious diseases of the central nervous system. Vet Clin North Am Small Anim Pract.

2005;35?103–128.Irwin PJ, Parry BW. Streptococcal meningoencephalitis in a dog. J Am Anim Hosp Assoc.

1999;35?417–422.

9.Kent M. Bacterial infections of the central nervous

system. In: CE Greene (ed.), Infectious Diseases of the Dog

and Cat. 3rd ed. Philadelphia: W.B. Saunders; 2006?962–974.

10.Leibovitz KR, Pearce LK, Brewer M, Lappin MR. Bartonella spp. antibodies and DNA in cerebral spinal fluid of

cats with central nervous system disease. J Vet Intern Med.

2007;21?642.

11.Munana KR. Encephalitis and meningitis. Vet Clin North

Am Small Anim Pract. 1996;26?857–874.

12.Odio CM, Faingezicht I, Paris M, et al. The beneficial

effects of early dexamethasone administration in infants and

children with bacterial meningitis. N Engl J Med.

1991;324?1525–1531.

13.Quagliarello VJ, Scheld WM. Treatment of bacterial meningitis. N Engl J Med. 1997;336?708–716.

14.Radaelli ST, Platt SR. Bacterial meningoencephalomyelitis in dogs: A retrospective study of 23 cases

(1990–1999). J Vet Intern Med. 2002;16?159–163.

15.Sigurdardottir B, Bjornsson OM, Jonsdottir KE, et

al. Acute bacterial meningitis in adults: A20-year overview.

Arch Intern Med. 1997;157?425–430.

16.Spangler EA, Dewey CW. Meningoencephalitis

secondary to bacterial otitis media/interna in a dog. J

Am Anim Hosp Assoc. 2000;36?239–243.

17.Sturges BK, Dickinson PJ, Kortz GD,et al. Clinical

signs, magnetic resonance imaging features, and outcome after surgical and medical treatment of otogenic

intracranial infection in 11 cats and 4 dogs. J Vet Intern

Med. 2006;20?648–656.

18.Tipold A. Diagnosis of inflammatory and infectious

diseases of the central nervous system in dogs: A retrospective study. J Vet Intern Med. 1995;9?304–314.

19.Tunkel AR, Wispelwey B, Scheld WM. Bacterial meningitis: Recent advances in pathophysiology and treatment.

Ann Intern Med. 1990;112?610–623

20.Wouters EG, Beukers M, Theyse LF. Surgical treatment of a cerebral brain abscess in a cat. Vet Comp Orthop

Traumatol. 2011;24?72–75

- 139 -

第142頁

小動物臨床前沿(神經(jīng)學(xué)專刊 - 上冊)· 腦部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 總第 12 期

參考文獻:

1.Barrs VR, Nicoll RG, Churcher RK, et al. Intracranial

empyema: Literature review and two novel cases in cats. J

Small Anim Pract. 2007;48?449–454.

2.Brass DA. Pathophysiology and neuroimmunology of

bacterial meningitis. Compend Contin Edu Pract Vet.

1994;16?45– 53.

3.Cook LB, Bergman RL, Bahr A, Boothe HW. Inflammatory polyp in the middle ear with secondary suppurative meningoencephalitis in a cat. Vet Radiol Ultrasound.

2003;44?648–651.

4.Cross JR, Rossmeisl JH. Bartonella-associated pyogranulomatous meningoradiculoneuritis and nodular dermatitis in 3 dogs. J Vet Intern Med. 2007;21?591.

5.Dewey CW. Surgical Disorders of the Brain. Proceedings 23rd ACVIM Forum. 2005?324–326.

6.Espino L, Bermudez R, Fidalgo LE, et al. Meningoencephalitis associated with Staphylococcus warneri in a dog. J

Small Anim Pract. 2006;47?598–602

7.Fletcher DJ, Snyder JM, Messinger JS, et al. Ventricular

pneumocephalus and septic meningoencephalitis secondary

to dorsal rhinotomy and nasal polypectomy in a dog. J Am

Vet Med Assoc. 2006;229?240–245.

8.Gunn-Moore D. Infectious diseases of the central nervous system. Vet Clin North Am Small Anim Pract.

2005;35?103–128.Irwin PJ, Parry BW. Streptococcal meningoencephalitis in a dog. J Am Anim Hosp Assoc.

1999;35?417–422.

9.Kent M. Bacterial infections of the central nervous

system. In: CE Greene (ed.), Infectious Diseases of the Dog

and Cat. 3rd ed. Philadelphia: W.B. Saunders; 2006?962–974.

10.Leibovitz KR, Pearce LK, Brewer M, Lappin MR. Bartonella spp. antibodies and DNA in cerebral spinal fluid of

cats with central nervous system disease. J Vet Intern Med.

2007;21?642.

11.Munana KR. Encephalitis and meningitis. Vet Clin North

Am Small Anim Pract. 1996;26?857–874.

12.Odio CM, Faingezicht I, Paris M, et al. The beneficial

effects of early dexamethasone administration in infants and

children with bacterial meningitis. N Engl J Med.

1991;324?1525–1531.

13.Quagliarello VJ, Scheld WM. Treatment of bacterial meningitis. N Engl J Med. 1997;336?708–716.

14.Radaelli ST, Platt SR. Bacterial meningoencephalomyelitis in dogs: A retrospective study of 23 cases

(1990–1999). J Vet Intern Med. 2002;16?159–163.

15.Sigurdardottir B, Bjornsson OM, Jonsdottir KE, et

al. Acute bacterial meningitis in adults: A20-year overview.

Arch Intern Med. 1997;157?425–430.

16.Spangler EA, Dewey CW. Meningoencephalitis

secondary to bacterial otitis media/interna in a dog. J

Am Anim Hosp Assoc. 2000;36?239–243.

17.Sturges BK, Dickinson PJ, Kortz GD,et al. Clinical

signs, magnetic resonance imaging features, and outcome after surgical and medical treatment of otogenic

intracranial infection in 11 cats and 4 dogs. J Vet Intern

Med. 2006;20?648–656.

18.Tipold A. Diagnosis of inflammatory and infectious

diseases of the central nervous system in dogs: A retrospective study. J Vet Intern Med. 1995;9?304–314.

19.Tunkel AR, Wispelwey B, Scheld WM. Bacterial meningitis: Recent advances in pathophysiology and treatment.

Ann Intern Med. 1990;112?610–623

20.Wouters EG, Beukers M, Theyse LF. Surgical treatment of a cerebral brain abscess in a cat. Vet Comp Orthop

Traumatol. 2011;24?72–75

- 140 -

第143頁

小動物臨床前沿(神經(jīng)學(xué)???- 上冊)· 腦部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 總第 12 期

- 141-

關(guān)鈺澄

華南農(nóng)業(yè)大學(xué)獸醫(yī)碩士

現(xiàn)任職于愛諾百思動物醫(yī)院

新瑞鵬集團神經(jīng)??苾?yōu)秀人才

Chi Univerisity認(rèn)證獸醫(yī)針灸師

至美國康奈爾大學(xué)神經(jīng)科見習(xí)3個月

作者介紹

寄語

神經(jīng)學(xué)是一個很有趣的學(xué)科,僅憑神經(jīng)學(xué)檢

查就能發(fā)現(xiàn)很多病例信息。神經(jīng)系統(tǒng)疾病也并沒

有想象中那么難以理解和罕見,希望越來越多伙

伴對神經(jīng)學(xué)感興趣,一起探討神經(jīng)病。

林毓暐

《小動物臨床前沿-神經(jīng)學(xué)??分骶?/p>

審校介紹

寄語

與所有專業(yè)與工作相同,神經(jīng)科并不特殊,也不

特別困難或特別簡單。一切皆從基礎(chǔ)開始,積累每個

筑高需要的磚頭與支架,這是方法。不貪多、不躁進、

不偷懶且保持謙卑,這是態(tài)度。對于知識體系具備清

晰藍圖,對疾病診斷邏輯能辯證論治,這是能力。而

能看到世界的美好與對生命有尊重、憐憫與不舍,則

是醫(yī)者的情懷。諸多品質(zhì),愿與各位同進共勉。

德國漢諾威獸醫(yī)學(xué)院 神經(jīng)學(xué)博士

新瑞鵬集團神經(jīng)學(xué)???帶頭人

上海頑皮家族國際醫(yī)院 總院長暨神經(jīng)科主任

第144頁

小動物臨床前沿(神經(jīng)學(xué)???- 上冊)· 腦部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 總第 12 期

作者

關(guān)鈺澄1

(廣州愛諾百思動物醫(yī)院)

高健2

(北京芭比堂中心醫(yī)院)、林毓暐3

(上海頑皮家族動物醫(yī)院)

1. 病例信息與病史

14歲,雄性未去勢,金毛巡回獵犬,30kg,定

期驅(qū)蟲,疫苗接種不全,無外傷史。

主訴多次抽搐發(fā)作,沒有先兆,發(fā)作后隨即側(cè)躺

,強直-陣攣性,流涎,小便失禁,持續(xù)約 90s,發(fā)作

后期意識與行為正常,符合叢群性抽搐發(fā)作/抽搐密

集發(fā)作(Cluster Seizure)。已按時免疫和驅(qū)蟲。

前言

相關(guān)檢查

系統(tǒng)性高血壓在小動物臨床中診斷率越來越

高。受影響的器官可包括腎臟、眼睛、心血管系統(tǒng)

和中樞神經(jīng)系統(tǒng)。高血壓引起的犬貓神經(jīng)系統(tǒng)并發(fā)

癥包括腦血管疾病和高血壓性腦病。高血壓性腦病

在犬貓已有相關(guān)的病例報道,見于血壓急劇升高(增

幅>30mmHg)和過高的收縮壓(>180mmHg)。常

見的臨床癥狀包括抽搐、意識改變、失明等,其它

癥狀具體取決于腦部受損區(qū)域。前腦廣泛性功能障

礙伴高血壓的鑒別診斷包括慢性腎臟疾病、腎上腺

皮質(zhì)機能亢進和嗜鉻細(xì)胞瘤。本文對一例犬腎上腺

皮質(zhì)機能亢進伴發(fā)高血壓腦病進行分析,并探討診

斷思路。

病例分析:一例犬腎上腺皮質(zhì)

機能亢進伴發(fā)高血壓腦病的病例分析

Case report:hyperadrenocorticism concurrent with

hypertensive encephalopathy in a dog

摘要:

高血壓引起的犬貓神經(jīng)系統(tǒng)并發(fā)癥包括腦血管疾病和高血壓性腦病。高血壓腦病是由于血壓急劇升高

所引起的腦功能障礙,常見病因包括慢性腎臟疾病、腎上腺皮質(zhì)機能亢進和嗜鉻細(xì)胞瘤。該病發(fā)病急劇,進展

迅速,但及時治療,預(yù)后良好。及時、準(zhǔn)確的診斷是早期治療的關(guān)鍵。本文對一例犬腎上腺皮質(zhì)機能亢進伴發(fā)

高血壓腦病進行分析,并探討診斷思路。

關(guān)鍵詞:牙周炎;細(xì)菌性;抗生素 ; 腦膜腦炎 ; 貓

2. 理學(xué)檢查

體溫38℃,呼吸頻率30次/分鐘,心率100bpm,

心雜音1/6,BCS評分6/9,收縮壓180mmHg。

3. 神經(jīng)學(xué)檢查

4. 血液學(xué)檢查

該患犬的血液學(xué)檢查包括全血細(xì)胞計數(shù)、血液生

化檢查、電解質(zhì)檢查、血氨(NH3 )和甲狀腺激素濃

度檢查(TT4),其中異常指標(biāo)如下:

HCT = 35.8%(37.3-61.7),PLT=593 K/pL(148

- 484),BUN = 22.0 mmol/L(2.5-9.6)

CHOL = 8.50 mmol/L(2.84 - 8.26)。

- 142 -

項目 檢查結(jié)果

意識與行為 有反應(yīng),不警覺

姿勢與步態(tài) 步態(tài)正常,低頭姿勢,無共濟失調(diào),

雙后肢運動表現(xiàn)僵直

姿勢反應(yīng) 雙后肢本體感受缺失

脊髓反射 正常

觸診與痛覺 頸部疼痛、胸腰椎輕度疼痛、腰薦椎

中度疼痛;肌肉量,雙后肢中度萎縮

顱神經(jīng)檢查 左側(cè)威脅反應(yīng)缺失,其余顱神經(jīng)檢查

正常。

病灶定位 右側(cè)前腦,T3-L3

第145頁

小動物臨床前沿(神經(jīng)學(xué)???- 上冊)· 腦部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 總第 12 期

5. 影像學(xué)檢查

5.1 X 線檢查

該患犬的血液學(xué)檢查包括全血細(xì)胞計數(shù)、血液

生化檢查、電解質(zhì)檢查、血氨(NH3 )和甲狀腺激

素濃度檢查(TT4),其中異常指標(biāo)如下:

HCT = 35.8%(37.3-61.7),PLT=593 K/pL

(148 - 484),BUN = 22.0 mmol/L(2.5-9.6)

CHOL = 8.50 mmol/L(2.84 - 8.26)。

第6、7頸椎、第4-10胸椎腹側(cè)不同程度骨質(zhì)增

生、橋聯(lián),第3-6胸骨背側(cè)骨質(zhì)增生,部分橋聯(lián);

后肺區(qū)不透射性升高,局部可見“甜甜圈”影像

及雙軌征,表現(xiàn)支氣管型和間質(zhì)型肺型;

心臟輪廓稍大,考慮拍攝時未處于吸氣末,建

議結(jié)合心臟超聲評估;

可見的前腹部胃內(nèi)大量顆粒狀、軟組織不透射

性內(nèi)容物(見圖1)。

5.2 心臟超聲檢查

二尖瓣及三尖瓣增厚伴輕度返流,心律不齊。

5.3 腹部超聲

1.左側(cè)腎上腺增大,頭極厚約9.7mm,尾極厚

約8.5mm;

2.左側(cè)睪丸增大,右側(cè)睪丸萎縮,前列腺囊

腫 ;

3.肝臟實質(zhì)回聲不均,輪廓平滑,邊緣銳利,

脈管紋理清晰,實質(zhì)散在高回聲結(jié)節(jié),邊界不清;

4.左腎囊腫大小約14.9×14.2mm;

5.4 磁共振成像檢查

通過1.5T核磁共振儀對患犬腦部進行平掃和延

遲期增強掃查,患犬仰臥位。分別獲取T1-W造影前

和造影后、T2-W、T2*序列的矢狀面、橫斷面、背

側(cè)面;DWI、FLAIR、ADC序列的橫斷面(見圖2、

圖3)。

右側(cè)嗅葉可見橢圓形非均勻的中心T2高信號、

T1低信號、FLAIR高信號。相鄰的白質(zhì)延伸呈T2高

信號、FLAIR高信號,符合血管性水腫特征,該腫物

在T1W造影后邊緣增強,T2*序列上呈中間高信號邊

緣低信號,提示出血。

雙側(cè)腦白質(zhì)病變,考慮高血壓腦病,腦白質(zhì)疏松,代謝

性 / 中毒性 / 營養(yǎng)性腦病,炎癥性腦病,變性腦病。右

前側(cè)嗅葉血塊,不排除腫瘤性出血或黑色素瘤等。腦

皮質(zhì)輕度萎縮,考慮老年性萎縮。

6. 低劑量地塞米松抑制試驗

7. 腦脊液檢查

因為主人未同意腦脊液檢查,所以沒有進行。影

像學(xué)上的表現(xiàn)也明顯提示不是感染性疾病的因素,但

是跟主人溝通了不能排除感染性因素的可能。蛋白質(zhì)

濃度預(yù)期會有升高,但是蛋白質(zhì)濃度升高并不會有助

于診斷特定的疾病。細(xì)胞學(xué)可能會有助于判斷出血的

時間間期。后續(xù)的治療緩解也提示了非感染性病因和

出血的可能性因素。

8. 診斷

腎上腺皮質(zhì)機能亢進,腦出血和腦白質(zhì)病,考慮

高血壓腦?。ê罄m(xù)依據(jù)治療反應(yīng)得以證實),與腎上腺

機能亢進相關(guān);T3-L3 脊髓疾病待查。

- 143 -

項目 結(jié)果

可的松基礎(chǔ)值

低劑量注射地塞米松 <

低劑量注射地塞米松

15 n

4h

8h 44

mol/L

14 nmol/L

nmol/L

第146頁

小動物臨床前沿(神經(jīng)學(xué)???- 上冊)· 腦部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 總第 12 期

- 144 -

圖2:患犬橫斷面MRI圖像,序列從左至右依次為T2W、T1W、FLAIR、T2*

圖3 :患犬矢狀面和背側(cè)面MRI圖像,序列從左至右依次為T2W、T1W、FLAIR、T2*

第147頁

小動物臨床前沿(神經(jīng)學(xué)???- 上冊)· 腦部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 總第 12 期

- 145 -

治療方案

治療腎上腺皮質(zhì)機能亢進:曲洛斯坦 1mg/kg,

po,bid;

控制血壓:氨氯地平 0.15mg/kg, po, bid;貝

那普利 0.5mg/kg, po, sid;

控制腦水腫:甘露醇、甲潑尼龍 1mg/kg,po, sid;

抗癲癇:苯巴比妥 2mg/kg po,sid、普瑞巴林

2.5mg/kg po bid;

營養(yǎng)支持:甲鈷胺 0.5mg,po,bid;胞磷膽堿。

減 少 激 素 引 起 的 胃 腸 道 副 作 用:奧 美 拉 唑

1mg/kg,po,bid。

病例轉(zhuǎn)歸

該病例在治療過程中再沒有出現(xiàn)過抽搐,發(fā)病后

1 個月跟蹤調(diào)查,血壓恢復(fù)正常,腎上腺皮質(zhì)機能亢進

在藥物治療下得到控制。

診斷思路

基于病史調(diào)查和理學(xué)檢查與神經(jīng)學(xué)檢查,有兩大

主要問題,抽搐與高血壓。

根據(jù)寵主對疾病發(fā)作時的描述,并且就診過程中

患犬出現(xiàn)抽搐發(fā)作,表現(xiàn)為倒地側(cè)躺,失去自主意識,

四肢強直痙攣性抽動,面部和嘴巴抽動,伴隨大量流

涎和小便失禁,可以判斷患犬出現(xiàn)抽搐,當(dāng)然若有視

頻支持會更有可信度。抽搐為神經(jīng)系統(tǒng)問題,根據(jù)神

經(jīng)學(xué)臨床推理的五指法則 (Five Finger Rule),本病例

為突發(fā)多次抽搐發(fā)作,非對稱性,具有疼痛表現(xiàn),病灶

位于右側(cè)前腦和 T3-L3 的老年犬。由于主訴為抽搐發(fā)

作,且患犬反應(yīng)稍有降低,優(yōu)先診斷和處理右側(cè)前腦

問題。

很多因素均可引起抽搐,顱外因素、顱內(nèi)因素、特

發(fā)性癲癇、隱匿性 / 不明原因癲癇。

表1 :患犬問題列表與相應(yīng)鑒別診斷

治療及預(yù)后 討論 為了排除顱外因素導(dǎo)致癲癇,并了解動物的身體

情況,以便 MRI 前的麻醉準(zhǔn)備,需要檢查全血細(xì)胞計

數(shù)、血清生化、膽汁酸、尿檢以及根據(jù)病例信息和臨床

表現(xiàn)進行血壓檢測、寄生蟲和病毒的篩查、以及毒素

的篩查。本病例進行了相應(yīng)的檢查,根據(jù)檢查結(jié)果得

到了更詳細(xì)的問題列表和相應(yīng)鑒別診斷(表 1)。綜合

高階影像學(xué)以外的檢查結(jié)果,神經(jīng)學(xué)檢查可排除特發(fā)

性癲癇,患犬抽搐的病因縮小為血管性因素、顱內(nèi)因

素、隱匿性 / 不明原因性癲癇,還需要進一步的高階影

像學(xué)檢查,評估腦部情況。高血壓的原因則排除了甲

狀腺疾病、藥物 / 毒素、高黏血癥、糖尿病,需要繼續(xù)找

出引起高血壓的潛在病因,并且驗證抽搐與高血壓在

該病例中是否有相關(guān)性。在老年動物中,同時出現(xiàn)多

個誘發(fā)高血壓的因素并不罕見。貓需要考慮特發(fā)性高

血壓,其全血細(xì)胞計數(shù)、血清生化、尿檢等檢查可能無

異常。

引起抽搐顱內(nèi)的因素則需要高階影像學(xué)、腦脊液

檢查和腦電圖,本病例進行 MR 檢查,發(fā)現(xiàn)影像符合

腦血管病的出血性病變和腦白質(zhì)病病變表現(xiàn)。結(jié)合通

過低劑量地塞米松刺激試驗,確診為腎上腺皮質(zhì)機能

亢進。高血壓性腦病通過治療性診斷得以確定。

高血壓性腦病的發(fā)病因素

目前,在犬貓中,與高血壓相關(guān)的神經(jīng)并發(fā)癥包

括腦血管疾病和高血壓性腦病 1。獸醫(yī)有關(guān)高血壓腦

病的病例報告仍較少。人醫(yī)將高血壓腦病歸為腦后部

可逆性腦病綜合征(PRES),以腦部血管性水腫為特

征,主要影響枕葉和顳葉,其中超過 33%PRES 患者出

現(xiàn)顱內(nèi)出血 2

高血壓性腦病的發(fā)病機制尚不完全明確,目前多

數(shù)傾向于“自動調(diào)節(jié)機制崩潰學(xué)說”,即由于血壓突然

升高,超出腦血管自動調(diào)節(jié)限度,引起血管壁損傷和

血腦屏障通透性增加,引起局部或多灶性血管源性水

腫。隨著病情的進展,由于腦血管通透性進一步增加,

血管壁缺血變性,病變腦組織由血管源性腦水腫發(fā)展

為細(xì)胞毒性腦水腫,并可夾雜出現(xiàn)灶性腦出血,甚至

出現(xiàn)腦梗死。PRES 的風(fēng)險因素包括突發(fā)性動脈高壓、

腎功能不全、子癲前期 / 子癲、免疫抑制性藥物、自體

免疫性疾病、系統(tǒng)性感染 3,4。

腦血管疾病是老年人遲發(fā)性癲癇的主要發(fā)病風(fēng)

險因素,除了卒中后癲癇性瘢痕、大腦皮質(zhì)的微小梗

死灶以及(抑制性)神經(jīng)傳入作用受抑制引起的結(jié)構(gòu)

性癲癇外,已證實腎素 - 血管緊張素系統(tǒng)失調(diào)也可引

起所謂的無誘因癲癇發(fā)作 5

。

在伴侶動物中,一項前瞻性的調(diào)查研究發(fā)現(xiàn),36

只由于慢性腎病和 / 或甲狀腺機能亢進引發(fā)的高血壓

患貓,有 25% 的貓出現(xiàn)過抽搐,對該部分抽搐發(fā)作致

死的貓進行腦部病理組織學(xué)檢查,15% 病例符合高血

壓腦病的病理特征。在高血壓患貓中,關(guān)于 PRES 樣腦

血管性水腫是否為抽搐的獨立誘發(fā)因素仍未明確。未

來需要更多前瞻性臨床試驗調(diào)查高血壓患犬和貓的

癲癇發(fā)病率,以及進一步探討血管緊張素分別對腦部

損傷和神經(jīng)調(diào)節(jié)產(chǎn)生的影響 6

。

高血壓性腦病的臨床特征與診斷

高血壓腦病是高血壓繼發(fā)引起抽搐和意識改變

等神經(jīng)學(xué)異常的綜合征,沒有特異性的臨床表現(xiàn),取

決于受損的靶器官以及具體病灶位置,多見廣泛性

的前腦癥狀,如意識遲鈍、抽搐、皮質(zhì)盲。高血壓性腦

病見于嚴(yán)重的高血壓以及血壓急劇上升的患犬 7

。本

病例在右前側(cè)嗅葉有血塊,相關(guān)神經(jīng)學(xué)異常只表現(xiàn)

為左側(cè)威脅反應(yīng)缺失。目前對于高血壓血管收縮和

神經(jīng)炎癥是否會引起犬貓神經(jīng)的退行性病變未有完

整的了解。急性的神經(jīng)并發(fā)癥以局灶性血管性卒中、

前庭疾病、神經(jīng) - 眼現(xiàn)象、彌散性前腦癥狀為特征。

高血壓靶器官受損所引起的臨床癥狀和實驗室檢查

將有助于診斷,如前房出血、視網(wǎng)膜脫落(特別是

貓)、腎臟生物學(xué)指標(biāo)、心臟功能評估等。而高血壓引

起的腦部損傷最可靠的診斷工具為磁共振成像技

術(shù)。通常高血壓腦病可見雙側(cè)腦白質(zhì)非對稱性 T2-W

高信號,特別是在頂葉和枕葉區(qū)域。另外可見 T2 高

信號缺血灶或出血灶 6

。

本病例的磁共振影像除了在右側(cè)嗅葉有出血灶

和血管性水腫表現(xiàn)以外,還可見腦白質(zhì)病變。腦白質(zhì)

?。↙eukoencephalopathy)包括多種中樞神經(jīng)系統(tǒng)疾

病,根 據(jù) 病 因,可 進 一 步 分 為 腦 白 質(zhì) 營 養(yǎng) 不 良

(leukodystrophy)與 髓 鞘 形 成 不 足(hypomyelination)8。腦白質(zhì)營養(yǎng)不良是以髓磷脂的生成與儲備的

紊亂為特征的非炎性對稱性腦部病變,髓鞘形成不足

以髓磷脂的完全丟失、髓磷脂的異常蓄積或生理性髓

磷脂不足為特征 9

。腦白質(zhì)病變的鑒別診斷包括脫髓

鞘性腦病,腦白質(zhì)變性,代謝性 / 中毒性 / 營養(yǎng)性疾病,

炎癥性疾病等。獲得性腦白質(zhì)病與毒素的接觸相關(guān),

如六氯化苯、異煙肼、苯乙肼、溴鼠胺。遺傳性腦白質(zhì)

病則常見于年輕純種犬,如金毛巡回獵犬、魏瑪獵狗、

邊境?10。病毒性感染(如細(xì)小病毒)、營養(yǎng)性因素(飼

喂受輻射日糧)也與腦白質(zhì)病有關(guān)聯(lián) 11,12, 13。

高血壓性腦病的治療與預(yù)后

高血壓腦病需要緊急和激進的治療,并且進行

重癥監(jiān)護。首要目的是控制顱內(nèi)壓、高血壓和維持

腦部灌注。對于慢性高血壓病患,腦部和腎臟的血

管自我調(diào)節(jié)已適應(yīng)長期高血壓狀態(tài);因此快速的降

血壓治療可能會引起嚴(yán)重的腦部低灌注,從而使顱

內(nèi)壓進一步升高。根據(jù) ACVIM 共識,恰當(dāng)?shù)慕笛獕?/p>

方案為,第一個小時降低收縮壓約 10%,隨后每小

時降低 15%,逐漸降低至目標(biāo)血壓 14。根據(jù)部分犬

貓高血壓性腦病的病例分析,對腎性高血壓和不明

原因性高血 壓 的 病 患 經(jīng) 驗 性 使 用氨 氯 地平(0.1

mg/kg PO q 12 h)可避免低血壓并發(fā)癥,犬可結(jié)合

血管緊張素轉(zhuǎn)化酶抑制劑依那普利(0.5 mg/kg PO

q 24 h),所有病患在 72 小時內(nèi)臨床癥狀得到改善,

并且回復(fù)至正常的神經(jīng)學(xué)狀態(tài)。在控制顱內(nèi)壓和腦

部水腫時,需要使用利尿劑和高滲藥物,需小心血

壓短暫升高的可能 6

。

25-45% PRES 病人會出現(xiàn)持續(xù)的 MRI 病灶,

10-25% 病人存在持續(xù)性的神經(jīng)功能缺失 (Heo et al.

2016),犬貓高血壓腦病的預(yù)后相對樂觀,但目前仍

缺乏系統(tǒng)全面的研究,也尚未有一個研究數(shù)據(jù)充足

的治療方案 6

。

腎上腺皮質(zhì)機能亢進

腎上腺皮質(zhì)機能亢進(HAC)是犬最常見的內(nèi)分

泌疾病之一。一項英國對 21 萬犬的流行病學(xué)調(diào)查研

究顯示,HAC 發(fā)病率為 0.28%15,多見于 6 歲以上,雌

性犬(58-75%)。常見的臨床癥狀包括多飲多尿、脫

毛、腹圍增大、肝臟腫大、多食、肥胖、嗜睡、肌肉無力。

21-86% 犬出現(xiàn)高血壓。血液學(xué)檢查可見紅細(xì)胞增多、

淋巴細(xì)胞減少、中性粒細(xì)胞減少、嗜酸性粒細(xì)胞減少、

單核細(xì)胞增多;肌酐、ALP、ALT、膽固醇、血糖升高等。

HAC 的診斷較有挑戰(zhàn)性,且目前尚未有診斷的統(tǒng)一標(biāo)

準(zhǔn)。腎上腺功能測試包括尿液可的松與肌酐比、低劑

量地塞米松抑制試驗(LDDST)、促腎上腺皮質(zhì)激素

(ACTH)刺激試驗 16,17。診斷了 HAC 后需要鑒別是垂

體依賴型腎上腺皮質(zhì)機能亢進(PDH)還是功能性腎

上腺皮質(zhì)腫瘤(AT)。本病例結(jié)合基本信息、臨床癥狀

和 LDDST 結(jié)果較符合 PDH。

問題列表 鑒別診斷

抽搐

1.顱外因素:

電解質(zhì)失衡:高血鈉、低血鈉、低血鈣

營養(yǎng)能量不足:硫胺素缺乏、低血糖

器官功能紊亂:尿毒癥腦病、肝性腦病

血管灌注性問題:紅細(xì)胞增多癥、高黏滯綜合征、高血壓

2.外源性毒素

3. 顱內(nèi)因素:

結(jié)構(gòu)畸形、腫瘤、炎癥、感染、創(chuàng)傷、血管性

4.特發(fā)性癲癇

5.隱匿性/不明原因癲癇

高血壓

1.貧血

2.中樞神經(jīng)系統(tǒng)疾病

3.藥物/毒素

4.內(nèi)分泌疾病

5.腎上腺疾病

6.腎臟疾病

7.甲狀腺疾病

8.高黏血癥

9.特發(fā)性高血壓

第148頁

小動物臨床前沿(神經(jīng)學(xué)專刊 - 上冊)· 腦部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 總第 12 期

- 146 -

診斷思路

基于病史調(diào)查和理學(xué)檢查與神經(jīng)學(xué)檢查,有兩大

主要問題,抽搐與高血壓。

根據(jù)寵主對疾病發(fā)作時的描述,并且就診過程中

患犬出現(xiàn)抽搐發(fā)作,表現(xiàn)為倒地側(cè)躺,失去自主意識,

四肢強直痙攣性抽動,面部和嘴巴抽動,伴隨大量流

涎和小便失禁,可以判斷患犬出現(xiàn)抽搐,當(dāng)然若有視

頻支持會更有可信度。抽搐為神經(jīng)系統(tǒng)問題,根據(jù)神

經(jīng)學(xué)臨床推理的五指法則 (Five Finger Rule),本病例

為突發(fā)多次抽搐發(fā)作,非對稱性,具有疼痛表現(xiàn),病灶

位于右側(cè)前腦和 T3-L3 的老年犬。由于主訴為抽搐發(fā)

作,且患犬反應(yīng)稍有降低,優(yōu)先診斷和處理右側(cè)前腦

問題。

很多因素均可引起抽搐,顱外因素、顱內(nèi)因素、特

發(fā)性癲癇、隱匿性 / 不明原因癲癇。

表1 :患犬問題列表與相應(yīng)鑒別診斷(接上表)

為了排除顱外因素導(dǎo)致癲癇,并了解動物的身體

情況,以便 MRI 前的麻醉準(zhǔn)備,需要檢查全血細(xì)胞計

數(shù)、血清生化、膽汁酸、尿檢以及根據(jù)病例信息和臨床

表現(xiàn)進行血壓檢測、寄生蟲和病毒的篩查、以及毒素

的篩查。本病例進行了相應(yīng)的檢查,根據(jù)檢查結(jié)果得

到了更詳細(xì)的問題列表和相應(yīng)鑒別診斷(表 1)。綜合

高階影像學(xué)以外的檢查結(jié)果,神經(jīng)學(xué)檢查可排除特發(fā)

性癲癇,患犬抽搐的病因縮小為血管性因素、顱內(nèi)因

素、隱匿性 / 不明原因性癲癇,還需要進一步的高階影

像學(xué)檢查,評估腦部情況。高血壓的原因則排除了甲

狀腺疾病、藥物 / 毒素、高黏血癥、糖尿病,需要繼續(xù)找

出引起高血壓的潛在病因,并且驗證抽搐與高血壓在

該病例中是否有相關(guān)性。在老年動物中,同時出現(xiàn)多

個誘發(fā)高血壓的因素并不罕見。貓需要考慮特發(fā)性高

血壓,其全血細(xì)胞計數(shù)、血清生化、尿檢等檢查可能無

異常。

引起抽搐顱內(nèi)的因素則需要高階影像學(xué)、腦脊液

檢查和腦電圖,本病例進行 MR 檢查,發(fā)現(xiàn)影像符合

腦血管病的出血性病變和腦白質(zhì)病病變表現(xiàn)。結(jié)合通

過低劑量地塞米松刺激試驗,確診為腎上腺皮質(zhì)機能

亢進。高血壓性腦病通過治療性診斷得以確定。

高血壓性腦病的發(fā)病因素

目前,在犬貓中,與高血壓相關(guān)的神經(jīng)并發(fā)癥包

括腦血管疾病和高血壓性腦病 1。獸醫(yī)有關(guān)高血壓腦

病的病例報告仍較少。人醫(yī)將高血壓腦病歸為腦后部

可逆性腦病綜合征(PRES),以腦部血管性水腫為特

征,主要影響枕葉和顳葉,其中超過 33%PRES 患者出

現(xiàn)顱內(nèi)出血 2

。

高血壓性腦病的發(fā)病機制尚不完全明確,目前多

數(shù)傾向于“自動調(diào)節(jié)機制崩潰學(xué)說”,即由于血壓突然

升高,超出腦血管自動調(diào)節(jié)限度,引起血管壁損傷和

血腦屏障通透性增加,引起局部或多灶性血管源性水

腫。隨著病情的進展,由于腦血管通透性進一步增加,

血管壁缺血變性,病變腦組織由血管源性腦水腫發(fā)展

為細(xì)胞毒性腦水腫,并可夾雜出現(xiàn)灶性腦出血,甚至

出現(xiàn)腦梗死。PRES 的風(fēng)險因素包括突發(fā)性動脈高壓、

腎功能不全、子癲前期 / 子癲、免疫抑制性藥物、自體

免疫性疾病、系統(tǒng)性感染 3,4。

腦血管疾病是老年人遲發(fā)性癲癇的主要發(fā)病風(fēng)

險因素,除了卒中后癲癇性瘢痕、大腦皮質(zhì)的微小梗

死灶以及(抑制性)神經(jīng)傳入作用受抑制引起的結(jié)構(gòu)

性癲癇外,已證實腎素 - 血管緊張素系統(tǒng)失調(diào)也可引

起所謂的無誘因癲癇發(fā)作 5

。

在伴侶動物中,一項前瞻性的調(diào)查研究發(fā)現(xiàn),36

只由于慢性腎病和 / 或甲狀腺機能亢進引發(fā)的高血壓

患貓,有 25% 的貓出現(xiàn)過抽搐,對該部分抽搐發(fā)作致

死的貓進行腦部病理組織學(xué)檢查,15% 病例符合高血

壓腦病的病理特征。在高血壓患貓中,關(guān)于 PRES 樣腦

血管性水腫是否為抽搐的獨立誘發(fā)因素仍未明確。未

來需要更多前瞻性臨床試驗調(diào)查高血壓患犬和貓的

癲癇發(fā)病率,以及進一步探討血管緊張素分別對腦部

損傷和神經(jīng)調(diào)節(jié)產(chǎn)生的影響 6

。

高血壓性腦病的臨床特征與診斷

高血壓腦病是高血壓繼發(fā)引起抽搐和意識改變

等神經(jīng)學(xué)異常的綜合征,沒有特異性的臨床表現(xiàn),取

決于受損的靶器官以及具體病灶位置,多見廣泛性

的前腦癥狀,如意識遲鈍、抽搐、皮質(zhì)盲。高血壓性腦

病見于嚴(yán)重的高血壓以及血壓急劇上升的患犬 7

。本

病例在右前側(cè)嗅葉有血塊,相關(guān)神經(jīng)學(xué)異常只表現(xiàn)

為左側(cè)威脅反應(yīng)缺失。目前對于高血壓血管收縮和

神經(jīng)炎癥是否會引起犬貓神經(jīng)的退行性病變未有完

整的了解。急性的神經(jīng)并發(fā)癥以局灶性血管性卒中、

前庭疾病、神經(jīng) - 眼現(xiàn)象、彌散性前腦癥狀為特征。

高血壓靶器官受損所引起的臨床癥狀和實驗室檢查

將有助于診斷,如前房出血、視網(wǎng)膜脫落(特別是

貓)、腎臟生物學(xué)指標(biāo)、心臟功能評估等。而高血壓引

起的腦部損傷最可靠的診斷工具為磁共振成像技

術(shù)。通常高血壓腦病可見雙側(cè)腦白質(zhì)非對稱性 T2-W

高信號,特別是在頂葉和枕葉區(qū)域。另外可見 T2 高

信號缺血灶或出血灶 6

。

本病例的磁共振影像除了在右側(cè)嗅葉有出血灶

和血管性水腫表現(xiàn)以外,還可見腦白質(zhì)病變。腦白質(zhì)

?。↙eukoencephalopathy)包括多種中樞神經(jīng)系統(tǒng)疾

病,根 據(jù) 病 因,可 進 一 步 分 為 腦 白 質(zhì) 營 養(yǎng) 不 良

(leukodystrophy)與 髓 鞘 形 成 不 足(hypomyelination)8。腦白質(zhì)營養(yǎng)不良是以髓磷脂的生成與儲備的

紊亂為特征的非炎性對稱性腦部病變,髓鞘形成不足

以髓磷脂的完全丟失、髓磷脂的異常蓄積或生理性髓

磷脂不足為特征 9

。腦白質(zhì)病變的鑒別診斷包括脫髓

鞘性腦病,腦白質(zhì)變性,代謝性 / 中毒性 / 營養(yǎng)性疾病,

炎癥性疾病等。獲得性腦白質(zhì)病與毒素的接觸相關(guān),

如六氯化苯、異煙肼、苯乙肼、溴鼠胺。遺傳性腦白質(zhì)

病則常見于年輕純種犬,如金毛巡回獵犬、魏瑪獵狗、

邊境?10。病毒性感染(如細(xì)小病毒)、營養(yǎng)性因素(飼

喂受輻射日糧)也與腦白質(zhì)病有關(guān)聯(lián) 11,12, 13。

高血壓性腦病的治療與預(yù)后

高血壓腦病需要緊急和激進的治療,并且進行

重癥監(jiān)護。首要目的是控制顱內(nèi)壓、高血壓和維持

腦部灌注。對于慢性高血壓病患,腦部和腎臟的血

管自我調(diào)節(jié)已適應(yīng)長期高血壓狀態(tài);因此快速的降

血壓治療可能會引起嚴(yán)重的腦部低灌注,從而使顱

內(nèi)壓進一步升高。根據(jù) ACVIM 共識,恰當(dāng)?shù)慕笛獕?/p>

方案為,第一個小時降低收縮壓約 10%,隨后每小

時降低 15%,逐漸降低至目標(biāo)血壓 14。根據(jù)部分犬

貓高血壓性腦病的病例分析,對腎性高血壓和不明

原因性高血 壓 的 病 患 經(jīng) 驗 性 使 用氨 氯 地平(0.1

mg/kg PO q 12 h)可避免低血壓并發(fā)癥,犬可結(jié)合

血管緊張素轉(zhuǎn)化酶抑制劑依那普利(0.5 mg/kg PO

q 24 h),所有病患在 72 小時內(nèi)臨床癥狀得到改善,

并且回復(fù)至正常的神經(jīng)學(xué)狀態(tài)。在控制顱內(nèi)壓和腦

部水腫時,需要使用利尿劑和高滲藥物,需小心血

壓短暫升高的可能 6

。

25-45% PRES 病人會出現(xiàn)持續(xù)的 MRI 病灶,

10-25% 病人存在持續(xù)性的神經(jīng)功能缺失 (Heo et al.

2016),犬貓高血壓腦病的預(yù)后相對樂觀,但目前仍

缺乏系統(tǒng)全面的研究,也尚未有一個研究數(shù)據(jù)充足

的治療方案 6

。

腎上腺皮質(zhì)機能亢進

腎上腺皮質(zhì)機能亢進(HAC)是犬最常見的內(nèi)分

泌疾病之一。一項英國對 21 萬犬的流行病學(xué)調(diào)查研

究顯示,HAC 發(fā)病率為 0.28%15,多見于 6 歲以上,雌

性犬(58-75%)。常見的臨床癥狀包括多飲多尿、脫

毛、腹圍增大、肝臟腫大、多食、肥胖、嗜睡、肌肉無力。

21-86% 犬出現(xiàn)高血壓。血液學(xué)檢查可見紅細(xì)胞增多、

淋巴細(xì)胞減少、中性粒細(xì)胞減少、嗜酸性粒細(xì)胞減少、

單核細(xì)胞增多;肌酐、ALP、ALT、膽固醇、血糖升高等。

HAC 的診斷較有挑戰(zhàn)性,且目前尚未有診斷的統(tǒng)一標(biāo)

準(zhǔn)。腎上腺功能測試包括尿液可的松與肌酐比、低劑

量地塞米松抑制試驗(LDDST)、促腎上腺皮質(zhì)激素

(ACTH)刺激試驗 16,17。診斷了 HAC 后需要鑒別是垂

體依賴型腎上腺皮質(zhì)機能亢進(PDH)還是功能性腎

上腺皮質(zhì)腫瘤(AT)。本病例結(jié)合基本信息、臨床癥狀

和 LDDST 結(jié)果較符合 PDH。

問題列表 鑒別診斷

可再生性貧血 1.出血:內(nèi)源性、外源性

2.溶血:基因型、獲得性、免疫介導(dǎo)性、紅細(xì)胞機械損傷

血小板增多癥

1.老年動物正常表現(xiàn)

2.脾臟收縮

3.反應(yīng)性表現(xiàn):慢性出血、腎上腺皮質(zhì)機能亢進、高血凝狀態(tài)、副腫瘤綜合征、感染、

高膽固醇血癥

1.特發(fā)性高脂血癥、餐后高脂血癥

2.繼發(fā)性高脂血癥:膽汁淤積性肝病、糖尿病、腎上腺皮質(zhì)技能亢進、甲狀腺機能減退、

腎病綜合征、胰腺疾病、蛋白丟失性腎病

尿素氮升高

1.腎前性

2.腎性

3.腎后性

腎上腺增大

1.腫瘤

2.增生

3.垂體依賴型腎上腺皮質(zhì)技能亢進

4.應(yīng)激性疾病

肝臟結(jié)節(jié)

1.結(jié)節(jié)性增生

2.囊腫

3.血腫

4.腫瘤

5.肝壞死

左側(cè)睪丸增大/腫物,右側(cè)

睪丸萎縮,前列腺囊腫;

1.腫瘤

2.良性增生

3.感染

二尖瓣及三尖瓣增厚伴輕度返流,心律不齊

腎臟皮質(zhì)囊腫

第149頁

小動物臨床前沿(神經(jīng)學(xué)???- 上冊)· 腦部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 總第 12 期

- 147 -

診斷思路

基于病史調(diào)查和理學(xué)檢查與神經(jīng)學(xué)檢查,有兩大

主要問題,抽搐與高血壓。

根據(jù)寵主對疾病發(fā)作時的描述,并且就診過程中

患犬出現(xiàn)抽搐發(fā)作,表現(xiàn)為倒地側(cè)躺,失去自主意識,

四肢強直痙攣性抽動,面部和嘴巴抽動,伴隨大量流

涎和小便失禁,可以判斷患犬出現(xiàn)抽搐,當(dāng)然若有視

頻支持會更有可信度。抽搐為神經(jīng)系統(tǒng)問題,根據(jù)神

經(jīng)學(xué)臨床推理的五指法則 (Five Finger Rule),本病例

為突發(fā)多次抽搐發(fā)作,非對稱性,具有疼痛表現(xiàn),病灶

位于右側(cè)前腦和 T3-L3 的老年犬。由于主訴為抽搐發(fā)

作,且患犬反應(yīng)稍有降低,優(yōu)先診斷和處理右側(cè)前腦

問題。

很多因素均可引起抽搐,顱外因素、顱內(nèi)因素、特

發(fā)性癲癇、隱匿性 / 不明原因癲癇。

為了排除顱外因素導(dǎo)致癲癇,并了解動物的身體

情況,以便 MRI 前的麻醉準(zhǔn)備,需要檢查全血細(xì)胞計

數(shù)、血清生化、膽汁酸、尿檢以及根據(jù)病例信息和臨床

表現(xiàn)進行血壓檢測、寄生蟲和病毒的篩查、以及毒素

的篩查。本病例進行了相應(yīng)的檢查,根據(jù)檢查結(jié)果得

到了更詳細(xì)的問題列表和相應(yīng)鑒別診斷(表 1)。綜合

高階影像學(xué)以外的檢查結(jié)果,神經(jīng)學(xué)檢查可排除特發(fā)

性癲癇,患犬抽搐的病因縮小為血管性因素、顱內(nèi)因

素、隱匿性 / 不明原因性癲癇,還需要進一步的高階影

像學(xué)檢查,評估腦部情況。高血壓的原因則排除了甲

狀腺疾病、藥物 / 毒素、高黏血癥、糖尿病,需要繼續(xù)找

出引起高血壓的潛在病因,并且驗證抽搐與高血壓在

該病例中是否有相關(guān)性。在老年動物中,同時出現(xiàn)多

個誘發(fā)高血壓的因素并不罕見。貓需要考慮特發(fā)性高

血壓,其全血細(xì)胞計數(shù)、血清生化、尿檢等檢查可能無

異常。

引起抽搐顱內(nèi)的因素則需要高階影像學(xué)、腦脊液

檢查和腦電圖,本病例進行 MR 檢查,發(fā)現(xiàn)影像符合

腦血管病的出血性病變和腦白質(zhì)病病變表現(xiàn)。結(jié)合通

過低劑量地塞米松刺激試驗,確診為腎上腺皮質(zhì)機能

亢進。高血壓性腦病通過治療性診斷得以確定。

高血壓性腦病的發(fā)病因素

目前,在犬貓中,與高血壓相關(guān)的神經(jīng)并發(fā)癥包

括腦血管疾病和高血壓性腦病 1。獸醫(yī)有關(guān)高血壓腦

病的病例報告仍較少。人醫(yī)將高血壓腦病歸為腦后部

可逆性腦病綜合征(PRES),以腦部血管性水腫為特

征,主要影響枕葉和顳葉,其中超過 33%PRES 患者出

現(xiàn)顱內(nèi)出血 2

。

高血壓性腦病的發(fā)病機制尚不完全明確,目前多

數(shù)傾向于“自動調(diào)節(jié)機制崩潰學(xué)說”,即由于血壓突然

升高,超出腦血管自動調(diào)節(jié)限度,引起血管壁損傷和

血腦屏障通透性增加,引起局部或多灶性血管源性水

腫。隨著病情的進展,由于腦血管通透性進一步增加,

血管壁缺血變性,病變腦組織由血管源性腦水腫發(fā)展

為細(xì)胞毒性腦水腫,并可夾雜出現(xiàn)灶性腦出血,甚至

出現(xiàn)腦梗死。PRES 的風(fēng)險因素包括突發(fā)性動脈高壓、

腎功能不全、子癲前期 / 子癲、免疫抑制性藥物、自體

免疫性疾病、系統(tǒng)性感染 3,4。

腦血管疾病是老年人遲發(fā)性癲癇的主要發(fā)病風(fēng)

險因素,除了卒中后癲癇性瘢痕、大腦皮質(zhì)的微小梗

死灶以及(抑制性)神經(jīng)傳入作用受抑制引起的結(jié)構(gòu)

性癲癇外,已證實腎素 - 血管緊張素系統(tǒng)失調(diào)也可引

起所謂的無誘因癲癇發(fā)作 5

在伴侶動物中,一項前瞻性的調(diào)查研究發(fā)現(xiàn),36

只由于慢性腎病和 / 或甲狀腺機能亢進引發(fā)的高血壓

患貓,有 25% 的貓出現(xiàn)過抽搐,對該部分抽搐發(fā)作致

死的貓進行腦部病理組織學(xué)檢查,15% 病例符合高血

壓腦病的病理特征。在高血壓患貓中,關(guān)于 PRES 樣腦

血管性水腫是否為抽搐的獨立誘發(fā)因素仍未明確。未

來需要更多前瞻性臨床試驗調(diào)查高血壓患犬和貓的

癲癇發(fā)病率,以及進一步探討血管緊張素分別對腦部

損傷和神經(jīng)調(diào)節(jié)產(chǎn)生的影響 6

。

高血壓性腦病的臨床特征與診斷

高血壓腦病是高血壓繼發(fā)引起抽搐和意識改變

等神經(jīng)學(xué)異常的綜合征,沒有特異性的臨床表現(xiàn),取

決于受損的靶器官以及具體病灶位置,多見廣泛性

的前腦癥狀,如意識遲鈍、抽搐、皮質(zhì)盲。高血壓性腦

病見于嚴(yán)重的高血壓以及血壓急劇上升的患犬 7

。本

病例在右前側(cè)嗅葉有血塊,相關(guān)神經(jīng)學(xué)異常只表現(xiàn)

為左側(cè)威脅反應(yīng)缺失。目前對于高血壓血管收縮和

神經(jīng)炎癥是否會引起犬貓神經(jīng)的退行性病變未有完

整的了解。急性的神經(jīng)并發(fā)癥以局灶性血管性卒中、

前庭疾病、神經(jīng) - 眼現(xiàn)象、彌散性前腦癥狀為特征。

高血壓靶器官受損所引起的臨床癥狀和實驗室檢查

將有助于診斷,如前房出血、視網(wǎng)膜脫落(特別是

貓)、腎臟生物學(xué)指標(biāo)、心臟功能評估等。而高血壓引

起的腦部損傷最可靠的診斷工具為磁共振成像技

術(shù)。通常高血壓腦病可見雙側(cè)腦白質(zhì)非對稱性 T2-W

高信號,特別是在頂葉和枕葉區(qū)域。另外可見 T2 高

信號缺血灶或出血灶 6

本病例的磁共振影像除了在右側(cè)嗅葉有出血灶

和血管性水腫表現(xiàn)以外,還可見腦白質(zhì)病變。腦白質(zhì)

病(Leukoencephalopathy)包括多種中樞神經(jīng)系統(tǒng)疾

病,根 據(jù) 病 因,可 進 一 步 分 為 腦 白 質(zhì) 營 養(yǎng) 不 良

(leukodystrophy)與 髓 鞘 形 成 不 足(hypomyelination)8。腦白質(zhì)營養(yǎng)不良是以髓磷脂的生成與儲備的

紊亂為特征的非炎性對稱性腦部病變,髓鞘形成不足

以髓磷脂的完全丟失、髓磷脂的異常蓄積或生理性髓

磷脂不足為特征 9

。腦白質(zhì)病變的鑒別診斷包括脫髓

鞘性腦病,腦白質(zhì)變性,代謝性 / 中毒性 / 營養(yǎng)性疾病,

炎癥性疾病等。獲得性腦白質(zhì)病與毒素的接觸相關(guān),

如六氯化苯、異煙肼、苯乙肼、溴鼠胺。遺傳性腦白質(zhì)

病則常見于年輕純種犬,如金毛巡回獵犬、魏瑪獵狗、

邊境?10。病毒性感染(如細(xì)小病毒)、營養(yǎng)性因素(飼

喂受輻射日糧)也與腦白質(zhì)病有關(guān)聯(lián) 11,12, 13。

高血壓性腦病的治療與預(yù)后

高血壓腦病需要緊急和激進的治療,并且進行

重癥監(jiān)護。首要目的是控制顱內(nèi)壓、高血壓和維持

腦部灌注。對于慢性高血壓病患,腦部和腎臟的血

管自我調(diào)節(jié)已適應(yīng)長期高血壓狀態(tài);因此快速的降

血壓治療可能會引起嚴(yán)重的腦部低灌注,從而使顱

內(nèi)壓進一步升高。根據(jù) ACVIM 共識,恰當(dāng)?shù)慕笛獕?/p>

方案為,第一個小時降低收縮壓約 10%,隨后每小

時降低 15%,逐漸降低至目標(biāo)血壓 14。根據(jù)部分犬

貓高血壓性腦病的病例分析,對腎性高血壓和不明

原因性高血 壓 的 病 患 經(jīng) 驗 性 使 用氨 氯 地平(0.1

mg/kg PO q 12 h)可避免低血壓并發(fā)癥,犬可結(jié)合

血管緊張素轉(zhuǎn)化酶抑制劑依那普利(0.5 mg/kg PO

q 24 h),所有病患在 72 小時內(nèi)臨床癥狀得到改善,

并且回復(fù)至正常的神經(jīng)學(xué)狀態(tài)。在控制顱內(nèi)壓和腦

部水腫時,需要使用利尿劑和高滲藥物,需小心血

壓短暫升高的可能 6

。

25-45% PRES 病人會出現(xiàn)持續(xù)的 MRI 病灶,

10-25% 病人存在持續(xù)性的神經(jīng)功能缺失 (Heo et al.

2016),犬貓高血壓腦病的預(yù)后相對樂觀,但目前仍

缺乏系統(tǒng)全面的研究,也尚未有一個研究數(shù)據(jù)充足

的治療方案 6

。

腎上腺皮質(zhì)機能亢進

腎上腺皮質(zhì)機能亢進(HAC)是犬最常見的內(nèi)分

泌疾病之一。一項英國對 21 萬犬的流行病學(xué)調(diào)查研

究顯示,HAC 發(fā)病率為 0.28%15,多見于 6 歲以上,雌

性犬(58-75%)。常見的臨床癥狀包括多飲多尿、脫

毛、腹圍增大、肝臟腫大、多食、肥胖、嗜睡、肌肉無力。

21-86% 犬出現(xiàn)高血壓。血液學(xué)檢查可見紅細(xì)胞增多、

淋巴細(xì)胞減少、中性粒細(xì)胞減少、嗜酸性粒細(xì)胞減少、

單核細(xì)胞增多;肌酐、ALP、ALT、膽固醇、血糖升高等。

HAC 的診斷較有挑戰(zhàn)性,且目前尚未有診斷的統(tǒng)一標(biāo)

準(zhǔn)。腎上腺功能測試包括尿液可的松與肌酐比、低劑

量地塞米松抑制試驗(LDDST)、促腎上腺皮質(zhì)激素

(ACTH)刺激試驗 16,17。診斷了 HAC 后需要鑒別是垂

體依賴型腎上腺皮質(zhì)機能亢進(PDH)還是功能性腎

上腺皮質(zhì)腫瘤(AT)。本病例結(jié)合基本信息、臨床癥狀

和 LDDST 結(jié)果較符合 PDH。

第150頁

小動物臨床前沿(神經(jīng)學(xué)???- 上冊)· 腦部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 總第 12 期

- 148 -

診斷思路

基于病史調(diào)查和理學(xué)檢查與神經(jīng)學(xué)檢查,有兩大

主要問題,抽搐與高血壓。

根據(jù)寵主對疾病發(fā)作時的描述,并且就診過程中

患犬出現(xiàn)抽搐發(fā)作,表現(xiàn)為倒地側(cè)躺,失去自主意識,

四肢強直痙攣性抽動,面部和嘴巴抽動,伴隨大量流

涎和小便失禁,可以判斷患犬出現(xiàn)抽搐,當(dāng)然若有視

頻支持會更有可信度。抽搐為神經(jīng)系統(tǒng)問題,根據(jù)神

經(jīng)學(xué)臨床推理的五指法則 (Five Finger Rule),本病例

為突發(fā)多次抽搐發(fā)作,非對稱性,具有疼痛表現(xiàn),病灶

位于右側(cè)前腦和 T3-L3 的老年犬。由于主訴為抽搐發(fā)

作,且患犬反應(yīng)稍有降低,優(yōu)先診斷和處理右側(cè)前腦

問題。

很多因素均可引起抽搐,顱外因素、顱內(nèi)因素、特

發(fā)性癲癇、隱匿性 / 不明原因癲癇。

總結(jié) 為了排除顱外因素導(dǎo)致癲癇,并了解動物的身體

情況,以便 MRI 前的麻醉準(zhǔn)備,需要檢查全血細(xì)胞計

數(shù)、血清生化、膽汁酸、尿檢以及根據(jù)病例信息和臨床

表現(xiàn)進行血壓檢測、寄生蟲和病毒的篩查、以及毒素

的篩查。本病例進行了相應(yīng)的檢查,根據(jù)檢查結(jié)果得

到了更詳細(xì)的問題列表和相應(yīng)鑒別診斷(表 1)。綜合

高階影像學(xué)以外的檢查結(jié)果,神經(jīng)學(xué)檢查可排除特發(fā)

性癲癇,患犬抽搐的病因縮小為血管性因素、顱內(nèi)因

素、隱匿性 / 不明原因性癲癇,還需要進一步的高階影

像學(xué)檢查,評估腦部情況。高血壓的原因則排除了甲

狀腺疾病、藥物 / 毒素、高黏血癥、糖尿病,需要繼續(xù)找

出引起高血壓的潛在病因,并且驗證抽搐與高血壓在

該病例中是否有相關(guān)性。在老年動物中,同時出現(xiàn)多

個誘發(fā)高血壓的因素并不罕見。貓需要考慮特發(fā)性高

血壓,其全血細(xì)胞計數(shù)、血清生化、尿檢等檢查可能無

異常。

引起抽搐顱內(nèi)的因素則需要高階影像學(xué)、腦脊液

檢查和腦電圖,本病例進行 MR 檢查,發(fā)現(xiàn)影像符合

腦血管病的出血性病變和腦白質(zhì)病病變表現(xiàn)。結(jié)合通

過低劑量地塞米松刺激試驗,確診為腎上腺皮質(zhì)機能

亢進。高血壓性腦病通過治療性診斷得以確定。

高血壓性腦病的發(fā)病因素

目前,在犬貓中,與高血壓相關(guān)的神經(jīng)并發(fā)癥包

括腦血管疾病和高血壓性腦病 1。獸醫(yī)有關(guān)高血壓腦

病的病例報告仍較少。人醫(yī)將高血壓腦病歸為腦后部

可逆性腦病綜合征(PRES),以腦部血管性水腫為特

征,主要影響枕葉和顳葉,其中超過 33%PRES 患者出

現(xiàn)顱內(nèi)出血 2

。

高血壓性腦病的發(fā)病機制尚不完全明確,目前多

數(shù)傾向于“自動調(diào)節(jié)機制崩潰學(xué)說”,即由于血壓突然

升高,超出腦血管自動調(diào)節(jié)限度,引起血管壁損傷和

血腦屏障通透性增加,引起局部或多灶性血管源性水

腫。隨著病情的進展,由于腦血管通透性進一步增加,

血管壁缺血變性,病變腦組織由血管源性腦水腫發(fā)展

為細(xì)胞毒性腦水腫,并可夾雜出現(xiàn)灶性腦出血,甚至

出現(xiàn)腦梗死。PRES 的風(fēng)險因素包括突發(fā)性動脈高壓、

腎功能不全、子癲前期 / 子癲、免疫抑制性藥物、自體

免疫性疾病、系統(tǒng)性感染 3,4。

腦血管疾病是老年人遲發(fā)性癲癇的主要發(fā)病風(fēng)

險因素,除了卒中后癲癇性瘢痕、大腦皮質(zhì)的微小梗

死灶以及(抑制性)神經(jīng)傳入作用受抑制引起的結(jié)構(gòu)

性癲癇外,已證實腎素 - 血管緊張素系統(tǒng)失調(diào)也可引

起所謂的無誘因癲癇發(fā)作 5

。

在伴侶動物中,一項前瞻性的調(diào)查研究發(fā)現(xiàn),36

只由于慢性腎病和 / 或甲狀腺機能亢進引發(fā)的高血壓

患貓,有 25% 的貓出現(xiàn)過抽搐,對該部分抽搐發(fā)作致

死的貓進行腦部病理組織學(xué)檢查,15% 病例符合高血

壓腦病的病理特征。在高血壓患貓中,關(guān)于 PRES 樣腦

血管性水腫是否為抽搐的獨立誘發(fā)因素仍未明確。未

來需要更多前瞻性臨床試驗調(diào)查高血壓患犬和貓的

癲癇發(fā)病率,以及進一步探討血管緊張素分別對腦部

損傷和神經(jīng)調(diào)節(jié)產(chǎn)生的影響 6

高血壓性腦病的臨床特征與診斷

高血壓腦病是高血壓繼發(fā)引起抽搐和意識改變

等神經(jīng)學(xué)異常的綜合征,沒有特異性的臨床表現(xiàn),取

決于受損的靶器官以及具體病灶位置,多見廣泛性

的前腦癥狀,如意識遲鈍、抽搐、皮質(zhì)盲。高血壓性腦

病見于嚴(yán)重的高血壓以及血壓急劇上升的患犬 7

。本

病例在右前側(cè)嗅葉有血塊,相關(guān)神經(jīng)學(xué)異常只表現(xiàn)

為左側(cè)威脅反應(yīng)缺失。目前對于高血壓血管收縮和

神經(jīng)炎癥是否會引起犬貓神經(jīng)的退行性病變未有完

整的了解。急性的神經(jīng)并發(fā)癥以局灶性血管性卒中、

前庭疾病、神經(jīng) - 眼現(xiàn)象、彌散性前腦癥狀為特征。

高血壓靶器官受損所引起的臨床癥狀和實驗室檢查

將有助于診斷,如前房出血、視網(wǎng)膜脫落(特別是

貓)、腎臟生物學(xué)指標(biāo)、心臟功能評估等。而高血壓引

起的腦部損傷最可靠的診斷工具為磁共振成像技

術(shù)。通常高血壓腦病可見雙側(cè)腦白質(zhì)非對稱性 T2-W

高信號,特別是在頂葉和枕葉區(qū)域。另外可見 T2 高

信號缺血灶或出血灶 6

。

本病例的磁共振影像除了在右側(cè)嗅葉有出血灶

和血管性水腫表現(xiàn)以外,還可見腦白質(zhì)病變。腦白質(zhì)

?。↙eukoencephalopathy)包括多種中樞神經(jīng)系統(tǒng)疾

病,根 據(jù) 病 因,可 進 一 步 分 為 腦 白 質(zhì) 營 養(yǎng) 不 良

(leukodystrophy)與 髓 鞘 形 成 不 足(hypomyelination)8。腦白質(zhì)營養(yǎng)不良是以髓磷脂的生成與儲備的

紊亂為特征的非炎性對稱性腦部病變,髓鞘形成不足

以髓磷脂的完全丟失、髓磷脂的異常蓄積或生理性髓

磷脂不足為特征 9

。腦白質(zhì)病變的鑒別診斷包括脫髓

鞘性腦病,腦白質(zhì)變性,代謝性 / 中毒性 / 營養(yǎng)性疾病,

炎癥性疾病等。獲得性腦白質(zhì)病與毒素的接觸相關(guān),

如六氯化苯、異煙肼、苯乙肼、溴鼠胺。遺傳性腦白質(zhì)

病則常見于年輕純種犬,如金毛巡回獵犬、魏瑪獵狗、

邊境?10。病毒性感染(如細(xì)小病毒)、營養(yǎng)性因素(飼

喂受輻射日糧)也與腦白質(zhì)病有關(guān)聯(lián) 11,12, 13。

高血壓性腦病的治療與預(yù)后

高血壓腦病需要緊急和激進的治療,并且進行

重癥監(jiān)護。首要目的是控制顱內(nèi)壓、高血壓和維持

腦部灌注。對于慢性高血壓病患,腦部和腎臟的血

管自我調(diào)節(jié)已適應(yīng)長期高血壓狀態(tài);因此快速的降

血壓治療可能會引起嚴(yán)重的腦部低灌注,從而使顱

內(nèi)壓進一步升高。根據(jù) ACVIM 共識,恰當(dāng)?shù)慕笛獕?/p>

方案為,第一個小時降低收縮壓約 10%,隨后每小

時降低 15%,逐漸降低至目標(biāo)血壓 14。根據(jù)部分犬

貓高血壓性腦病的病例分析,對腎性高血壓和不明

原因性高血 壓 的 病 患 經(jīng) 驗 性 使 用氨 氯 地平(0.1

mg/kg PO q 12 h)可避免低血壓并發(fā)癥,犬可結(jié)合

血管緊張素轉(zhuǎn)化酶抑制劑依那普利(0.5 mg/kg PO

q 24 h),所有病患在 72 小時內(nèi)臨床癥狀得到改善,

并且回復(fù)至正常的神經(jīng)學(xué)狀態(tài)。在控制顱內(nèi)壓和腦

部水腫時,需要使用利尿劑和高滲藥物,需小心血

壓短暫升高的可能 6

25-45% PRES 病人會出現(xiàn)持續(xù)的 MRI 病灶,

10-25% 病人存在持續(xù)性的神經(jīng)功能缺失 (Heo et al.

2016),犬貓高血壓腦病的預(yù)后相對樂觀,但目前仍

缺乏系統(tǒng)全面的研究,也尚未有一個研究數(shù)據(jù)充足

的治療方案 6

。

腎上腺皮質(zhì)機能亢進

腎上腺皮質(zhì)機能亢進(HAC)是犬最常見的內(nèi)分

泌疾病之一。一項英國對 21 萬犬的流行病學(xué)調(diào)查研

究顯示,HAC 發(fā)病率為 0.28%15,多見于 6 歲以上,雌

性犬(58-75%)。常見的臨床癥狀包括多飲多尿、脫

毛、腹圍增大、肝臟腫大、多食、肥胖、嗜睡、肌肉無力。

21-86% 犬出現(xiàn)高血壓。血液學(xué)檢查可見紅細(xì)胞增多、

淋巴細(xì)胞減少、中性粒細(xì)胞減少、嗜酸性粒細(xì)胞減少、

單核細(xì)胞增多;肌酐、ALP、ALT、膽固醇、血糖升高等。

HAC 的診斷較有挑戰(zhàn)性,且目前尚未有診斷的統(tǒng)一標(biāo)

準(zhǔn)。腎上腺功能測試包括尿液可的松與肌酐比、低劑

量地塞米松抑制試驗(LDDST)、促腎上腺皮質(zhì)激素

(ACTH)刺激試驗 16,17。診斷了 HAC 后需要鑒別是垂

體依賴型腎上腺皮質(zhì)機能亢進(PDH)還是功能性腎

上腺皮質(zhì)腫瘤(AT)。本病例結(jié)合基本信息、臨床癥狀

和 LDDST 結(jié)果較符合 PDH。

本文從病史調(diào)查、神經(jīng)學(xué)檢查、血液學(xué)檢查、影像

學(xué)檢查等多方面對一例犬腎上腺皮質(zhì)機能亢進伴發(fā)

高血壓腦病進行分析,并且對抽搐的鑒別診斷和高血

壓性腦病進行了討論。當(dāng)病患抽搐發(fā)作時,應(yīng)對顱內(nèi)

因素和顱外因素進行排查;出現(xiàn)急性神經(jīng)癥狀伴發(fā)

高血壓時,應(yīng)考慮高血壓性腦病,且尋找潛在病因從

而進行治療。

參考文獻:

[1]Bowman C A, Witham A, Tyrrell D, et al. Magnetic resonance imaging appearance of hypertensive encephalopathy in

a dog[J]. Irish Veterinary Journal, 2015, 68(1): 1-5.

[2]Liman T G , Bohner G , Heuschmann P U , et al. The

clinical and radiological spectrum of posterior reversible

encephalopathy syndrome: the retrospective Berlin PRES

study[J]. Journal of Neurology, 2012, 259(1):155-164.

[3]Schneider J P , Krohmer S , A Günther, et al. Cerebral

lesions in acute arterial hypertension: the characteristic MRI in

hypertensive encephalopathy.[J]. Rofo, 2006.178(6): 618-626.

[4] 戴世鵬 , 龐軍 , 戴景儒 . 高血壓腦病的 MRI 表現(xiàn)及鑒別

診斷 [J]. 磁共振成像 , 2014, 5(1):4.

[5]Gasparini S , Ferlazzo E , Sueri C , et al. Hypertension,

seizures, and epilepsy: a review on pathophysiology and management[J]. Neurological Sciences, 2019?1-9.

[6]Elliott J , Syme H M , Jepson R E . Hypertension in the

Dog and Cat[M]. 2020.

[7]O’ Neill J, Kent M, Glass EN, et al. Clinicopathologic and

MRI characteristics of presumptive hypertensive encephalopathy in two cats and two dogs. J Am Anim Hosp Assoc 2013

Nov-Dec;49(6):412-20.

[8]Strk T , Nessler J , Anderegg L , et al. TSEN54 missense

variant in Standard Schnauzers with leukodystrophy[J]. PLoS

Genetics, 2019, 15(10):e1008411.

[9]Schaudien D , Polizopoulou Z , Koutinas A , et al. Leukoencephalopathy Associated with Parvovirus Infection in

Cretan Hound Puppies[J]. Journal of Clinical Microbiology,

2010, 48(9):3169.

[10]JA García, Pumarola M , Romero A , et al. Spongiform

leukoencephalopathy in an adult mixed breed female dog[J].

Brazilian Journal of Veterinary Pathology, 2020, 13(2).

[11]Schaudien D, Polizopoulou Z, Koutinas A, et al. Leukoencephalopathy associated with parvovirus infection in Cretan

hound puppies[J]. Journal of clinical microbiology, 2010, 48(9):

3169-3175.

[12]van den Ingh T S, Grinwis G C M, Corbee R J. Leukoencephalomyelopathy in cats linked to abnormal fatty acid

composition of the white matter of the spinal cord and of irradiated dry cat food[J]. Journal of animal physiology and animal

nutrition, 2019, 103(5): 1556-1563.

[13]Hirschvogel K, Matiasek K, Flatz K, et al. Magnetic

resonance imaging and genetic investigation of a case of rottweiler leukoencephalomyelopathy[J]. BMC veterinary research,

2013, 9(1): 1-8.

[14]Acierno M J , Brown S , Coleman A E , et al. ACVIM

consensus statement: Guidelines for the identification, evaluation, and management of systemic hypertension in dogs and

cats[J]. Journal of Veterinary Internal Medicine, 2018, 32.

[15]D, G, O'Neil, et al. Epidemiology of hyperadrenocorticism among 210,824 dogs attending primary-care veterinary

practices in the UK from 2009 to 2014[J]. Journal of Small

Animal Practice, 2016, 57(7):365–373.

[16]Bennaim M , Shiel R E , Mooney C T . Diagnosis of

spontaneous hyperadrenocorticism in dogs. Part 1: Pathophysiology, aetiology, clinical and clinicopathological features[J]. The

Veterinary Journal, 2019, 252?105342.

[17]Bennaim M , Shiel R E , Mooney C T . Diagnosis of

spontaneous hyperadrenocorticism in dogs. Part 2: Adrenal

function testing and differentiating tests[J]. The Veterinary

Journal, 2019, 252?105343.

百萬用戶使用云展網(wǎng)進行創(chuàng)意畫冊設(shè)計制作,只要您有文檔,即可一鍵上傳,自動生成鏈接和二維碼(獨立電子書),支持分享到微信和網(wǎng)站!
收藏
轉(zhuǎn)發(fā)
下載
免費制作
其他案例
更多案例
免費制作
x
{{item.desc}}
下載
{{item.title}}
{{toast}}